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We show that a large class of pulse coupled oscillators converge with high probability from random
initial conditions on a large class of graphs with time delays. Our analysis combines previous local
convergence results, probabilistic network analysis, and a new classification scheme for Type II phase
response curves to produce rigorous lower bounds for convergence probabilities based on network
density. These results suggest new methods for the analysis of pulse coupled oscillators, and provide
insights into the balance of excitation and inhibition in the operation of biological Type II phase
response curves and also the design of decentralized and minimal clock synchronization schemes in
sensor nets.

Synchrony in systems of pulse-coupled oscillators
(PCOs) is an important feature in physics, biology and
engineering. Synchronization can range from being a
pathological breakdown, as in epilepsy [1] to one of vi-
tal importance, such as in the proper functioning of the
heart’s sinoatrial node [2, 3], to a framework to under-
stand decentralized coordination more generally [4, 5].
Additionally, there are attempts to utilize the simplicity
of PCO synchronization to synchronize wireless sensor
networks [6–9]. However, many of the idealized mod-
els inspired by synchronization are not able to synchro-
nize when the system has a complicated graph structure
and time delays – aspects expected in real physical sys-
tems. In order to deal with these issues, previous stud-
ies have considered oscillators augmented with memory
[7, 10], infinite spatial density [10] or indegree normaliza-
tion [5, 10]. While these studies have shown linear stabil-
ity [5], or other forms of local convergence [7, 10], global
convergence in these settings has either been shown to be
impossible [5], requires stochastic and arbitrarily small
delays [11] or remains unknown.

Alternatively, a class of oscillators with Type II phase
response curves (PRCs), have been connected to syn-
chronizing behavior theoretically [11–13] and in nature
[2, 14, 15]. The distinguishing feature of oscillators with
Type II PRCs is that an oscillator’s phase can either be
decreased (inhibited) or increased (excited), depending
on the internal state of the oscillator. In this paper we
focus on PCOs with a particular class of type II phase
response curves, introduced in our previous paper [16],
which resembles those in nature [2, 14] and are well suited
for handling complex topologies and time delay. We also
show how leveraging the main theorem from [16] allows
for a fast and rigorous estimate of the convergence prob-
ability of a system of PCOs. Furthermore, we provide
rigorous lower bounds for the performance of this compu-
tational approach and display how the probability of syn-
chrony converges to 1 in highly connected graphs. This
result is of biological relevance to the situations where
synchrony is brought about via Type II PRCs, and is a
useful guide for the construction of PCOs in sensor nets.

Previous work found that a class of Type II PRC, de-
noted “Stong Type II” or “STII” (described later), could
consistently, (but not always) converge to synchrony on
fairly complex graphs with time delays, and would ap-
proximate synchrony even with delay and frequency het-
erogeneity [16]. This convergence was explained by show-
ing that these PCOs would converge to synchrony if their
phases were inside a critical range ρ0, essentially showing
an l∞ ball of stability. This showed that with well-tuned
parameters the system is robust to any individual oscilla-
tor error or a combination of small errors; explaining the
possibility of synchrony, but not the ubiquity of it in nu-
merical simulations. For example, if the critical range is 1

2
of the phase interval, then the probability that a system
of n oscillators with uniform random initial conditions
starts in the critical regime is 1

2

n
, which is exponentially

small in the system size; however, numerical experiments
show that convergence is in fact highly likely and our
analysis explains this.

In particular, we use network analysis to expand on
the local understanding of stability, using node indegrees
to create a lower bound on the probability of random
initial conditions converging to the critical region in any
size system (finite or infinite).

This analysis of STII oscillators sheds light on some of
the natural questions regarding Type II phase response
curves, and the contribution of excitation and inhibition
to synchronization in Type II PRCs. For example, it’s
clear that the important aspect of the excitatory end of
a Type II phase response curve is that it allows for fir-
ing cascades, yet previous analytic results have tended
to focus on the importance of inhibition when the sys-
tem has time delays [5, 16]. In contrast the result in
this paper classifies the excitation in a type II PRC into
different discrete classes, each class corresponding to its
ability to cascade and a lower bound on the probability
convergence.

To understand the strong convergence of STII oscilla-
tors, consider the following PCO model: there are n os-
cillators on a strongly connected aperiodic directed graph
G. Each oscillator i’s state is described by phase variable
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φi ∈ [0, 1], which evolves with natural frequency dφi/dt =
1. When φi(t) = 1 the oscillator emits a pulse and its
phase is reset from 1 to 0. This pulse is received by all
of i’s successors, S(i), time τ < 0.5 later. When a pulse
is received, oscillators process this pulse via the phase
response curve fij(φi), where φj → max(0, φj + fij(φj)).
This setup for a PCO can be made to accommodate many
of the different types of PCOs examined in the litera-
ture. For example, the popular Mirrolo and Strogatz
model, which uses a charging curve V , can be described
by fij = V −1(ε+ V (φi))− φi.

The central goal of this paper is to understand Pf (G),
the proportion of phase space that converges to syn-
chrony for a graph G and PRC f . In particular we are
interested STII phase response curves defined similarly
as in [16]:

f(x) =

{
≤ −min(x, τ + κ) : x < B
≥ 0, : x ≥ B

where B ∈ (0, 1) and κ > 0 are parameters. In [16]
it was shown that if every fij is a STII PRC, and at
some time all oscillator phases are within a critical range
ρ0 < min(B−τ, 1−B+τ), then the system will converge
to synchrony in finite time.

To demonstrate the ability of STII oscillators to reach
synchrony on complex graphs with time delays, consider
Figure 1, which shows the maximum differences between
oscillator phases as a system is integrated for different
PRCs and random initial conditions. Notice that not
only are STII curves the only curves that converge, but
for most runs (computational trials), STII curves fall
within the critical range in a single unit of time, despite
the fact that the size of the critical range is exponentially
small in probability space. As will be shown, a large por-
tion of the basin of attraction of synchrony in STII os-
cillators can be described by this rapid convergence to
the critical range. Furthermore, this convergence to the
critical range arises from a fundamentally different mech-
anism, and relies on different properties of the PRC than
the convergence inside the critical range.

To understand this basin analytically, consider first,
the most extreme STII PRC, the “strong firing” (SF)
PRC where fSF (x) = −x for x < B and fSF (x) = 1− x
otherwise. Notice, the response fSF gives to any sig-
nal causes an oscillator to have phase 0, where signals
received after B also cause it to fire. This brief char-
acterization of the SF PRC allows for a quick analytic
description of one way in which the SF PRC converges
rapidly to the critical range.

The key insight is that if every SF oscillator i receives
a signal or fires in a small window of time (denoted as
event Ei for each oscillator i) then every oscillator will be
reset to phase 0; thus all phases will be within the critical
range (note: the first firing in a complete graph always
satisfies this condition, and will always converge). We
will show that the window can be as large as 1−s, where
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FIG. 1. (Color online) Starting from uniform random ini-
tial conditions in a system with 400 nodes, trajectories (mean
– solid line, middle 50% – between dotted lines) either con-
verge to synchrony or not depending on the PRC. Notice that
SF and STII oscillators converge to exact synchrony in finite
time while others from Chaos08 [18], IEEE05 [6], and SIAM90
[4] do not (this remains true in other measures). When the
same systems have heterogeneous frequencies and heteroge-
neous delays synchrony is no longer a solution, but the SF
PRC can approximate it as shown in curve ’SF w/ Het’ (Also
true for STII curves, not shown).

s = max(B, 1 − B + 2τ). Notice, that if every oscillator
receives a signal or fires at some time in [τ, 1 − s + τ ],
then for all i, φi(1 − s + τ) ≤ 1 − s ≤ B − 2τ . Since
only oscillators with phases greater than B can generate
signals, no new signals are being sent. Thus by time τ
later all signals will have arrived at their destinations,
giving that for all i, φi(1−s+2τ) ≤ 1−s+τ ≤ ρ0 which
puts all oscillators in the critical range with no signals
enroute.

Therefore, the probability that the SF system con-
verges can be bounded by the likelihood that every oscil-
lator receives a signal in a window of size 1 − s time,
P (∩ni Ei), which can then be bounded by using node
degrees, di. If at time 0, φj(0) ∈ [s, 1] then all the
successors of j will necessarily receive a signal in time
[τ, 1− s+ τ ] (since s ≥ B, j is in the excitatory regime)
and if φj(0) ∈ [s−τ, 1−τ ] then j must fire in [τ, 1−s+τ ].
(Note: that this is now very similar to the probability
that a random subset of the graph will dominate it, con-
necting it to some sensor net protocols used to find a
Connected Dominating Set [19, 20] and the study of dom-
inating sets in general [21]). Thus, for uniform random
initial conditions a simple bound on the probability of
any oscillator i receiving a signal or firing in [τ, 1−s+τ ],
is simply the complement of all i’s predecessors having
phases in [0, s) and φi ∈ [0, s − τ ] ∪ [1 − τ, 1]; yielding
P (Ei) ≥ 1− sdi+1.

Notice, that the probability of a node i failing to re-
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ceive a signal in the 1 − s time window is exponen-
tially small in that node’s indegree. These probabilities
can be aggregated using the Union Bound, giving that:
P (∪ni Eci ) ≤ Σni s

di+1 and thus P (∩ni Ei) ≥ 1 − Σni s
di+1.

Alternatively, a slightly stronger bound can be found us-
ing the fact that each Ei is positively correlated, or that
the number of nodes dominated is a submodular function
of node subsets, giving the probability of convergence,

PSF (G) ≥ P (∩ni Ei) ≥ Πn
i (1− sdi+1). (1)

Thus the deterministic bound from [16] has been used
to create a statement about convergence from random
initial conditions for a system of any size n.

This result immediately gives a number of interesting
corollaries. For example, let δn(p) be the minimum inde-
gree such that the PSF (G) > p then solving (1) for node
degrees leads to: δn(p) ≤ ln(1− p)/ ln(s)− ln(n)/ ln(s),
which is logarithmic in the system size. To give a sense
of the constants, the minimum value for s occurs when
B = s = .5 + τ , and thus to ensure a 95% convergence
rate in a systems with a time delay 5% of the period:
δn(0.95) ≤ 5.02 + 1.68 ln(n); a result that holds for any
n.

This result can also be used to make statements about
the convergence of SF oscillators on random graphs. Take
an Erdős-Rényi random graph, G(n, p̂), where edges are
created with independent probability p̂. In this case
an application of Chernoff’s inequality shows that if

p̂ ≥ ln(n)
n g(s, γ) for a function g of s and γ << 1 then

as n → ∞, the probability of synchrony PSF (G) →
(1 − 1/n)e1/n1−γ → 1. Notice, that this requirement
on p̂ is only a constant multiple of that required for
G(n, p̂) to be connected, which asymptotically, occurs
when p̂ ≥ (1+ε) lnn

n . Thus, the degree requirements grow
reasonably with n, and furthermore, since convergence
requires connectedness, our rigorous bound is a constant
factor approximation of the actual required degree.

Similarly, one can show asymptotic bounds on random
geometric graphs, constructed by positioning nodes uni-
formly at random on the unit d̄ dimensional torus and
connecting any nodes within some radius r. If r is cho-
sen so that the expected degree rd̄nθ = c ln(n), (where θ
is the volume of a d̄ dimensional unit ball) then utilizing
results describing the minimum degree in random geo-
metric graphs, [22] shows that the system will converge
to synchrony as n → ∞ so long as c is the greater of
the solutions to: 1

c = 1 + 2
c ln s −

2
c ln s ln( −2

c ln s ). Again,
a constant factor of logarithmic growth in the expected
degree gives probabilistic convergence guarantees.

As with the two previous examples, (1) can be used
as tool to turn degree bounds into PCO convergence
bounds. In particular, any bound on the minimum de-
gree of a network (finite or infinite) can be turned into a
bound on the probability of PCO’s with random initial
conditions converging on that network.
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FIG. 2. (Color online) Probability of convergence for a 400
node random geometric graph as a function of radius for SF
(red/thick), STII4,0 (blue) and a STII7,0 (black/thin) PCOs.
Numerical results (solid) suggest that all three oscillators sys-
tems transition to synchrony at the same value of r. Dotted
lines show an analytic lower bound and dashed lines show the
numerical single time step bound.

For situations where precise estimates of PSF (G) are
important one can use a computational analytic approach
by running multiple single time step Monte Carlo trials
and checking if the phases fall within the critical range.
In a graph with m edges such a routine can be imple-
mented by an event based simulation, and thus can run
in O(m logm) time. Whereas typically integration time
scales with system size, our analytic bound shows that
this computational analytic routine remains viable as the
system size increases. Such numerical routines have thus
far shown that while convergence is particularly impeded
by low degree structures such as rings or stars, random
networks converge better than our worst case analytic
bound.

We now consider more general PRCs, showing that
many STII PRCs will also have δn(p) = O(log(n)) and
thus will also have corresponding probabilistic guaran-
tees for random graph models and rigorous computa-
tional routines. The key feature of the SF PRC was that
a single signal causes an oscillator to reset or fire. The
arguments made for an SF oscillator can be modified to
allow for oscillators that require multiple signals to reset
or fire. Consider the sub class STIIk,η which, as op-
posed to requiring 1 signal, will require receiving at least
k signals within 1− s− η time to reset or fire.

For independent initial conditions, P (φi(0) ∈ [0, s +
η)) = qi, one can use similar methods as before com-
bined with Hoeffding’s inequality to bound the proba-
bility of the system synchronizing Pfk,η (G) ≥ Πn

i=1(1 −
exp(−(qidi − k − 1)2)/(2qidi))).

Alternatively, let cn = ln(n)−ln(1−p), then the system
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FIG. 3. (Color online) Placing a sawtooth function under-
neath the excitatory portion of an STII PRC provides an
upper bound on the number of excitations that will cause the
oscillator to fire. A curve’s inhibition is measured in propor-
tion to B.

will converge with at least probability p if for all i, the
expected number of firing neighbors, diqi ≥ k− 1 + cn +√
c2n + 4(k − 1)cn. Since, for fixed k this result also scales

O(ln(n)) then the random graph results in the SF case

have analogous results of the same order: p̂ = O( ln(n)
n )

for Erdős-Rényi and r = O( ln(n)

n1/d̄ ) for random geometric
graphs.

Determining if a phase response curve is a member of
STIIk,η involves two steps: first, classifying the strength
of the inhibitory section, and second, the strength of the
excitation. We say that an oscillator i is h-inhibitory
if receiving h signals in the inhibitory region over some
span of time [t0, t0 +s′], s′ = 1−s−η forces φi(t0 +s′) <
s′. Similarly, an oscillator i is (k − h + 1)-excitatory if
receiving k − h + 1 signals in the excitatory region, in
some time [t0, t0 + s′], forces an oscillator to fire before
t0 + s′ + η. As seen in figure 3, a sufficient condition for
(k− h+ 1)-excitability is that the PRC is greater than a
saw tooth with slope −1 when x ∈ [B, 1− η].

If an oscillator is both h-inhibitory and (k − h + 1)-
excitatory then it is a member of STIIk,η. These results
can also be used to prove a bound for the performance
of a similar rigorous computational routine. The per-
formance of a STII7,0 and a STII4,0 as well as their
probabilistic guarantees can be seen in figure 2.

Finally, it is worth noting that in many systems, such
as systems of neurons, edges are often weighted and the
impact that different neighbors have varies drastically
[5]. The results in this paper also extend to a weighted
version, where each edge has weight wij and weights are

interpreted by the formula: f̂ij(x) = max(−wij , fij) for
x < B and fij(x) = min(wij , fij) for x > B, where wij
acts as a constraint of the phase response curve. The
above formula for the Pf (G) remains true so long as for
each i,

∑
j wj,i ≥ τ and for each node i there are di nodes

j such that fij ∈ Fh,k.

In such a case, if k increases as O(ln(n)) or less then
so does δn(p). Furthermore, if k → ∞ then the require-
ments on the phase response curve shrink to simply re-
quiring that f ′(0) = −1, and f(x) < 0 for x < B and
f(x) > 0 for x > B and that f is continuous everywhere

except B where limx→B− < −ε and limx→B+ > ε. Thus
for very large systems our results show convergence for a
very general class of type II oscillators. However, when
comparing to results for “weakly coupled oscillators” one
should recall the slightly different requirement, that in
those cases,

∑
i wij = ε and the weights are multiplica-

tive: fij(φ) = wijf(φ).

In summary, we have shown how the local convergence
of STII pulse coupled oscillators to synchrony can be ex-
tended probabilistically, relating graph density and phase
response curve structure to a rigorous lower bound on the
probability of convergence. Applying this lower bound
to random graph models shows that the expected node
degree beyond which synchronization is very likely is a
constant multiple of the percolation threshold. There-
fore a computational scheme that merely samples after
the first 1 + τ time is a constant factor approximation to
a sampling routine that integrated for infinite time. An
extension with edge weights was also discussed.
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