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Network structure is a product of both its topology and interactions between its nodes. We explore
this claim using the paradigm of distributed synchronization in a network of coupled oscillators.
As the network evolves to a global steady state, nodes synchronize in stages, revealing network’s
underlying community structure. Traditional models of synchronization assume that interactions
between nodes are mediated by a conservative process similar to diffusion. However, social and
biological processes are often non-conservative. We propose a new model of synchronization in a
network of oscillators coupled via non-conservative processes. We study dynamics of synchronization
of a synthetic and real-world networks and show that the traditional and non-conservative models
of synchronization reveal different structures within the same network.

PACS numbers: 05.45.Xt, 89.75.Hc, 89.75.-k, 89.65.Ef, 89.75.Fb, 02.10.Ud

I. INTRODUCTION

Community structure is an important characteristic
of real-world complex networks, including biological net-
works composed of functional modules [1, 2], and social
networks, which are often composed of groups of similar
individuals [3]. Researchers developed a large variety of
methods [3–6] that examine network topology, or con-
nectivity between its nodes, to identify interesting struc-
tures. We claim, however, that community structure of
complex networks is the product of both their topology
and dynamical processes taking place on them. These
processes, which are mediated by interactions between
nodes, determine the phenomena taking place on the net-
work, whether diffusion and other types of transport in
biological networks, or epidemics and information spread
in social networks. While it is generally acknowledged
that network structure affects evolution of macroscopic
phenomena [7–11], the impact of dynamics on our under-
standing of network structure is less appreciated.
We explore the connection between network structure,

topology and dynamical processes by studying synchro-
nization of coupled oscillators. Kuramoto [12] introduced
a simple model of distributed synchronization that was
adapted to networks of oscillators whose phases are cou-
pled to their neighbors’ phases [10, 13]. These systems
demonstrate an interesting connection between dynamics
and structure: as the network evolves to a global steady
state, oscillators synchronize in stages, with synchronized
groups revealing network’s community structure [14, 15].
While the Kuramoto model is useful for studying phys-

ical systems whose elements are coupled via a diffusive
process, it is not a good model of social and biological
phenomena, for example, viral contagion. In a contagion
process, rather than pick one neighbor to infect, a node
will attempt to infect every neighbor. We introduce a
new model of synchronization for such interactions and
use it to study the structure of two example networks: a
synthetic network with a hierarchical community struc-
ture and a benchmark social network. We show that the
proposed model reveals a different view of community

structure than that found by the traditional Kuramoto
model, demonstrating the importance of accounting for
interactions in the analysis of network structure.

II. GENERALIZED MODELS OF

SYNCHRONIZATION

We consider a network of N identical oscillators, each
interacting locally with its neighbors. We represent this
network as an unweighted, undirected graph with an ad-
jacency matrix A, such that A[i, j] = 1 if there exists an
edge between nodes i and j; otherwise, A[i, j] = 0. In
the linear version of the Kuramoto model, the phases of
oscillators, specified by vector θ, evolve in time according
to:

dθ(t)

dt
= ω −K · Lθ(t), (1)

where the vector ω corresponds to natural frequencies of
the nodes, K is a matrix of coupling constants of pairs
of nodes, and L = D − A is the Laplacian matrix of the
graph, where the diagonal degree matrix D is defined as
D[i, i] =

∑

i A[i, j] = di and D[i, j] = 0 ∀ i 6= j. When
ωi = 0, network as a whole reaches a fully synchronized
state in which θi(t) = θ, ∀i.
Oscillators in the linear Kuramoto model are coupled

via a diffusive process whose dynamics is governed by
the Laplacian matrix. Such a process cannot describe
some real-world interactions, including social interactions
that lead to the spread of a disease or information in
social networks. Social interactions often have a non-
conservative flavor: for example, a pathogen replicates
as disease spreads. To distinguish dynamics arising from
such interactions from those based on the Laplacian, we
refer to the former as non-conservative and latter as con-
servative.
Consider a simple example of non-conservative inter-

actions in which node i produces an amount αθi of some
substance, for example, a pathogen, but transmits an
amount θi to each neighbor. Therefore, (α − di)θi of



2

the amount of substance created by i is not transferred
to any neighbor and is lost. Dynamics of a network of
nodes coupled via such non-conservative interactions can
be written as:

dθ(t)

dt
= ω −K · (αI −A)θ(t), (2)

where I is the identity matrix and α is a constant. The
model above introduces the Replicator operator R =
(αI −A), the non-conservative counterpart of the Lapla-
cian. In spite of non-conservation, under some condi-
tions, specified below, the system reaches a steady state
in which the variables θi(t) no longer change.
Both conservative and non-conservative models are

special cases of the generalized linear synchronization
model, which can be written in terms of the operator
L(A) of the adjacency matrix A:

dθ(t)

dt
= ω −K · L(A)θ(t). (3)

The operator L(A) captures the details of interactions
and governs dynamics of synchronization. Different ver-
sions of L(A) are possible for both conservative and non-
conservative interactions. If, for example, node i pro-
duces an amount θi and divides it evenly among its di
neighbors, the conservative synchronization model in this
case can be written in terms of the normalized Laplacian
L = I −D−1A, rather than L.

A. Steady State

Solving Equation 3 above we get:

θ(t) = e−K·L(A)t
(

θ0 −
(

K · L(A)
)−1

ω
)

+
(

K · L(A)
)−1

ω, (4)

where θ0 is the initial phase of the oscillators at
t = 0. Assuming that matrix L is diagonalizable, it
can be written as an eigenvalue decomposition L =
∑N

i=1 X [., i]λiX
−1[i, .], where the ith column of X is the

ith eigenvector of L with eigenvalue λi. Then for ωi = 0
and Kij = c, ∀i, j, Eq. 4 can be written as:

θ(t) = θ0e
−cLt =

N
∑

i=1

X [., i]e−cλitX−1[i, .]θ0

=

N
∑

i=1

X [., i]e−cλitci (5)

Here ci = X−1[i, .]θ0 is a constant.
A non-trivial steady state θ(t → ∞) 6= 0 exists when

λ1 = 0. Under this condition, as t → ∞, Eq. 5 reduces
to θs = X [., 1]c1, with constant c1. The steady state
solutions of different synchronization models are:

L(A) = D −A = L: In this case X [., 1] = 1̄ (vector of
1s). Hence, θsi = θ ∀ i, i.e., all oscillators have the
same phase in the steady state.

L(A) = I −D−1A: In the steady state, θsi ∝ d[i], where
d[i] is the degree of node i.

L(A) = αI −A = R: For α = λmax, in the steady state
θs is proportional to the eigenvector of A cor-
responding to its largest eigenvalue λmax. For
α > λmax the steady state has a trivial solution
θsi → 0, ∀i.

L(A) = I +A: This operator describes dynamics of a
network of nodes coupled via a signaling process,
studied by Hu et al. [16]. However, it can be shown
that this system does not have a steady state.

B. Spectral Properties of L(A)

The spectrum of L(A) gives information about topo-
logical and temporal scales of synchronization. Specifi-
cally, the temporal scale of synchronization, or the rate at
which the system asymptotically relaxes to equilibrium,
is dominated by the term in Eq. 5 corresponding to the
smallest positive eigenvalue of L(A) (when the smallest
eigenvalue is zero).
The dynamics of the conservative Kuramoto model is

governed by the Laplacian L. Therefore, the synchroniza-
tion time scale of the Kuramoto model is proportional to
the inverse of smallest positive eigenvalue of L; gaps be-
tween its consecutive eigenvalues are related to the rela-
tive difference in synchronization time scales of different
components [14, 15]; and the number of null eigenvalues
of L gives the number of disconnected components.
In non-conservative synchronization, the synchroniza-

tion time scale depends on the smallest positive eigen-
value of R = αI − A when α = λmax, the largest eigen-
value of A. Moreover, the spectrum of R gives insights
into the community structure of the network. When a
network has C disjoint communities, the adjacency ma-
trix A has C eigenvalues that are significantly greater
than the remaining N − C eigenvalues [19]. Since the
eigenvalue spectrum of R = λmaxI − A is related to the
spectrum of A, in a network with C disjoint communi-
ties, R has one null eigenvalue and C − 1 eigenvalues
that are much closer to zero than the remaining N − C
eigenvalues.
The link between network structure and conservative

dynamics has been studied in terms of the properties
of random walks on graphs [5, 17], whose dynamics is
described by the normalized Laplacian L = I − D−1A.
This link is also captured by conductance of the network,
which bounds the mixing time of a random walk on the
network [18]. Conductance φ measures the quality of a
partition of the network into two communities S and S̄.
It is defined as the ratio of the number of edges between
nodes in S and nodes in S̄ (E(S, S̄)) to the total number
of edges within S (vol(S)): φ = minS E(S, S̄)/vol(S).
According to Cheeger inequality φ is bounded by λ2,
the second largest eigenvalue of normalized Laplacian [4].
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Therefore, when λ2 is small, a good (i.e., low conduc-
tance) community division of the network exists. In
this case, it will take a long time for a random walk to
fully mix on the network [18]. This property of random
walks has led to efficient algorithms to identify commu-
nity structure of networks [5].

C. Synchronization and Network Structure

While spectral analysis can illuminate aspects of net-
work structure, simulating dynamics of synchronization
offers a more computationally efficient method to identify
network structure. As demonstrated by Arenas et al. [14],
nodes in the Kuramoto model synchronize in stages, with
smaller components synchronizing before larger compo-
nents, etc., until the entire network becomes synchro-
nized. These stages reveal the hierarchical community
structure of the network.

We quantify the degree of synchronization of nodes i
and j at time t using similarity function:

sij(t) = cos
(

θi(t)−
θsi
θsj

θj(t)
)

, (6)

where θsi is the phase of node i in the steady state. The
rationale for this metric is that when nodes reach steady
state, further interactions should not change their phases.
In the conservative case, all phases are equal in the steady
state; therefore, Eq. 6 reduces to the order parameter
sij = cos(θi(t)−θj(t)) used in [14]. As nodes in the same
community synchronize with each other, their similarity
grows. Nodes are maximally similar (sij(t) = 1) in the
steady state for both conservative and non-conservative
synchronization models.

To find a network’s community structure, we allow the
network to evolve for some period of time according to
the rules of a specific synchronization model. Next, we
execute any of the standard clustering algorithms, such as
the k-means algorithm or the agglomerative hierarchical
clustering algorithm, to identify groups of similar nodes.

III. CASE STUDIES

We explore the differences between dynamics of con-
servative and non-conservative synchronization and the
structures that emerge in two example networks: a syn-
thetic network with a fixed hierarchical community struc-
ture and a benchmark social network. While the syn-
thetic network does not have the statistical properties
of naturally evolved real-world networks, we study it to
demonstrate that running different processes on the same
network leads to measurable differences in the discovered
hierarchical structure.

A. Synthetic Network

The synthetic network, constructed following methods
of [14], has N = 256 nodes evenly divided between four
communities, with each community further sub-divided
into four equal sub-communities. Each node randomly
connects to z1 = 13 nodes within its sub-community,
z1 + z2 = 17 nodes within its community, and zout = 1
nodes outside the community. Figure 1(a) shows the
hinton diagram of the adjacency matrix of this network,
with red entries indicating presence and blue absence of
edges. Dense red blocks correspond to sub-communities,
and sparse red blocks to second level communities. The
spectra of L and R are shown in Figure 1(b). Each spec-
trum contains the eigenvalues of the operator, ranked
in descending order, with the largest eigenvalue in the
leading position. While we can already see differences in
the spectra, they become more pronounced in real-world
networks characterized by heterogeneous degree distribu-
tion.
We simulate synchronization in the synthetic network

by letting nodes’ phases evolve from some initial config-
uration. We ran 100 simulations of each synchronization
model with initial values of θi drawn from a uniform ran-
dom distribution [−π, π], ω = 0 and α = λmax for non-
conservative model. Figure 1(c) and (d) show the simi-

larity matrix of the network after t = 1500 iterations of
the two models. The matrix represents similarity, sij , of
a pair of nodes, with color red corresponding to higher
similarity values and blue to lower. The minimum sim-
ilarity between any two nodes in the non-conservative
system is 0.998, compared to 0.958 for the conservative
system. The hierarchical community structure is visible
in both similarity matrices.
To find the community structure, we execute a hier-

archical agglomerative clustering algorithm on the simi-
larity matrix at some time (here, after 1500 iterations).
This procedure creates a dendrogram, which can be parti-
tioned into four or 16 clusters. We use normalized mutual
information MI to measure how well discovered clusters
reproduce the actual communities [20]. When MI = 1,
discovered clusters are the actual communities; while for
MI = 0, they are independent of the actual communi-
ties. When we split each dendrogram into four clusters,
we find MI = 1.00 in the conservative and MI = 0.83
in the non-conservative model. Splitting the dendro-
gram into 16 clusters leads to mutual information score
of MI = 0.66 for the conservative model and MI = 0.96
for the non-conservative model. Non-conservative model
appears to identify smaller structures faster and more
accurately.

B. Karate Club Network

Next we study a real-world friendship network of mem-
bers of a karate club [21], a widely studied social network
benchmark shown in Fig. 2(a). During the course of the
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(a) (b) (c) (d)

FIG. 1. Analysis of the synthetic network. (a) Hinton diagram of the adjacency matrix of the network. A point is red if
an edge exists between nodes at that location; otherwise, it is blue. (b) Eigenvalue spectrum of the two conservative and
non-conservative operators. Similarity matrix after t = 1500 iterations under the (c) conservative and (d) non-conservative
synchronization models. Color indicates how similar two nodes are, with red corresponding to higher and blue to lower similarity.

(a) (b) (c) (d)

FIG. 2. Analysis of the karate club network. (a) Friendship graph of karate club members. (b) Comparison of eigenvalues of
the Laplacian and Replicator operators. Similarity matrix after 1000 iterations of (c) the conservative and (d) non-conservative
synchronization models. Color indicates similarity of node pairs, with red corresponding to higher and blue to lower similarity.

TABLE I. Normalized mutual information scores of the divi-
sion of the karate club network into two groups under different
synchronization models.

iterations 10 1000 3000 3899
conservative 0.046 0.046 0.046 0.733
non-conservative 0.046 0.301 1.000 1.000

study, a disagreement between the club’s administrator
and instructor resulted in the division of the club into
two factions, represented by circles and squares, which we
take as the actual communities for this network. There
are greater differences between the spectra of L and R,
shown in Fig. 2(b), than for the synthetic graph. The
smallest positive eigenvalue of R is larger than that of L,
implying that the non-conservative model synchronizes
faster than the conservative model. Figure 2(c) and (d)
shows similarity matrices after t = 1000 iterations of the
two synchronization models. Minimum similarity in the
conservative model is 0.65, while in the non-conservative
model it is a much higher 0.91. After the same number
of iterations, nodes are more synchronized in the non-
conservative model.

We use hierarchical agglomerative algorithm to cluster
nodes at different times based on synchronization sim-
ilarity. Both models reveal rich hierarchical structure,
though the two clusterings are very different. In the
conservative model, high degree nodes (hubs) are deeper
within the hierarchy, meaning they are more synchro-
nized: 33 and 34 in one community and 1, 3 and 2 in
the other community. Peripheral nodes (13, 18, 22) syn-
chronize later, although nodes 15 and 10 never synchro-
nize with their actual community and are mis-assigned.
In the non-conservative model, peripheral nodes synchro-
nize first, while the hubs synchronize last. Bridging nodes
connected to both communities synchronize earlier in the
conservative model than the non-conservative model and
remain more synchronized. Table I reports MI scores
of communities discovered by the two synchronization
models at different times. Non-conservative model identi-
fies communities faster than the conservative model, and
the discovered communities are purer. Under both mod-
els nodes’ community membership does not change after
3899 iterations, but similarity continues to grow until ev-
ery node is equally similar to every other node.
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IV. DISCUSSION

Our view of a network’s structure depends not only on
how the nodes are connected but also on how they inter-
act. Interactions affect how we identify central nodes in
the network [22, 23], and, as we show in this paper, also
how we partition it into communities. We have demon-
strated this by showing that in a network of coupled os-
cillators, different interactions lead different groups, or
communities, of nodes to become synchronized over time.
In practical terms this means that to find meaningful
communities in real-world networks, community detec-
tion algorithms have to take into account the nature of
interactions between nodes.

Note that our operational definition of a community,
as a group of nodes that synchronize faster with each
other than with other nodes, is different from the tra-
ditional definition of a community as more densely con-
nected group of nodes. In fact, these two definitions are

related, at least from the point of view of conservative
processes, since the community structure found by con-
servative models is also one with low conductance. Con-
ductance, however, may not be a good measure of group
cohesiveness when nodes are interacting by broadcasting
information or infecting each other with a pathogen.
Different interactions lead to distinct operators that

govern dynamics of synchronization, each with its own
spectral properties and characteristic topological and
temporal scales. Investigating these relationships is the
focus of future work.
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