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A coarse-grained lattice Metropolis Monte Carlo (CG-MMC) method is presented for simulating fluid 
systems described by standard molecular force-fields.  First, a thermodynamically consistent coarse-
grained interaction potential is obtained numerically and automatically from a continuous force-field 
such as Lennard-Jones.  The coarse-grained potential then is used to drive CG-MMC simulations of 
vapor-liquid equilibrium in Lennard-Jones, square-well, and SPC-water systems.  The CG-MMC 
predicts vapor-liquid phase envelopes, as well as the particle density distributions in both the liquid 
and vapor phases, in excellent agreement with full-resolution Monte Carlo simulations at a fraction of 
the computational cost.   
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1. INTRODUCTION 

While full-resolution, discrete-particle simulation methods such as standard Metropolis Monte 

Carlo or molecular dynamics are becoming increasingly powerful as a result of more available 

computational resources, generally they remain limited to nanoscale lengths and times.  As a result, 

accurate, simple, and broadly applicable coarse-graining (CG) methods are increasingly sought to 

expand the range of non-equilibrium phenomena that can be probed with atomic and/or molecular 

simulations.  Most generally, coarse-graining refers to a transformation in which degrees-of-freedom 

are eliminated, increasing computational efficiency while sacrificing some information.  A popular 

example of coarse-graining is the united atom representation, in which groups of atoms are combined 

into single particles that obey a new, coarse-grained potential function [1].  The aim then is to generate 

a coarse-grained inter-particle potential that embeds the enthalpic and entropic contributions of the 

discarded degrees-of-freedom, and also to ensure that the dynamical fluctuations of interest are 

preserved [2-3].  Such approaches have been used to study a broad range of materials including 

polymers [1, 4], proteins [3], and ionic liquids [5]. 

A somewhat different approach for degree-of-freedom reduction is to map the problem onto a 

fixed lattice, starting with block-spin renormalization group theory [6]; here, we refer to this type of 

transformation as spatial coarse-graining as opposed to the topological coarse-graining described 

above.  In spatial coarse-graining of polymeric systems, for example, chains are placed on fixed grids 

and allowed to evolve subject to discretized moves; one example is the bond fluctuation method [7].  

Recently, spatial coarse-graining has been applied extensively to Metropolis and kinetic Monte Carlo 

simulations of Ising-type systems in which the aim is to transform one (high-resolution) lattice 

problem onto a lower-resolution lattice by grouping together lattice sites into coarse “cells”.  Notable 

examples include the work of Katsoulakis, Vlachos and coworkers [8-10] and Ismail et al. [11-12].  A 

key element of these methods is the closure rule, which dictates how processes on the fine-grid lattice 
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are averaged to generate consistent processes on the coarse-cell grid.  This may be accomplished using 

analytical approximations [8, 13] or numerical averaging [12, 14-15].  

Here, we extend spatial coarse-graining to a more general situation in which a continuous 

system of particles, subject to an arbitrary interaction potential, is mapped onto a rigid lattice of 

variable scale that can then be evolved with Metropolis Monte Carlo using an appropriate coarse-

grained potential.  Most significantly, we seek a coarse-grained potential that is thermodynamically 

consistent with the microscopic potential, i.e., that the entropy associated with the missing degrees-of-

freedom is properly embedded into the coarse-grained potential.  This latter issue has not been 

addressed in prior spatial coarse-graining approaches [16-18], which, while successful for simple 

interaction models, have not been tested for realistic potentials under near-equilibrium conditions. 

 

2. COARSE-GRAINING METHODOLOGY 

Consider a three-dimensional system of N particles within a cubic simulation cell of length L  

subject to periodic boundary conditions and evolving within the canonical ensemble (constant NVT).  

Within the coarse-grained representation, the overall domain is discretized into 3m cubic coarse cells, 

each with length Lcell = L /m  and volume 3
cell cellV L= . Each coarse cell can contain multiple 

particles, which are assumed to always exist in local equilibrium [8].  The coarse-graining 

transformation is derived by first considering the system-wide canonical partition function  
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where ( )NU r  is a specified interaction potential function.  Rewriting the partition function in terms of 

sub-integrals over coarse cells, whereby the N particles in the system are distributed over the 

3( )M m=  coarse cells, gives  
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where 1 2( , , , )Mn n n≡n "  is an M-dimensional vector that defines the cell occupancy within the 

domain, and the sum index k runs over all possible ways of distributing the N particles over the M 

coarse cells.  Each of the sub-integrals in eq. (2) is related to a local Helmholtz free energy so that 
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i B BA k T d U k T≡ − −∫ .  Finally, defining a coarse-grained system-wide free 

energy, ACG(n) = Ai
i=1
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Eq. (4) suggests that a valid coarse-grained Metropolis Monte Carlo (CG-MMC) simulation proceeds 

identically to one on the original continuous system, except that the move acceptance criterion would 

be based on ( )CGAΔ n  rather than ( )NEΔ r , i.e., 

                                                  (1 2) min exp ,1acc CG
CG
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where acc
CGP  is the acceptance probability for moving from state 1 to state 2. 

To compute ( )CGAΔ n  for use in a CG-MMC simulation, a coarse-grained potential function 

must be calculated from the original inter-particle potential.  Generally, the free energy change within 

a coarse cell due to the addition of one particle is a function of the local number density ρ , the local 

surrounding density distribution envρ , and temperature T, i.e., 
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where the “CG” subscript has been dropped for clarity and the free energy has been separated into 

ideal and excess contributions.  Note that this free energy difference corresponds to the chemical 

potential in the limit of large particle number.   

The ideal contribution to the free energy difference on a coarse cell is given analytically as 

                                                    ( ) 3, ln lnid B BA T k T k Tρ ρΔ = Λ + ,                                                (7) 

where  / celln Vρ = .  The excess portion must be computed by ensemble averaging under the influence 

of the interaction potential.  Here, we choose to employ the standard Widom particle insertion method 

[19] (although any other method for free energy estimation also can be applied): 
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As indicated in eq. (6), the cell excess chemical potential is expected to depend on the surrounding 

particle density, and possibly the spatial distribution of that density.  In order to simplify the closure 

approximation, we assume here that the spatial distribution within the surrounding environment is 

relatively unimportant and only consider the average density in neighboring cells.   

 The configuration of the Widom insertion simulations for computing the excess free energy 

changes is described schematically in Fig. 1.  A central coarse cell is embedded within a shell domain 

representing the surrounding environment.  Only the environment shell’s outer boundaries are subject 

to periodic boundary conditions – the inner boundary between the center cell and environment is 

impermeable to mass (thus constraining the cell density) but does allow cross-boundary interactions.  

Test particle insertions are performed only within the center cell although the corresponding potential 

energy change is computed over all particles.  About 100 test insertions are performed every 2500 

MMC moves (depending on the particle count).  The procedure is repeated for a range of center cell 
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and environment densities and temperatures; the final result is a multidimensional surface of excess 

free energy differences that, along with the ideal contribution (eq. 7), defines the coarse-grained 

potential. 

 

 

 

 

 

 

 

Fig. 1. (Color online) Cell setup for computing coarse-grained interaction potential.  An inner cell 

(solid line) is surrounded by an “environment” shell subject to periodic boundary conditions (dashed 

line).  Particles are not allowed to move between the two regions during free energy sampling but do 

interact across the partition. 

 

3. RESULTS AND DISCUSSION 

3.1 Coarse-Grained Potential Calculations 

 Three interatomic potential examples are used to generate coarse-grained interaction functions.  

The first is the Lennard-Jones (LJ) potential for argon ( 3.405σ =  Å, / 119.8Bkε =  K): 
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The second is a square-well (SW) potential with two different parameterizations, 
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with 2.5cr σ= , and 1.5λ =  or 1.25 .  Finally, we consider the more general case of water as 

modeled by a spherically-truncated version of the SPC potential [20-21] which demonstrates the 

applicability of CG-MMC to molecular systems.  The SPC potential is given by 
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with 7.75cr =  Å, 3.1655σ =  Å, 0.15542ε =  kcal/mol, 0.41Hq =  and 0.82Oq = −  electrons.  

The LJ portion in eq. (11) applies only between oxygen atoms.  While spherical truncation leads to 

various deficiencies in the description of water, the VLE curve predicted by this potential, which will 

be used to validate the CG-MMC method, is in good agreement with results obtained using full Ewald 

summation [21].  We also note that although Ewald summation is not compatible with the simulation 

cell structure shown in Fig. 1a, other methods exist for including long-range electrostatic interactions 

into a truncated potential, namely the reaction field [22] and Wolf summation [23] methods.  The 

latter, in particular, has recently been shown to offer advantages over other methods because of its 

computational efficiency and applicability to inhomogeneous and finite systems. 

 An example excess chemical potential field for 3cellL σ=  and 1.5envL σ=  is shown in Fig. 2 

for the LJ potential at a reduced temperature ( * /BT k T ε= ) of 0.8.  The value of envL  was chosen 

based on a compromise between convergence with respect to the environment shell thickness and 

computational expediency.  Each of the spherical symbols in Fig. 2 corresponds to a single Widom 

insertion simulation; the color field surface is a 3rd-order (per dimension) polynomial fit to the data.  
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While the overall computational effort associated with the pre-calculation of the coarse-grained 

potential can be significant, it is trivially distributable over an arbitrary number of processing units. 

                            

Fig. 2. (Color online) Excess chemical potential computed for LJ potential at * 0.8T ≡  as a function 

of cell and environment reduced number densities, * 3
cell cellρ ρ σ=  and * 3

env envρ ρ σ= , respectively.  

Coarse cell length ( cellL ) is 3σ, environment shell thickness ( envL ) is 1.5σ.  Symbols – Widom 

insertion; color field contours – polynomial interpolation.  

 

3.2 Coarse-Grained Vapor-Liquid Equilibrium 

 The vapor-liquid equilibrium phase diagram was used as a test-bed for evaluating the 

thermodynamic consistency of the CG-MMC framework for all three potentials discussed in the 

previous section.  The system size for each case consisted of 103 cells, each initialized with the same 

number of particles to provide a prescribed overall reduced number density, * 0.3ρ = .  CG-MMC 

simulation proceeded by first choosing a random cell and random neighboring destination cell and 
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then computing the system free energy difference for a particle move using the data in Fig. 2 (for LJ, 

and similar plots – not shown – for the other potentials) and eq. (7).  Equation (5) was then used to 

determine move acceptance.  Equilibration of the CG system was assessed by monitoring the total 

coarse-grained free energy.  Picking cells randomly to execute particle moves satisfies detailed balance 

and thus generates the correct equilibrium distribution.  Unlike in full-resolution MMC, detailed 

balance in CG-MMC is enforced by move rejections in the direction of increasing chemical potential.  

However, the CG-MMC “dynamics” as the system evolves towards equilibrium are not completely 

consistent with full resolution Metropolis Monte Carlo within this scheme.  A more detailed discussion 

of non-equilibrium CG-MMC will be provided in a future publication. 

 Shown in Fig. 3a and 3b are T ρ−  VLE envelopes obtained for the LJ and SW potentials 

using CG-MMC with cells of size 3cellL σ= .  Also shown in Fig. 3a are LJ results using larger cells 

( 4cellL σ= ).  The CG-MMC liquid and vapor phase densities at each temperature were obtained from 

the equilibrium density distributions by locating the two peaks in the distribution that correspond to the 

liquid and vapor, respectively (see Fig. 4).  For each case, the corresponding VLE envelope predicted 

by full-resolution simulation based on the Gibbs-ensemble Monte Carlo (GEMC) method also is 

shown [24-25].  The agreement in each case is generally excellent, with some deviation observed near 

the critical points.  The LJ prediction also appears to be largely insensitive to cell size (see Fig. 3a), 

which suggests that the deviations near the critical point are not due primarily to the small cell size.  In 

fact, the main source of error likely is the statistical uncertainty in the excess chemical potential values 

and the resulting interpolated surface (Fig. 2).  Generally, near the critical point the excess chemical 

potential surface becomes quite flat, and the scatter in the individual data points there leads to greater 

uncertainty in the fitted polynomial function.  Moreover, the polynomial fitting itself leads to some 

systematic error, particularly when small changes in curvature lead to large shifts in density.  A more 

quantitative error analysis will require improvements in excess chemical potential calculation; e.g. 

using bias methods [24].    
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Fig. 3. (Color online) VLE phase envelopes for (a) Lennard-Jones argon, (b) square-well potentials 

(top - 1.5λ = , bottom - 1.25λ = ).  Red circles – CG-MMC with 3cellL σ= , green diamonds – CG-

MMC with 4cellL σ= , blue squares – full resolution GEMC. 

 

 The VLE curve for SPC water is shown in Fig. 4 along with literature values taken from 

GEMC simulations and experiments for the continuous system [21].  The agreement is also generally 

excellent, with similar deviations once again found near the critical point.  The calculation of the 
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coarse-grained potential for molecular systems proceeds in essentially the same manner as described 

above for point particles, except that some additional care must be exercised at the wall separating the 

inner cell and the environment shell.  Restriction of entire molecules to either the inner cell or 

environment leads to an artificial configurational penalty at the wall.  In order to remove this artifact, 

the wall was modified to allow free exchange of the hydrogen atoms, while restricting the (point) 

position of the oxygen atoms to either side of the wall.  While this choice of point constraint is 

convenient for the specific case of water, a more general (but equivalent) choice is to simply use the 

molecular center-of-mass.  In this way, it is anticipated that essentially any type of molecular entity 

can be readily considered within the CG-MMC framework. 
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Fig. 4. (Color online) VLE phase envelopes for SPC water.  Red circles – CG-MMC with 3cellL σ= , 

blue squares – full resolution GEMC, gray deltas – experimental data (see text). 

 

Snapshots of example equilibrium configurations at three different overall system densities of 

the LJ system are shown for CG-MMC and full-resolution MMC simulations in Fig. 5.  The coarse-

grained simulations show very clearly the liquid-vapor phase boundaries, and also explicitly highlight 
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the density fluctuations within each phase.  The CG-MMC simulations reach equilibrium in far fewer 

Monte Carlo move attempts per particle than the full resolution simulations, primarily because the 

(successful) moves in the coarse-grained system are much larger.  Moreover, the computational cost 

associated with each move, on a per-particle basis, is lower in the CG-MMC case. Overall, for 

3cellL σ= , the CG-MMC simulation reaches equilibrium about 106 times faster than a similarly-sized 

full-resolution system. 

 

 

       

 

 

 

 

 

 

Fig. 5. (Color online) Top row: Equilibrium snapshots of LJ CG-MMC simulation configurations at 

(a) ρ* = 0.15, (b) ρ* = 0.3, and (c) ρ* = 0.45.  System size is 3180 180 180 σ× × , ( 3cellL σ= ).  

Cell color denotes particle number that ranges from zero (dark blue) to 24 (red). Bottom row (d-f): 

Corresponding full resolution MMC simulation snapshots for a system size of 336 36 36 σ× × . 

 

 

(d) (e) (f)

(a) (b) (c)
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3.3 Density Distributions in Coarse-Grained Simulations 

The VLE curve is a highly coarse-grained measure in that it does not provide a view into 

microscopic density fluctuations.  To further analyze the fidelity of the CG-MMC approach, we 

compare the equilibrium probability distribution of particle number density predicted by LJ CG-MMC 

simulations and that obtained from post facto coarse-graining of full-resolution MMC configurations 

at * 0.8T = .  For the latter, ~250 equilibrated (phase separated) configurations were captured and 

gridded into coarse cell lattices which were then used to collect density distribution data.  Each 

configuration was gridded 100 times using a randomly selected origin to improve the density 

distribution statistics.  As shown in Fig. 6, the density distributions for 3cellL σ=  cells obtained from 

CG-MMC and post facto coarse-grained full resolution configurations are in excellent quantitative 

agreement for the LJ potential, demonstrating that spatial fluctuations are fully captured at the finest 

resolvable scale within the CG-MMC simulations.  The one area of discrepancy between the two 

distributions appears at intermediate densities ( 0.2 * 0.5ρ≤ ≤ ).  The source of this discrepancy is the 

tendency for the CG-MMC atoms to align with the lattice, particularly at the liquid-vapor boundaries.  

In other words, the CG-MMC simulation will tend to group particles along the interface so that cells 

are either mostly full or mostly empty in order to minimize the free energy.  This natural alignment can 

be regarded as unavoidable “pixelation” that is inherent to a grid-based representation.  

Finally, the influence of coarse cell size on the density distribution is shown in the inset of Fig. 

6 for LJ simulations of a homogeneous liquid phase ( * 1.1T =  and * 0.6ρ = ).  As the coarse cell size 

increases the distribution become more tightly centered about the mean density value, indicating, as 

expected, that the magnitude of density fluctuations within the single liquid phase becomes smaller.  

Gaussian fits to the density distributions demonstrate that the variance of the distribution decreases as 

1/ cellV . 
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Fig. 6. (Color online) Normalized LJ density distribution functions obtained at T* = 0.8 and 

ρ* = 0.3. Red circles – CG-MMC, blue squares – post facto coarse-grained full-resolution MMC.  

Coarse cell size for both cases is 3cellL σ= .  Inset shows broadening of density distribution in a 

homogeneous liquid with decreasing cell size at * 1.1T =  and * 0.6ρ = . Data is shown for 

3cellL σ=  (dashed line), 4σ  (dotted line), and 6σ  (solid line).  Distributions from CG-MMC, post 

facto coarse-grained full-resolution MMC, and Gaussian fits are indistinguishable. 

    

4. CONCLUSIONS 

 In summary, a spatial coarse-graining method was presented in which an arbitrary interparticle 

potential is numerically coarse-grained to enable MMC simulations of fluid systems on a rigid lattice.  

The coarse-grained potential naturally includes the degrees-of-freedom, and the corresponding 

entropy, that are lost when mapping a fully-resolved, continuous-space problem onto a coarse rigid 

lattice.  The procedure thus ensures that the free energy landscape in the coarse-grained system is fully 

consistent with the underlying fully-resolved energy landscape.  The resulting coarse-grained 
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representation is able to capture the full VLE characteristics of both atomic and molecular systems, a 

stringent test of the thermodynamic consistency of the approach and should greatly extend the length 

and “time” scales accessible to Monte Carlo simulations of non-equilibrium phenomena such as 

spinodal decomposition.  The numerical averaging procedure, which does not require any specific 

physical insight, appears to be applicable to any (short-ranged) potential and only needs to be 

performed once before the MMC simulation(s).  Although the CG potential pre-computation can be 

expensive, it can be trivially farmed out to an arbitrary number of compute nodes, limiting the 

bottleneck associated with this calculation. 
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