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Spherical Couette flow (flow between concentric rotating spheres) is one of flows under consider-
ation for the laboratory magnetic dynamos. Recent experiments have shown that such flows may
excite Coriolis restored inertial modes. The present work aims to better understand the properties of
the observed modes and the nature of their excitation. Using numerical solutions describing forced
inertial modes of a uniformly rotating fluid inside a spherical shell, we first identify the observed oscil-
lations of the Couette flow with non-axisymmetric, retrograde, equatorially anti-symmetric inertial
modes, confirming first attempts using a full sphere model. Although the model has no differential
rotation, identification is possible because a large fraction of the fluid in a spherical Couette flow
rotates rigidly. From the observed sequence of the excited modes appearing when the inner sphere is
slowed down by step, we identify a critical Rossby number associated with a given mode and below
which it is excited. The matching between this critical number and the one derived from the phase
velocity of the numerically computed modes shows that these modes are excited by an instability
likely driven by the critical layer that develops in the shear layer staying along the tangent cylinder
of the inner sphere.

I. INTRODUCTION

Large-scale flows in stars or planets in many circum-
stances take place in a spherical shell. Most astrophysical
fluid flows are also under the dominating influence of a
background rotation. This rotation leads to the presence
of inertial oscillations for which the restoring mechanism
comes from the Coriolis acceleration.
The properties of these modes of oscillation are not

fully understood, in part because they obey a hyperbolic
equation in the space variables and therefore do not eas-
ily comply with boundary conditions. The solutions of
this equation, known as the Poincaré equation, have been
studied in some details in the recent years, using numeri-
cal and analytical tools [e.g. 1–6]. It has been shown that
most of the eigenmodes of a rotating spherical fluid layer
require viscosity to exist. Indeed, viscosity is necessary
to regularize the singularities formed by the focussing of
characteristics by the boundaries. Viscosity transforms
these singularities into shear layers whose thickness scales
with some fractional power of it (exponents 1/4 or 1/3
are the most common). In addition, very recent works
[6, 7] showed that the critical latitude singularity where
the characteristics of the hyperbolic equation are tangent
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to the inner core boundary, plays a crucial role in peri-
odically forced flows. The reason for that is not clear
presently.

However, all the aforementioned previous works are
theoretical studies considering idealized situations, and
therefore should be compared to experimental studies.
Observations of inertial modes are not extensive, either
in Nature or in the laboratory. A landmark in the ex-
perimental studies is the work of Aldridge[8, 9]. More
recently, attractors of characteristics triggering oscilla-
tory shear layers have been investigated experimentally
for the understanding of ocean dynamics. Such exper-
iments were conducted both on stably stratified fluids
[10–12] and rotating fluids [13–15] since internal modes
(gravity waves) and inertial modes share many of the
same mathematical properties. Other experiments have
demonstrated the excitation of inertial waves in a fluid
inside a precessing spheroidal cavity [16].

All these experiments have shown that inertial modes
are robust features of rotating fluid flows. In a very re-
cent experiment aimed at studying a fluid dynamo, in-
ertial modes were detected through their coupling with
an imposed magnetic field, in a spherical Couette flow
[17]. This flow can indeed produce magnetic fields at
sufficiently high magnetic Reynolds numbers [18]. In
that experiment, the fluid was contained in a spheri-
cal shell with inner and outer radii equal to 10 cm and
30 cm respectively. The Ekman number, the non di-
mensional measure of viscosity (see below), was approx-
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FIG. 1. Schematic of the 3-meter spherical-Couette appara-
tus. Inner and outer spheres rotate independently, driven by
two 250 kW motors (not shown). There are three pressure
sensors (azimuthally 90◦ apart) on the top lid ports, and an
ultrasound velocimetry transducer measuring vertical com-
ponents of fluid velocities (ultrasound beam depicted coming
from port D).

imately 10−7. In astrophysical or geophysical (Earth’s
core) situations this number is rather less than 10−12. In
fact, as was shown by recent numerical work [e.g. 3, 6],
the asymptotic regime describing vanishingly small vis-
cosities usually appears at Ekman numbers below 10−8.
A new experiment geometrically similar to the Earth’s
core, using a sphere with an outer radius of 1.46m offers
a unique opportunity to observe some near singular in-
ertial modes close to their asymptotic regime since now
Ekman numbers can be as low as 2.5×10−8. Indeed, first
results on this experiment using a precessionally forced
flow [19] provided a clear evidence of detached shear lay-
ers spawned by the critical latitude singularities.
In this paper we further consider the results of this

experiment. Thanks to a simple model based on nu-
merical solutions of forced inertial modes in a spheri-
cal shell, we find a scenario that explains the excitation
of inertial modes in a nonlinear spherical Couette flow.
For this, we first describe the experimental set-up and
the observational facts concerning the observed inertial
modes (sect.2). We then compute the response of an in-
compressible fluid inside a rigidly rotating spherical shell
when some periodic forcing is applied (sect.3). We use
this simple model to identify the resonance peaks and to
interpret their full width at half-maximum (FWHM). We

FIG. 2. (Color online) Spectrogram from pressure measure-
ments as the inner sphere rotates with different speeds in
counter-rotation (inner sphere rotating in the opposite direc-
tion as the outer sphere). Each vertical line in the spec-
trogram is the power spectral density of the pressure using
ρRoΩ2L2 as the unit pressure. Outer sphere rotation rate
is 1.5 Hz corresponding to E = 2.5 × 10−8. Modes indicated
correspond to full sphere modes characterized by (l,m, ω/2Ω).

FIG. 3. (Color online) Same as Fig. 2 but for a Ro range cor-
responding to co-rotation (inner sphere rotating in the same
direction as the outer). The band near ω/2Ω = 0.05, which
has an azimuthal number m = 1, is possibly not a single
inertial mode. It’s signature in the experiment reported by
Kelley et al. [17] is weak, perhaps a consequence of its quasi-
geostrophic character (see discussion at end of Sect. IIIB).
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FIG. 4. (Color online) Rossby number dependence of the frequency of the two most prominent m=1-modes. The insert gives
the equation of the linear best fit.
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FIG. 5. (Color online) Same as Fig. 4 but for the three most prominent m=2-modes.

then discuss a scenario that explains most of the experi-
mental facts (sect. 4). Conclusions end the paper.

II. THE EXPERIMENTAL SET-UP AND

OBSERVATIONS

The 3-meter Geodynamo Experiment built at the Uni-
versity of Maryland consists of a rotating, stainless-steel
spherical vessel with 1.46 m of radius, and an inde-
pendently rotating 1.02 m diameter inner sphere, lo-
cated at the center of the outer spherical vessel (see a
schematic view in Fig. 1). This results in an aspect ratio
η ≃ 0.348. There is a 16.8 cm diameter shaft support-
ing the inner sphere that extends along the axis of the
outer sphere and is connected to a motor. The outer
sphere is driven by a motor via a geared ring attached
to the top lid. The space between the spheres is filled
here with water at room temperature (kinematic viscos-
ity ν = 1.004 × 10−6 m2/s). The Rossby number is de-
fined as Ro = (Ωinner/Ω)−1 where Ωinner is the angular
speed of the inner sphere and Ω is the angular speed of
the outer sphere. The outer sphere can spin at a max-
imum of 4 Hz and 0.05 Hz minimum, although for the
measurements presented here the maximum rotation rate

corresponds to 1.5 Hz. Defining the Ekman number as
E = ν/2ΩR2, where R = 1.46m, the experimentally ac-
cessible range is 2.5× 10−8 < E < 7.5× 10−7. The inner
sphere can reach a rotation rate up to 20 Hz with a min-
imum of 0.15 Hz which translates into a Rossby number
range such that 0.03 . |Ro + 1| . 400.

During the experimental run corresponding to the
measurements shown below, the outer sphere had a fixed
rotation rate of 1.5 Hz (E = 2.5× 10−8) while the inner
sphere angular speed was varied. We started with the
inner sphere counter-rotating (near Ro = −2) and grad-
ually reduced its angular speed in steps of 0.05 Hz until
its minimum speed was reached (Ro ≃ −1.1). At that
point the inner sphere rotation direction was changed and
its speed was increased from its minimum (Ro ≃ −0.9)
until reaching almost the same speed as the outer sphere
(Ro ≃ −0.1). Each speed step was maintained for about
15 minutes. Fig. 2 shows a power spectral density S(ω)
spectrogram computed from the pressure on one of the in-
strumentation ports, measured during counter-rotation.
Fig. 3 shows a spectrogram of the pressure measured dur-
ing co-rotation.

The flow is monitored by pressure probes and an ultra-
sound velocimetry transducer (see Fig. 1), all fixed to the
outer bounding sphere. The pressure spectrograms show
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FIG. 6. (Color online) Velocity amplitude averaged over a
thin layer, perpendicular to the rotation axis, located around
z = 0.846 as a function of the Rossby number. Each curve
corresponds to the averaged velocity amplitude restricted to
the frequency range indicated in the legend. Labels corre-
spond to identified inertial modes.

the signature of inertial modes excited in a sequence as
Ro is varied. The azimuthal wave numbers m could be
determined up tom = 4 by comparing the relative phases
of the pressure signals from different ports. These modes
match very closely the frequencies and azimuthal wave
numbers of the inertial modes excited in the hydromag-
netic experiment performed by Kelley et al. [20] using
a 60-cm diameter sphere, which is geometrically simi-
lar, but smaller than the 3-meter experiment. We use
the spatial pattern data from the 60-cm experiment in
order to identify the modes in the 3-meter experiment.
Those modes, as evidences by lines in the spectrogram,
correspond approximately to full sphere inertial modes
[21, 22], which can be characterized by a pair of in-
dices (l,m) and a dimensionless frequency ω̂ = ω/2Ω.
We also noticed the retrograde propagation of the modes,

thanks to the pressure probes distributed in longitude
over the outer shell. This was also the case for the previ-
ous (smaller) experiment reported by Kelley et al. [17].

The spectrograms show that the frequency of excited
modes varies with the Rossby number. In Fig. 4 and 5
we plot these variations for five modes and two values of
the Ekman number. The variations are approximately
linear, showing an increasing frequency with a decreas-
ing (negative) Rossby number or, equivalently, with an
increasing differential rotation. A change of the Ekman
number induces only a mild change of the frequencies.
We may however notice that the first of the m=1-modes
(Fig. 4) shows a steeper dependence with Ro for the low-

FIG. 7. Numerically computed spherical Couette flow at very
low Rossby number |Ro| ≪ 1. This solution has been ob-
tained by solving steady, linear, axisymmetric equations of the
spherical Couette flow using a spectral method with spherical
harmonics (horizontally) and Chebyshev polynomials (radi-
ally). Left: the viscous dissipation emphasizing the Stewart-
son shear layer. Right: the kinetic energy of the flow in the
reference frame of the outer shell.

est value of the Ekman number.
The pressure spectrograms are complemented by ve-

locity measurements displayed in Fig. 6. Those show the
vertically averaged velocity amplitude over a fluid layer
located at 0.8325 < z/R < 0.8599, as a function of the
Rossby number (z is the coordinate along the rotation
axis, with z = 0 corresponding to the equatorial plane).
The various curves show that some modes, already iden-
tified in the pressure spectrograms, dominate the dynam-
ics of the sampled layer for specific ranges of the Rossby
number. Especially, we observe that the spin-over mode
(m = 1 and ω = −Ω) is always present and dominates
the oscillations for Ro >

∼ − 0.4.

III. NUMERICAL MODEL

The foregoing description of the experiment shows that
despite a steady forcing, the generated flows are unsteady
[17]. This means that the spherical Couette flow is un-
stable to time-dependence and the excitation of inertial
modes.
From the observed features of spherical Couette flow,

which is shown in Fig. 7 in the limit |Ro| ≪ 1, we expect
that most of the time-dependent forcing occurs in the
fluid lying near or inside the tangent cylinder. This cylin-
der is clearly marked by the vertical Stewartson shear
layer that exhibits large viscous dissipation. Most of the
shear is localized inside the Stewartson layer. This is
also approximately the case at finite Rossby numbers as
shown by Matsui et al. [23]. However, the volume inside
the tangent cylinder is a rather small fraction of the total
volume of the fluid. This fraction reads

1−
(1− η2)3/2

1− η3
≃ 3η2/2− η3 if η ≪ 1
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In the actual experiment where η = 0.348 this fraction
is 0.14. Thus, 86% of the fluid lies outside the tangent
cylinder and rotates near solid body with the angular ve-
locity of the outer shell [e.g. 24]. This remark suggests
that oscillations of a rigidly rotating spherical fluid shell
may not be very far from those observed in the aforemen-
tioned experiment and that, as a first step, differential
rotation can be ignored.

A. Mathematical formulation

Assuming that the inertial modes are of relatively small
amplitude, they solve the linearised equations governing
a viscous rotating fluid with constant density. We force
periodic perturbations in the numerical simulations to
drive the modes. With a length scale of the outer radius
of the shell R, the time scale as (2Ω)−1, the equations of
the non-dimensional pressure (p) and velocity perturba-
tion (~u) may be written:







iω̂~u+ ~ez × ~u = −~∇p+ E∆~u

div ~u = 0
(1)

where ω̂ = ω/2Ω is a dimensionless frequency, E =
ν/2ΩR2 is the Ekman number and ν is the kinematic
viscosity.
We complete these equations with no-slip boundary

conditions which assists in forcing the flow. Since the
real forcing is not known, we drive oscillations by setting
a toroidal motion on one of the boundaries. Namely, we
assume that either on the inner or outer boundary

~u(θ, ϕ) =

(

1

sin θ

∂Y m
m

∂ϕ
~eθ −

∂Y m
m

∂θ
~eϕ

)

eiω̂τ (2)

and

~u = 0 (3)

on the other boundary. We note that a forcing by bound-
aries has also been used to force axisymmetric inertial
modes [8, 25, 26].
We solve these equations numerically, following the

same spectral method as in [6]. The fields are first ex-
panded into spherical harmonics as follows:

~u =

+∞
∑

l=0

+l
∑

m=−l

uℓ
m(r)~Rm

ℓ + vℓm(r)~Sm
ℓ + wℓ

m(r)~Tm
ℓ ,

with

~Rm
ℓ = Y m

ℓ (θ, ϕ)~er, ~Sm
ℓ = ~∇Y m

ℓ , ~Tm
ℓ = ~∇× ~Rm

ℓ

FIG. 8. Resonance curves showing the kinetic energy (in ar-
bitrary units) of the model oscillating flow as a function of
the scaled frequency of the forcing. The solid line is for the
forcing on the outer boundary, the dotted line for a forcing on
the inner shell. The hatched bands of frequencies show the
range of frequencies of the observed modes, when the Rossby
number is varied. The lower bound of the bands, material-
ized by a solid vertical line, corresponds to the lowest |Ro|
value. The “T” marks the toroidal mode resonance. Arrows
show the identifications we suggest between observed oscil-
lations frequencies and resonances in the model. Top figure
is for the m = 1-forcing, while the bottom figure is for an
m = 2-forcing. The Ekman number is set to E = 2.5× 10−8.

where gradients are taken on the unit sphere. The radial
uℓ
m and wℓ

m function thus verify







































E∆ℓw
ℓ
m − iω̂wℓ

m =

−Aℓr
ℓ−1 ∂

∂r

(

uℓ−1

m

rℓ−2

)

−Aℓ+1r
−ℓ−2 ∂

∂r

(

rℓ+3uℓ+1
m

)

E∆ℓ∆ℓ(ru
ℓ
m)− iω̂∆ℓ(ru
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(
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rℓ−1

)

+Bℓ+1r
−ℓ−2 ∂
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(

rℓ+2wℓ+1
m

)

(4)
for ℓ ∈ [m,L]. L is the order of the truncation in the
spherical harmonics expansion. vℓm is eliminated using
mass-conservation, and we introduced

Aℓ =
1

ℓ2

√

l2 −m2

4ℓ2 − 1
, Bℓ = ℓ2(ℓ2 − 1)Aℓ,

∆ℓ =
1

r

d2

dr2
r −

ℓ(ℓ+ 1)

r2
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FIG. 9. Same as Fig. 8 but for m = 3 and m = 4.

FIG. 10. Same as Fig. 8 but for equatorially symmetric modes
with m = 1 and m = 2.

The radial functions are then discretized on Gauss-
Lobatto collocations nodes. Equations are completed by
boundary conditions (2) and (3) leading to a linear sys-
tem like [A]x = b, which is solved by classical numerical
methods. Note that these numerical solutions do not take
into account the shaft bearing the inner core.

FIG. 11. Same as Fig. 10 but for m = 3 and m = 4.

B. Results from the model

The above model is very simple since it just reproduces
the geometry of the container, the background rotation
outside the tangent cylinder and the effects of viscos-
ity. No differential rotation is included. Thus, from the
comparison of its results with the data we only expect
an identification of the modes and a comparison of the
width of the resonances (i.e. of the dissipative processes).
Solving (1) with (2) and (3), we computed the reso-

nance curves for various azimuthal symmetries, namely
m = 1, 2, 3, 4. Fig. 8 and 9 show the total kinetic en-
ergy of the responding oscillations in some arbitrary unit
as a function of the forcing frequency. We show the re-
sponse of the fluid when the excitation is imposed either
on the inner boundary or the outer boundary. Obviously,
the outer boundary forcing is much more efficient than
the inner boundary one. The hatched bands correspond
to the observed range of frequencies of the oscillations
when the Rossby number is varied. As shown by the
spectrograms (Fig. 2-3 and Fig. 4-5), the frequency of
the modes systematically decreases when |Ro| decreases,
that is when the background flow gets closer to the solid
body rotation. Therefore, only the left boundary of the
frequency bands should be compared to the frequencies of
the model. Thus doing, we can identify clearly the purely
toroidal modes for m = 1, 2, 3, 4 whose frequencies are

ω̂ =
ω

2Ω
=

1

m+ 1

For these frequencies, an analytical solution exists [2] and
reads
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FIG. 12. (Color online) Left: the kinetic energy distribution
in a meridional plane of the flow associated with the resonance
of the m = 3 mode at ω̂ = 0.25. The Ekman number used
for this calculation is 2.5×10−9. The numerical resolution is
L = 780 (highest spherical harmonic order) and Nr = 300
(highest Chebyshev polynomial order). Right: the same as
left but when the large-scale part of the flow field described
by (5) is filtered out.

{

vθ = Arm(sin θ)m−1 sin(mφ+ ωmt)
vφ = Arm(sin θ)m−1 cos θ cos(mφ+ ωmt)

(5)

if viscosity is neglected. When viscosity is included the
structure of these modes is more complex since shear lay-
ers are excited by the critical latitude singularity. In
Fig. 12 we display the kinetic energy of the flow at
ω/2Ω = 1/4 (m=3) and when the large-scale part ex-
pressed in (5) is filtered out. One clearly sees the dissi-
pative structures which are associated with the viscous
stress.
Back to Fig. 8 and 9, we note that the frequency mis-

match between model and experiment is less and less
as m increases for the purely toroidal modes. This is
because modes of high m are more concentrated in the
equatorial region of the outer shell (as may be seen from
Eq. 5) and therefore less affected by the differential rota-
tion.
Other modes with m = 2 or m = 3, may also be identi-

fied with the resonance peaks which stay on the left of the
band. Indeed, the resonances of the model are valid for
the asymptotic case Ro → 0, while the observed frequen-
cies decrease with |Ro|. For other non-toroidal modes
(with m=1 and m=4) identification is only tentative.
Besides, the model gives the width of the resonances.

Table I shows the full width at half-maximum (FWHM)
of the identified modes and the corresponding value of
the model. We note that for half of the observed modes,
the comparison is good. For the remaining modes, either
the peaks are much wider or much narrower than those
of the model. In a linear model, the width of the peaks is
related to the dissipative process at work or to a casual
blend of another neighbouring peak. Wider experimen-
tal peaks means a higher dissipation in the experiment
than in the model, which is understandable: the experi-
mental flow may contain small-scale turbulence that can

FIG. 13. Comparison of the width of two observed resonances
at Ro=-0.75 (solid lines with pluses) with the prediction of
the model (dotted lines). The model curve has been shifted
in frequency so as to match the observed frequency. The
top figure is centered on the m=1 mode at ω̂ ∼ 0.17, while
the bottom one shows the resonance of the purely toroidal
m=2 mode. The horizontal line gives the position of the half-
maximum. E = 2.510−8 .

m ω̂ δω̂ × 104 Ro δω̂model × 104 δω̂/δω̂model

1 0.31 29 -1.75 12 2.4
1 0.23 8 -1.13 56 0.14
1 0.17 9 -0.80 38 0.24

2 0.3526 8 -0.80 8 1.0
2 0.2628 12 -0.60 10 1.2
2 0.1980 23 -0.43 29 1.26
2 0.1667 20 -0.33 22 0.93

3 0.2573 20 -0.4 10 2.0
3 0.2035 12 -0.3 12 1.0
3 0.1662 9 -0.23 16 0.55

TABLE I. Comparison of the experimental FWHM (δω̂) of
the mode at frequency ω̂ of azimuthal wavenumber m, mea-
sured at Rossby number Ro, with the FWHM predicted by
the model. The last column gives the ratios of the experimen-
tal and numerical FWHMs.

increase dissipation. The opposite is more surprising. It
may mean either a misidentification or a real change of
the important scales of the modes when the differential
rotation is strong. We actually note that the mismatch is
larger for the m=1 resonances, which exist at very nega-
tive Ro.
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In Fig. 13, we show two resonances which appear at
Ro = −0.75. One is associated with m=1. The model
curve has been shifted so that peaks frequencies coincide.
We see that the widths poorly match. The other mode
visible at this Rossby number, is the m=2-purely toroidal
one. Its observed frequency is ω̂ ∼ 0.35, expected at
ω̂ = 1/3 for a solid body rotation. Here too we shift the
model curve and note that the widths of the peaks better
match. Moreover, we also notice a tiny peak on the high
frequency side of the main resonance that appears both
in the experimental data and in the model, suggesting
that we have correctly identified this mode.

To further secure mode identification, we also investi-
gated the other possible symmetry of the modes. Indeed,
in equatorially symmetric containers, two independent
set of modes coexist for a given azimuthal wavenumber
m: modes for which the pressure function is symmetric
with respect to equator and those for which it is anti-
symmetric. For these latter modes the pressure and the
azimuthal velocity component vϕ vanish at equator. We
thus computed the analog of Fig. 8,9 but for equatori-
ally symmetric modes. Results are shown in Fig. 10,11.
Quite clearly, none of the m=3 or m=4 modes can be re-
lated to experimental resonances. For the m=1 and m=2
azimuthal wavenumbers, the two lowest frequencies may
possibly correspond to symmetric modes.

To conclude on mode identifications, we may say that
the vicinity of frequencies together with the matching of
the width of the resonances allow us to identify almost
all the observed frequencies with the eigenfrequencies of
equatorially antisymmetric retrograde inertial modes of
spherical shell in solid rotation. Doubts may concern two
modes actually: m=1, ω̂ = 0.17 and ω̂ = 0.23, because
they show experimental FWHMs which are significantly
less than those predicted by the model. For these two
modes the background shear may have more important
consequences, changing for instance the length scales that
control viscous dissipation (in addition, two equatorially
symmetric modes have similar frequencies, thus possibly
adding some confusion). Hence, we shall retain that in
this experimental spherical Couette flow, excited inertial
waves are generally (if not systematically) equatorially
antisymmetric.

Finally, let us note that the spectrograms show that
excited inertial modes live in a definite interval of Rossby
numbers. We may even observe that for a given m, when
the Rossby number is decreased, modes appear one by
one, the “old” one disappearing when a new one appears.
The series ends when the purely toroidal one associated
with the given m (see Eq. 5) is excited. We note however
that the spin-over mode at ω̂ = 0.5 and a (or a set of)
low-frequency resonance(s) with m = 1 around ω̂ = 0.05
do not follow this rule, being permanently excited when
Ro > −1.

The resonance near ω̂ = 0.05 may be associated with
the broad peak appearing on the m=1-curve at ω̂ ∼ 0.03,
when the forcing is set on the inner core. We show in
Fig. 14 the shape of the oscillating flow at this frequency

FIG. 14. (Color online) The kinetic energy distribution in a
meridional plane of the flow associated with the resonance at
ω̂ = 0.05 for m=1.

for a solid body rotation. It looks like a set of shear layers
spawned by the critical latitude singularity on the inner
boundary.

IV. DISCUSSION

Let us first summarize the foregoing conclusions de-
rived from the combination of experimental and numeri-
cal results. The spherical Couette flow with E = 2.5 10−8

and −1.8 < Ro = Ωi

Ω
− 1 < 0 (the inner sphere rotating

more slowly than the outer sphere) displays a series of
excited inertial modes which have the following proper-
ties:

1. They are all non-axisymmetric, with an azimuthal
wavenumber m ∈ {1, 2, 3, 4}.

2. They are likely all anti-symmetric with respect to
equator.

3. They all propagate azimuthally in the opposite di-
rection of the outer shell rotation (i.e. they are ret-
rograde).

4. Their highest observed frequency is that of the
purely toroidal mode (see Eq. 5) associated with
the given azimuthal wavenumber m, namely ω =
2Ω/(m+ 1).

5. When the differential rotation is increased from
zero (i.e. when decreasing the Rossby number from
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FIG. 15. View of the differential rotation inside the tangential
cylinder as given by the linear solution of [28]. Here Ωi = 0.5,
Ω = 1 and η = 0.348. Note that the angular velocity decrease
is a feature of the inviscid solution that is compensated by
the rapid rise in the Stewartson layer [see 27, for a complete
view with viscous effect].

zero), inertial modes of a given m turn on at a spe-
cific Rossby number and turn off when the next
mode of the series turns on. The spin-over mode is
an exception, being always excited when Ro > −1.

We understand the emergence of these inertial modes
in the experimental Couette flow as a consequence of
the existing shear layer staying on the tangential cylin-
der, namely the layer which replaces the Stewartson layer
when Ro is not small. Our scenario is as follows.
Let us first recall that at very small Rossby numbers (in

the linear regime), and in the limit of vanishing Ekman
numbers, the spherical Couette flow may be represented
by a solid body rotation outside the tangent cylinder and
a differential rotation inside the tangent cylinder. Weak
circulations and the Stewartson layer complete these ba-
sic azimuthal flows [27]. Proudman[28] has shown that
inside the tangent cylinder

Ω(s) = Ωi + (Ω− Ωi)
(1− s2/η2)1/4

(1 − s2/η2)1/4 + (1− s2)1/4
(6)

where s is the radial cylindrical coordinate. The main
point shown by this formula is that the fluid inside the
tangent cylinder rotates almost rigidly at an intermediate
angular velocity:

Ω(0) =
Ωi +Ω

2

Fig. 15 further illustrates this point showing that the
angular velocity does not vary very much except near
the Stewartson layer.
Eq. (6) has been derived in the asymptotic limit of

small numbers and it is certainly approximate when ap-
plied to the experiment. However, it seems reasonable
to represent the actual flow by a solid body rotation at
angular velocity Ω outside the tangent cylinder and at

s

Ω(s)

Ωi+Ω

2

Ω

scl η

FIG. 16. Schematic view of the bulk rotation of the fluid in
the spherical Couette flow for η < z <

√

1− η2 (0.348 < z <
0.937). The transition between the outer solid body rotation
and the inner (approximate) solid body rotation is along the
tangent cylinder at s = η. When Ωi is decreased, the critical
layer of a given mode first appears on the left side of the shear
layer, and moves towards larger s.

angular velocity (Ωi+Ω)/2 inside it. A shear layer, gener-
alizing the Stewartson one connects these two rotations.
Using the (2Ω)−1 time scale, the angular velocity of

fluid Ω(s) thus varies in the interval [Ro/4 + 1/2, 1/2].
Hence, in the foregoing experiment where Ro < 0, the
flow is retrograde inside the tangent cylinder as viewed
from the outer shell. This implies that inertial waves
propagating outside the tangent cylinder and with a ret-
rograde angular velocity, face a critical layer if their an-
gular phase velocity−ω̂/m is less (in absolute value) than
Ro/4. In other words, if

Ro < −
4ω̂

m
< 0 (7)

is verified, then there exist a place within the shear layer
where the phase velocity of the wave equals that of the
fluid. This is the place where a critical layer develops.
In Fig. 16 we sketch out the position of the critical layer.
Such a layer may over reflect the inertial waves and be at
the origin of the selection of excited modes as proposed
by Kelley et al. [17]. Critical layers are indeed known to
play a crucial part in the dynamics of the Rossby waves
in the Earth atmosphere [29, 30]. Recently, Baruteau and
Rieutord [31] found that some inertial modes propagating
over a differentially rotating fluid in a spherical shell can
be unstable when a critical layer exists. We shall now
precise this scenario.
Eq. (7) shows that for a given (retrograde) non-

axisymmetric inertial modes, there is a critical negative
Rossby number below which the critical layer exists and
might excite the mode. This critical Rossby number can
be derived from the resonances frequencies showing up
in Fig. 8 and 9, and compared to the maximum Rossby
number beyond which the mode is no longer excited.
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m ω̂ −4ω̂/m Rocrit α

1 0.1595 -0.638 -0.74
1 0.210 -0.840 > −1.14 0.27
1 0.301 -1.204 -1.39 0.11

2 0.142 -0.284 -0.29
2 0.177 -0.355 -0.36 0.275
2 0.233 -0.466 -0.50 0.236
2 0.333 -0.667 -0.70 0.107

3 0.152 -0.203 -0.20
3 0.189 -0.252 -0.25
3 0.250 -0.333 -0.33

TABLE II. Table of the critical Rossby numbers (Rocrit) as
derived from the experimental spectrograms compared to the
predictions of the numerical model −4ω̂/m. α is a parame-
ter controlling the frequency drift with Ro and derived from
Figs. 4,5.

FIG. 17. (Color online) Graphic illustration of Tab. II: for
each observed inertial mode, we display the Rossby number
range of existence of the mode. The dashed line shows the
(absolute value) of the critical Rossby number 4ω̂/m below
which the mode is no longer excited. Note the good matching
with the experimental value.

This Rossby number is derived from the spectrograms
in Fig. 2 and 3. The results of this exercise is shown in
Tab. II and illustrated with Fig. 17. The matching is
remarkable, especially for the m=2 and m=3 modes.
When the Rossby number is decreased from zero, large-

scale resonances appear in the order given by Fig. 8 and
9, until the purely toroidal mode of the associated m
is excited. The m=1-purely toroidal spin-over mode is
an exception as it consists of a global solid body rota-
tion around an equatorial axis, oscillating at the rotation
frequency of the outer shell. Therefore, it can be me-

chanically excited by the boundary.
The spectrograms also show that when a new mode

is excited the “old” one with the same m disappears.
We understand this process as follows: the new mode
is always of larger scale than the old one (Fig. 8 and 9
show that the strength of the resonances increases as the
frequency increases), thus when the Rossby number de-
creases a less-damped mode takes over a more damped
one. In the differentially rotating fluid where these modes
are unstable because of the critical layer, a more unsta-
ble mode overwhelms a less unstable one. This behaviour
is typical of instabilities where many modes are destabi-
lized simultaneously and the most unstable dominates
the bifurcated state (e.g. Rayleigh-Bénard instability or
Taylor-Couette instability). The change of excited mode
stops when the least-damped of the series, the purely
toroidal one, is excited.
This scenario thus explains why only non-

axisymmetric retrograde modes are excited, and
the Rossby number below which this is indeed the case.
However, it does not explain why only anti-symmetric
modes are excited. We conjecture that the coupling with
the spin-over mode may be the key of this selection.
Indeed, from the work of Hollerbach [32] we know that
the Stewartson layer generated by the spherical Couette
flow can become unstable when the Rossby number is
increased (in absolute value). Modes with the same
symmetry as the original flow, namely symmetric with
respect to equator, are destabilized. Their wavelength
should scale with the width of the layer, namely E1/4.
From the numerical results of [32], we infer that the
most unstable mode has an azimuthal wavenumber
m ∼ 0.465E−1/4. In the context of the experiment de-
scribed above, such modes have m ∼ 16 (E=7.5×10−7)
or m ∼ 37 (E=2.5×10−8). Hence, the linear instability
injects energy at rather high wavenumbers implying,
thanks to nonlinear interactions and an inverse cascade
of energy, that a large range of scales (with azimuthal
wavenumbers 0 < m <

∼ 40) is excited, thus generating
some turbulence. The equatorial symmetry could be
broken by the spin-over mode (namely the m = 1-mode
described by Eq. 5), whose presence has been detected
on the velocity signal. This mode is anti-symmetric. The
nonlinear interaction of this mode with disturbances
growing over the turbulent Stewartson layer could
thus select the observed antisymmetric inertial modes.
However, more detailed numerical investigations are
definitely necessary to answer this question.
Finally, in light of the foregoing scenario, we can also

interpret the linear drift of the frequencies with the
Rossby number as shown in Fig. 4 and 5. The linear
dependence suggests that

ω̂ = ω̂crit − α
m

4
(Ro− Rocrit) (8)

where Rocrit = −4ω̂crit/m and α is a constant. With the
expression of Rocrit we may rewrite the previous equation
as
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ω̂ = ω̂crit(1− α) −
αm

4
Ro (9)

which shows that α should adjust both the slope and
the frequency at Ro = 0. Fitting experimental data, we
derive the value of α for the modes used in Fig. 4 and
5. These are given in Tab. II. The physical meaning
of α may be derived from our scenario. Indeed, if the
modes are excited through their critical layer, their az-
imuthal phase velocity −ω̂/m equals the fluid angular
velocity somewhere in the shear layer. We recall that the
scaled angular velocity of the fluid viewed from the frame
co-rotating with the outer shell varies from 0 down to
Ro/4 < 0. Introducing the angular velocity profile Ω̃(s)

such that 1 ≥ Ω̃(s) ≥ 0, we have

Ω̂(s,Ro) =
Ro

4
Ω̃(s).

In our modelling of the spherical Couette flow, we assume
that the rotation profile is independent of Ro.
If scl is the position of the critical layer, then −ω̂/m =

Ro
4
Ω̃(scl). Using (9) leads to

Ω̃(scl) = α+ (1− α)
Rocrit
Ro

(10)

This expression shows that the constant α gives the
asymptotic position of the critical layer when Ro → −∞.
Since Ω̃(s) is a decreasing function of s, it also shows that,
as the differential rotation increases (Ro more negative),
the critical layer moves away from the rotation axis (scl
increases). Furthermore, modes with a higher α have
critical layers more inwards the tangent cylinder.
In Sect. II, we noted that the first m=1-mode shows a

different dependence with Ro when the Ekman number
E is doubled (approximately). From (8), this translate
into an increased α for a lowered E. Unfortunately, there
is no univocal interpretation of this change: it may either
mean that the critical layer moved inside the shear layer
or that the rotation profile changed, or both. Either a
more elaborated model or more precise measurements us-
ing other modes is necessary to disentangle the effects.

V. CONCLUSIONS

In this work we have been able to refine the scenario
proposed by Kelley et al. for the selection of inertial
modes in a spherical Couette flow [17]. We showed that
the observed modes are most likely excited by a criti-
cal layer lying inside the shear layer which separates the
fluid inside and outside the tangent cylinder. We demon-
strated that this mechanism leads to a negative critical
Rossby number, below which some non-axisymmetric ret-
rograde inertial modes can be excited. The predicted

value of this critical Rossby number matches quite nicely
the observed experimental values, thus giving support to
the proposed mechanism. However, because of the strong
differential rotation needed to excite some modes, the
identification of a few oscillation frequencies with those
of a fluid inside a spherical shell in solid body rotation
remains uncertain. Another pending question is that of
the equatorial symmetry of the observed modes. Our
scenario along with the matching of frequencies of many
modes argue in favour of a selection of anti-symmetric
modes. However, this conclusion is not completely firm
because some of the symmetric modes may match a few
of the frequencies and also because the FWHM of two
resonances show experimental values that are much less
than those predicted by the model, which is a priori less
dissipative.

These results underline the need of more detailed in-
vestigations of inertial oscillations within differentially
rotating fluids. Preliminary numerical results [31] show
that a global shear can indeed significantly modify the
properties of inertial modes and also shows that criti-
cal layers can destabilize some non-axisymmetric modes.
However, the very case of the mean flow associated with
a quasi-turbulent spherical Couette flow remains to be
investigated.

Such a study may lead to the interesting perspective
of reconstructing the interior differential rotation of the
fluid by adjusting the prediction of the model to the ob-
served value of the resonance frequencies. One could thus
deduce details of the mean flow. Such a technique is sim-
ilar to helioseismology techniques in solar research [33],
but instead using inertial modes to reconstruct the in-
ternal rotation of the fluid. Inertial modes are certainly
the most appropriate modes to infer the rotational prop-
erty of a star or a planet. Our comparison of the inertial
frequencies of our model with the observed ones, shows
that a laboratory spherical Couette flow offers a unique
playground to test this use of inertial waves.

Finally, let us point out that the ultimate challenge of
modelling (this) experimental spherical Couette flows is
to predict the amplitude of excited modes as a function
of the Rossby number and to reproduce the sequence of
their appearance.
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