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We use an extension of the van der Pol oscillator as an example of a system with multiple time
scales to study the susceptibility of its trajectory to polynomial perturbations in the dynamics. A
striking feature of many nonlinear, multi-parameter models is an apparently inherent insensitivity
to large magnitude variations in certain linear combinations of parameters. This phenomenon of
“sloppiness” is quantified by calculating the eigenvalues of the Hessian matrix of the least-squares
cost function. These typically span many orders of magnitude. The van der Pol system is no
exception: Perturbations in its dynamics show that most directions in parameter space weakly affect
the limit cycle, whereas only a few directions are stiff. With this study we show that separating
the time scales in the van der Pol system leads to a further separation of eigenvalues. Parameter
combinations which perturb the slow manifold are stiffer and those which solely affect the jumps in
the dynamics are sloppier.

I. INTRODUCTION

In this manuscript, we analyze the sensitivity of a
multiple time scales dynamical system to perturbative
changes in its evolution laws. Rather than utilizing the
traditional means of examining the structural stability for
probing qualitative changes to the attractor as a response
to perturbations, we study the structural susceptibility

for quantifying the effects of the perturbations on the
time series [1]. More specifically, we ask how sensitive
is the dynamical system dz/dt = f(z) to infinitesimal
changes of the form dz/dt = f(z) + a · g(z), for a family
of perturbations g(z) when the parameters a → 0.
This report introduces the new concept of “structural

susceptibility” in dynamical systems, and is an outgrowth
of our group’s previous work on “sloppiness” in multipa-
rameter systems wherein we have found that data-fitting
in a number of nonlinear, multiparameter models is only
sensitive to a few directions in parameter space at the
best fit [2–4]. The key difference between studying slop-
piness and structural susceptibilities is that in the former,
the parameters are intrinsic to the system, i.e., there
are no externally introduced changes in their evolution
laws. Nonetheless, the methodology we have developed
for studying sloppy models is also suited for studying
structural susceptibilities of dynamical systems. Our ap-
proach cleanly isolates and ranks the directions in pa-
rameter space in order of relevance to observed behavior,
and has previously led us to suggest improvements in ex-
perimental design [5], extract falsifiable predictions from
experiments [6], and develop faster minimization algo-
rithms [7]. Others have developed our ideas to suggest
further improvements in experimental design [8] and pa-
rameter estimation [9], to quantify robustness to param-
eter variations [10], and to set confidence regions for pre-
dictions in multiscale models [11]. In this paper, we bring
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similar ideas together to analyze sensitivities of time se-
ries to perturbations in dynamical systems.
We demonstrate the utility of our approach with ap-

plication to a dynamical system with two time scales—
the van der Pol oscillator [12] which is a single parameter
system and hence not amenable to sloppy model analy-
sis. Instead, by choosing appropriate perturbations g(z),
we calculate the susceptibility of its dynamics: We make
perturbations on the attractor, and then systematically
increase the separation of time scales in its dynamics to
show how it can generally enhance the sloppiness in non-
linear systems.

II. MULTIPLE TIME SCALE DYNAMICS

Multiple time scales are often found in the solutions of
dynamical systems [13]. Broadly speaking, the defining
criterion of these models is that the trajectory of one or
more phase variables has an identifiable fast piece such as
a jump or a pulse and a slow piece where the value of the
variable doesn’t change quickly [14]. In two dimensions,
these systems are commonly studied in the contexts of
slow-fast vector fields written as:

ǫẋ = X(x, y, ǫ),
ẏ = Y (x, y, ǫ)

(1)

where the parameter ǫ > 0 is small and dot indicates
derivative with respect to time t. For O(1) functions X
and Y , and X 6= 0: ẋ = O(1/ǫ) and ẏ = O(1), so that ǫ
is the ratio of time scales in the system. On one extreme,
the singular limit ǫ = 0 corresponds to a differential alge-
braic system X = 0, Y = ẏ where the solutions of X = 0
comprise the “critical manifold” close to which the flow
in phase space is slow (the “slow manifold”). Similarly,
ǫ = 1 corresponds to a limit where there is no separation
of time scales, with a crossover at intermediate values of
ǫ.
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Originally introduced in 1927, the van der Pol equa-
tion, ẍ − µ(1 − x2)ẋ + x = 0, is a well-studied example
of a second-order, nonlinear system with multiple time
scales in its solution. Using the Liénard transformation
y = x−x3/3−ẋ/µ, and redefining time t → tµ, the equa-
tion can be written as a two dimensional system [14, 15]
given by:

µ−2ẋ = x− x3

3
− y,

ẏ = x,
(2)

which has the same form as (1) with ǫ = µ−2. The global
attractor of this dynamical system is a structurally stable
limit cycle with two time scales [16].
The van der Pol system provides a convenient way to

separate time scales by varying µ: Small values of µ in
the van der Pol system correspond to a small separation
of time scales. It can be shown that the trajectory ap-
proaches that of the harmonic oscillator as µ → 0 [12].
At large values of µ, the system shows a separation of
time scales which increases with increasing µ. As shown
in figure 1 (b, c), with increasing µ, the trajectory of
x separates into a slow part that lies O(µ−2) close to
the phase space curve given by ẋ = 0, i.e. the critical
manifold y = x − x3/3, and a fast part which connects
the two branches of the slow flow. Likewise, the separa-
tion of time scales in y are associated with the increasing
sharpness of the kink in its trajectory.
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FIG. 1. (Color online) (a) Eigenvalues of the Hessian matrix
of the cost of fitting at µ = 1, and (b, c top row) one period
of time series x(τ ) (dotted line), and y(τ ) (solid line), for
0 < τ < 1, are shown for µ = 1 and µ = 100 as function
of time along with schematic error bars for the data-fitting
of the trajectory of variable y. (d) Eigenvalues for µ = 100
are shown on the right. As µ → ∞, the orbit collapses onto
the critical manifold with the trajectory spending most of its
time on the slow manifold and vanishingly short on the jumps.
Also shown in (b, c bottom row) is the orbit in xy plane (solid
line) and the critical manifold (dashed line).

The fact that with an increasing separation of time
scales the trajectory spends an increasing amount time on
the slow manifold and a decreasing amount of time on the
jumps has important implications for fitting parameters
to time series data of the van der Pol system. With
increasing scale separation, one expects that the cost of
fitting will be decreasingly sensitive to changes in the
jumps of the trajectory as they get progressively shorter
in duration.

III. SLOPPINESS IN NONLINEAR FITS

In this section, we discuss the concepts of sloppiness
and structural susceptibility in more detail with exam-
ples as a prelude to our calculations. For time series
z(t, a), a least-squares fit to data di minimizes a cost
C = 1

2

∑

i(z(ti, a) − di)
2/σ2

i in the space of system pa-
rameters which are collectively denoted as a. Our dis-
covery of sloppiness is essentially that the eigenvalues
of the Hessian of the cost with respect to parameters,
Hαβ = ∂2C/∂aα∂aβ , at the best fit span many orders
of magnitude. The larger and smaller eigenvalues corre-
spond to stiffer and sloppier directions respectively. For
concreteness, consider a time series of a multi parameter
model, such as the one denoted by y(τ) in figure 1(b,
top row). The error bars schematically show the least-
squares fit of y(τ) and the sidebar (figure 1(a)) shows the
eigenvalues of the corresponding Hessian matrix. Note
the broad range of eigenvalues (∼ 1011, corresponding
to a factor of almost a million in parameter range)— a
feature that turns out to be typical in nonlinear fits.

Another vivid example of sloppiness in nonlinear mod-
els is provided by the well-established formalism behind
the characterization of the sensitivities of initial condi-
tions using Lyapunov exponents [17]. Consider dz/dt =
f(z) as a model whose parameters are the initial con-
ditions aα = zα(0) and whose predictions are the final
positions zi(t) at time t. At the best fit, Hαβ = (JT J)αβ
where Jiα = ∂zi(t)/∂zα(0) is the Jacobian of the sensitiv-
ities to perturbations in the initial conditions. The Lya-
punov exponents, which are defined to be the eigenval-
ues ℓn of L = limt→∞ 1/(2t) log(JT J), utilize the same
Hessian we would use in calculating the sloppy model
eigenvalues λn = exp(2tℓn). The roughly equal spacing
of Lyapunov exponents naturally explains both the expo-
nentially broad range of sloppy model exponents and the
roughly equal spacing of log(λn) for a model with initial
conditions as parameters.

Instead of the sensitivities with respect to the initial
conditions or other intrinsic parameters, we focus here
on the sensitivity of the dynamics to changes in the dy-
namical evolution laws. Therefore, for the remainder of
this paper we will be interested in a cost function that
measures the square of the distance between two time
series for the system dz/dt = f(z) + a · g(z)— one with
perturbations— z(t, a → 0), and the other one without,



3

i.e., z(t, a=0)

C =
1

2

∫ T

0

||z(t, a → 0)− z(t, a = 0)||2 dt (3)

with the perturbing terms gi(z) giving a power series in
the components of z. Further in the manuscript, we will
use this form of the cost to compute the susceptibility
of the van der Pol system and show how sloppiness is
enhanced by increasing separation of time scales in the
van der Pol equations. This is in essence captured by
figure 1(a & d) where we show that an increase in the
van der Pol parameter µ from 1 to 100 produces roughly
a million-fold increase in the spread of eigenvalues.

IV. SUSCEPTIBILITY OF VAN DER POL

SYSTEM

We perturb the van der Pol system in (2) by adding
a series of additional terms. There is a long tradition
in dynamical systems of studying equations of motion
of polynomial form [17, 18]; indeed, the theory of nor-
mal forms suggests that general dynamical systems, even
at bifurcations, can be generically mapped into a polyno-
mial form by a nonlinear but smooth change of variables.
Adding extra polynomial terms is routinely done to ‘un-
fold’ the qualitative behavior near bifurcations [19]. Here
we focus on quantitative changes far from bifurcations.
In choosing our perturbations, we must cut off the poly-
nomials at some order. There are two ways in which we
specialize our general susceptibility analysis to the two
time scale, periodic limit cycle of the van der Pol system.
First, we choose the family of perturbations of order 3N
as follows:

µ−2ẋ = x− x3

3
− y +

∑

m+n≤N am,n(x− x3

3
− y)mxn

ẏ = x.
(4)

This choice has two noteworthy features— (a) We have
grouped the polynomial perturbations so that, for m 6= 0
they vanish on the critical manifold, y = x− x3/3. That
is, the parameters am,n with m 6= 0 do not significantly
affect the dynamics on the slow manifold; we call these
the “fast parameters” and correspondingly the a0,n are
“slow parameters”. The parameter a1,0 duplicates µ to
the same effect as changing the period, and we omit it.
Surely, the eigenvalue spectrum of the general polynomial
expansion, am,nx

myn, behaves qualitatively similarly to
the one presented here but our parametrization greatly
simplifies the analysis of the eigenvector perturbations.
(b) We only perturb the ẋ equation. Our choice corre-
sponds to a general expansion of a second-order equation,
with the acceleration ÿ = ẋ written as a polynomial in
the position y and velocity ẏ = x. Perturbing both equa-
tions produces similar behavior.
Second, we modified the cost to focus on the limit cycle

of the van der Pol system in two ways— (a) by rescaling
all trajectories in our analysis so that they have the same

unit period, and (b) by changing the initial condition so
that it lies on the perturbed orbit and that the perturbed
and unperturbed orbits are in phase with each other [20].
When we correct the period T by δT , initial conditions
y0 by δy0, and do an overall rescaling of the time variable
t → τT , the cost functional for the time series of y(τ) at
each µ takes the following form:

C(µ) =
1

2

∫ 1

0

[y(τ, a+ δa,y0 + δy0, T + δT )−

y(τ, a,y0, T )]
2 dτ (5)

In principle, changes in both time series, x(τ) and y(τ)
could be incorporated in the cost function, but we get
qualitatively similar results by keeping either or both
variables. Choosing to measure changes only in y(τ) cor-
responds again to studying the second-order equation for
ÿ as an expansion in y and ẏ.
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FIG. 2. (Color online) Eigenvalues of Hessian matrix are
shown here as a function of µ. The range 1 ≤ µ ≤ 100 corre-
sponds to a ratio of time scales 1 ≤ ǫ ≤ 10000. The five largest
eigenvalues (solid lines) correspond to stiff directions in the
parameter space: these directions perturb the slow manifold.
The remainder (dashed lines) affect the transient part of the
trajectory which becomes smaller with an increasing separa-
tion of time scales and hence these directions are decreasingly
relevant.

The susceptibilities are still given by the Hessian ma-
trix at the best fit (a=0):

H(µ)αβ =
∂2C(µ)

∂aα∂aβ
(6)

which can be written out more completely as:

H(µ)αβ =

∫ 1

0

(

∂y

∂aα
+

∂y

∂y0

∂y0

∂aα
+

∂y

∂T

∂T

∂aα

)

×
(

∂y

∂aβ
+

∂y

∂y0

∂y0

∂aβ
+

∂y

∂T

∂T

∂aβ

)

dτ

Here, each of the two terms in the integral is to be inter-
preted as a Jacobian matrix, a mapping from the finite
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dimensional parameter space to the infinite dimensional
data space:

Jτα =
∂y(τ)

∂aα
+

∂y(τ)

∂y0

∂y0

∂aα
+

∂y(τ)

∂T

∂T

∂aα
(7)

The sensitivity trajectories in the Jacobian, ∂y/∂aα,
∂y/∂y0, and ∂y/∂T , were computed using the open
source SloppyCell package [21, 22]. The expressions for
the time invariant quantities, ∂y0/∂aα and ∂T/∂aα, were
found by enforcing periodicity of the perturbed time se-
ries denoted by y(τ) ≡ (x(τ), y(τ)) as follows:

y(τ = 0, a+ δa,y0 + δy0, T + δT ) =

y(τ = 1, a+ δa,y0 + δy0, T + δT ),

Taylor expansion of both sides of the previous equation
leads to a vector equation:

δy0 =
∂y

∂T

∣

∣

∣

∣

τ=1

δT +
∂y

∂a

∣

∣

∣

∣

τ=1

δa+
∂y

∂y0

∣

∣

∣

∣

τ=1

δy0,

from which both constants can be computed following
the convention that the component denoting the change
in initial condition of y(τ) in δy0 is set to zero. Now with
the Jacobian calculated, the Hessian at best fit is simply
H = JTJ .

A. Eigenvalues and Eigenvectors

We computed the Hessian matrix given by the previous
equation at multiple values of µ. The spread of eigenval-
ues (figure 2) increases as a function of µ confirming that
sloppiness increases with an increasing separation of time
scales. Not surprisingly [23], for N = 4, the 14 eigenval-
ues for µ = 1 already span 11 orders of magnitude, while
for µ = 100, we observe that the stiffest eigenvalue is 18
orders of magnitude larger than the smallest one— the
spread increases by 107 when µ increases to 100.
Taken together with the eigenvectors shown in figure 3,

some interesting facts come to light: Figure 2 shows that
with increasing µ, the eigenvalues separate into two clus-
ters of closely related decay exponents. The largest N
eigenvalues approach constants. The other eigenvalues
decay with power laws: two modes with exponents be-
tween −2 and −3 and the remaining with exponents be-
tween −5 and −6. Similarly, figure 3 shows that the
eigenvectors also separate into two groups with increas-
ing µ: The stiffest directions are linear combinations of
the slow parameters whereas the sloppy directions are
comprised of other parameters as expected.
We can understand the effect of perturbations in pa-

rameter combinations given by the eigenvectors (called
eigenparameters) êk more clearly by observing their be-
havior in the data space. The Jacobian transforma-
tion of (7) projects the eigenvectors to the data space:
δyk = J · êk/

√
λk where λk corresponds to the kth largest

eigenvalue. Defined this way, these data space vectors,

called eigenpredictions [4], δyk, are also orthonormal. Al-
ternatively, the eigenpredictions are the left singular vec-
tors in the singular value decomposition of the Jacobian
(i.e. they are the columns of the unitary matrix U in
J = UΣV T [24]) As shown in figure 4 for µ = 1, 10 & 100
(top three rows), we learn from the eigenpredictions that
the stiff modes affect behavior both along the slow mani-
fold and at the jumps. Moreover with increasing µ, as the
eigenvalues associated with the stiff directions approach
constants (figure 2), so do the stiff eigenpredictions (fig-
ure 4 rows 2, 3 columns (a) and (b)). The sloppy modes
on the other hand, affect the dynamics on the jumps only.
The maximum amplitudes of the (normalized) sloppiest
eigenpredictions appears to increase roughly proportional
to µ (corresponding to the jump duration of ∼ µ−2).
In the limit, these become δ-functions and derivatives
concentrated at the jumps. Figure 4 (bottom row) also
shows the limit cycles (eigencycles) with eigenparameter
perturbations as phase space trajectories (x, y + η δyk)
for small η.

V. DISCUSSION

In this paper, we have introduced a formalism we call
“structural susceptibility” for analyzing the quantitative
dependence of dynamical systems to perturbations of the
equations of motion. It is a generalization of ‘unfolding’
methods of bifurcation theory and the Lyapunov expo-
nents governing the dependence on initial conditions, and
exposes the ubiquitous presence of broad range of sloppy
eigendirections in parameter space— largely unimpor-
tant to the dynamics. We used this method to study
the role of time scale separation in enhancing the sloppi-
ness of the susceptibility spectrum in the particular case
of the van der Pol oscillator.
By extending the framework of our sloppy model anal-

ysis to systems where changes in evolution laws are to be
studied, our method offers a simple way to calculate the
effects of broad classes of perturbations. By studying the
structural susceptibility of a dynamical system with two
time scales, the analysis presented here showed that slop-
piness of nonlinear systems is enhanced by separation of
time scales in the dynamics. With increasing separation
of time scales in the van der Pol oscillator, the trajec-
tory spends an increasing amount of time on the slow
manifold and a vanishingly small amount of time in the
transition region. The cost of perturbations is integrated
over time and therefore we are unsurprised that the per-
turbations that change the slow manifold will accrue the
most cost and therefore manifest as stiff modes of the
Hessian matrix. The remaining directions are sloppy as
they only affect the behavior at the jumps or the fast
pieces. These perturbations manifest as δ-functions and
their derivatives— significantly affecting the phase-space
trajectory, but over only the fast times asymptotically
ignored in the least-squares cost. It remains a challenge
to connect separation of time scales to parameter sensi-
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FIG. 3. (Color online) Hessian eigenvectors are shown for µ = 1, 10, and 100. Each colored small square shows the magnitude
of an eigenvector component (the scale bar shown on the right). Eigenvectors for each µ are sorted so that the stiffer ones
appear on the left; individual components are sorted so that “slow parameters” appear on the top. Note that with increasing µ,
the stiff and sloppy eigenvectors separate by parameters: The stiff eigenvectors only have projections along the slow parameters
which perturb the slow manifold, whereas the sloppy directions have projections along the fast parameters which mainly perturb
the jumps.

tivity in more complicated systems, but the analogy of
the van der Pol system’s behavior with other nonlinear
physical systems of interest is clear.
Many important dynamical systems have multiple time

scales in their solutions: examples include models in neu-
roscience (such as Hodgkin-Huxley model), systems bi-
ology or chemical reaction systems (such as protein net-
work models), and in engineering (such as models of com-
bustion, lasers, locomotion, etc.). Our analysis suggests
that any system with multiple time scales should become
sloppier as the scales separate for the same reasons as we
found in the van der Pol: Some parameter combinations
will only affect the fast dynamics, and lead to sloppy
modes. Perturbations which affect the slow dynamics
will presumably accrue more cost and be stiff.
More broadly, the sloppiness exposed by our struc-

tural susceptibility analysis has clear implications for at-
tempting to reconstruct the equations of motion from
experimental data [25] because the true dynamics along

any sloppy eigendirection will be relatively poorly deter-
mined. This discovery has already influenced work on ex-
perimental design optimization: estimating parameters
is challenging [8, 26], but extracting predictions with-
out constraining parameters is straightforward [6]. We
further anticipate that the concept of structural suscep-
tibility will be useful for studying systems with chaos,
bifurcations and phase transitions; quantifying the un-
foldings of these systems may also be useful for gaining
a deeper understanding of the phenomena they model.

VI. ACKNOWLEDGMENTS

We thank Stefanos Papanikolaou for helpful conversa-
tions leading us to think about perturbing the slow man-
ifold and about the analogues to thermodynamic suscep-
tibilities, and John Guckenheimer for valuable insights
and discussions regarding our calculations. Support from
NSF grant DMR 1005479 is gratefully acknowledged.

[1] We employ the word structural in the same context as
its usage in dynamical systems literature on structural

stability. The word susceptibility is inspired from physics
wherein it is a measure of response to a perturbation
(such as an applied external field) quantified by the
second-derivative of the free energy w.r.t. parameters.
Since cost is analogous to free energy (in that both are
minimized), it is natural to call the response to perturba-
tions in dynamics, also quantified via second derivatives,

as structural susceptibility.
[2] Kevin S. Brown and James P. Sethna. Statistical me-

chanical approaches to models with many poorly known
parameters. Phys. Rev. E, 68:021904, Aug 2003.

[3] Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey,
Kevin S Brown, Christopher R Myers, and James P
Sethna. Universally sloppy parameter sensitivities in sys-
tems biology models. PLoS Comput Biol, 3(10):e189, 10
2007.



6

(a) (e) (d) (c) (b) 

E
ig
e
n
p
re
d
ic
ti
o
n
s
 

E
ig
e
n
c
y
c
le
s
 

Fast 

S
lo
w
 

Stiffest 4th Stiffest 5th Sloppiest 2nd Sloppiest 

FIG. 4. (Color online) Top three rows: Eigenpredictions δyk for k = 0, 3, 6, 9, 12 at µ = 1, 10 & 100 are shown in solid red
lines for stiff modes and dashed green for sloppy modes. These curves show the response of perturbations if the parameters
are changed infinitesimally along the Hessian eigenvectors: A parameter change of norm ǫ along eigendirection n will change
the trajectories by λnǫ times the eigenpredicton. Dotted gray lines show unperturbed van der Pol solution for comparison (y
scale on the right hand side). As the time scales separate, the amplitudes of the sloppiest eigenpredictions increase (roughly
in proportion to µ) getting increasingly concentrated at the jumps. Bottom row shows the eigencycles for µ = 100 in solid red
lines and green dashed lines corresponding to the perturbations in row 3 (i.e. the new limit cycle for a perturbation of strength
ǫ ∼ 1/λn. These curves show how the van der Pol orbit changes with perturbations along the Hessian eigenvectors. Both the
stiff and the sloppy modes change the orbit at the jumps (occurring at the extrema in the dashed lines); the stiff modes also
change behavior at the slow manifold, whereas the sloppy modes only affect the jumps.

[4] Mark K. Transtrum, Benjamin B. Machta, and James P.
Sethna. Geometry of nonlinear least squares with appli-
cations to sloppy models and optimization. Phys. Rev.

E, 83:036701, Mar 2011.
[5] Fergel P. Casey, D. Baird, Q. Feng, R.N. Gutenkunst,

J.J. Waterfall, C.R. Myers, K.S. Brown, R.A. Cerione,
and J.P. Sethna. Optimal experimental design in an
epidermal growth factor receptor signalling and down-
regulation model. IET Systems Biology, 1(3):190–202,
2007.

[6] Ryan N. Gutenkunst, Fergal P. Casey, Joshua J. Water-
fall, Christopher R. Myers, and James P. Sethna. Ex-
tracting falsifiable predictions from sloppy models. An-

nals of the New York Academy of Sciences, 1115(1):203–
211, 2007.

[7] Mark K. Transtrum and James P. Sethna. Improvements
to the levenberg-marquardt algorithm for nonlinear least-
squares minimization.

[8] Joshua F. Apgar, David K. Witmer, Forest M. White,
and Bruce Tidor. Sloppy models, parameter uncertainty,
and the role of experimental design. Mol. BioSyst.,
6:1890–1900, 2010.

[9] Maria Secrier, Tina Toni, and Michael P. H. Stumpf. The
ABC of reverse engineering biological signalling systems.
Mol. BioSyst., 5:1925–1935, 2009.

[10] Adel Dayarian, Madalena Chaves, Eduardo D. Sontag,
and Anirvan M. Sengupta. Shape, size, and robustness:
Feasible regions in the parameter space of biochemical
networks. PLoS Comput Biol, 5(1):e1000256, 01 2009.

[11] Hannes Hettling and Johannes HGM van Beek. Analyz-
ing the functional properties of the creatine kinase sys-
tem with multiscale ‘sloppy’ modeling. PLoS Comput

Biol, 7(8):e1002130, 08 2011.
[12] Balthasar van der Pol. On relaxation-oscillations. The

London, Edinburgh and Dublin Phil. Mag. & J. of Sci.,
2(7):978–992, 1927.



7

[13] Christopher K.R.T. Jones and Alexander I. Khibnik
(Eds.). Multiple-time-scale dynamical systems. Springer,
2000.

[14] Johan Grasman. Asymptotic Methods for Relaxation Os-

cillations and Applications. Springer Press, 1987.
[15] Steven H. Strogatz. Nonlinear Dynamics and Chaos:

With Applications to Physics, Biology, Chemistry and

Engineering. Westview Press, 2001.
[16] Incidentally, the set of equations (2) can also be consid-

ered a special case of the FitzHugh-Nagumo model (See
R. FitzHugh. Impulses and Physiological States in theo-
retical models of nerve propagation Biophys J., 1(6):445,
1961) introduced three decades later as simplification of
the Hodgkin-Huxley equations of neuronal spikes in the
squid giant axons, and is sometimes referred to as the
Bonhoeffer-van der Pol model.

[17] Anatole Katok and Boris Hasselblatt. Introduction to

the Modern Theory of Dynamical Systems. Cambridge
University Press, 1997.

[18] John M. Guckenheimer and Phillip Holmes. Nonlin-

ear Oscillations, Dynamical Systems and Bifurcations of

Vector Fields. Springer Press, 1983.
[19] J. Murdock. Normal Forms and Unfoldings for Local Dy-

namical Systems. Springer, New York, 2003.
[20] Perturbations distort the dynamics so that the attrac-

tor and its period change. We addressed these issues by

setting the periods to unity, and by moving the initial
conditions to the new attractor to remove any transients.
Alternatively, if we fit data over many periods without
making the said changes, the parameter combinations de-
termining the period and phase would become stiff modes
in our dynamics.

[21] Ryan N. Gutenkunst, Jordan C. Atlas, Fergal P. Casey,
Robert S. Kuczenski, Joshua J. Waterfall, Christo-
pher R. Myers, and James P. Sethna. Sloppycell
http://sloppycell.sourceforge.net. 2007.

[22] Christopher R. Myers, Ryan N. Gutenkunst, and
James P. Sethna. Python unleashed on systems biology.
Computing in Science Engineering, 9(3):34 –37, 2007.

[23] We understand this as sloppiness as arising due to the
generalized interpolation argument [4].

[24] William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes 3rd

Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

[25] Josh Bongard and Hod Lipson. Automated reverse en-
gineering of nonlinear dynamical systems. Proceedings

of the National Academy of Sciences, 104(24):9943–9948,
2007.

[26] Ricky Chachra, Mark K. Transtrum, and James P.
Sethna. Comment on “Sloppy models, parameter un-
certainty, and the role of experimental design”. Mol.

BioSyst., 7:2522–2522, 2011.


