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University of California Los Angeles, Los Angeles, CA, 90024

We explore mode-locking of spontaneous oscillations of saccular hair cell bundles to periodic
mechanical deflections. A simple dynamic systems framework is presented that captures the main
features of the experimentally observed behavior in the form of an Arnold Tongue. We propose
that the phase-locking transition can proceed via different bifurcations. At low stimulus amplitudes
F , the transition to mode-locking as a function of the stimulus frequency ω has the character of
a saddle-node bifurcation on an invariant circle. At higher stimulus amplitudes, the mode-locking
transition has the character of a supercritical Andronov-Hopf bifurcation.

PACS numbers: 87.19.lt, 05.45.-a, 43.64.-q, 43.25.Ts

INTRODUCTION

Auditory organs of the inner ear provide exquisitely
sensitive detection of sound [1]. The human cochlea, for
example, can detect over six orders of magnitude in sound
intensity, with a frequency selectivity that can be as high
as ∆ω/ω ≃ 0.2% [2]. In the 1940s, Gold [3] pointed out
that hearing must involve active non-linear amplification
to overcome viscous damping by the fluid environment
within the cochlea. Numerous experimental studies have
since verified that active amplification mechanisms re-
side in hair cells [4–7], mechano-sensory cells embedded
in the supporting tissue, and also that nonlinearity is
crucial to the acuity of hearing [8]. Mechanical detection
by a hair cell is performed via an array of stereocilia
protruding from its surface that contain mechanically
sensitive ion channels. Motor proteins are believed to
maintain tension in the tip links that interconnect these
stereocilia [4, 5]. When the tension exceeds a threshold
value, mechano-sensitive ion channels open, allowing an
inflow of ionic current, a small fraction of which is carried
by Ca2+. Entry of calcium ions into the cell causes the
motor proteins to slip, releasing the tension and allowing
the channels to close and the process to repeat. In non-
mammalian systems, active motility by the stereociliary
bundle has been proposed to provide amplification of in-
coming signals. In the mammalian cochlea, with higher
frequencies represented, somatic electromotility has also
shown to be crucial to the active amplification [6, 7].

Studies performed in vitro on the mechanical proper-
ties of individual hair cells obtained from the bullfrog
sacculus showed that stereociliary bundles exhibit spon-
taneous oscillations [9–11] with amplitudes of 20-100 nm
and frequencies in the 10-80 Hz range. These innate
movements significantly exceed thermal fluctuations and
have been shown to require an energy-consuming ampli-
fication process [9]. They frequently occur in irregular
bursts, with oscillatory behavior interspersed with quies-
cent intervals.

The role of spontaneous bundle oscillation in auditory
detection is uncertain since it is not known if they oc-
cur under in vivo conditions, or at higher frequencies.
Hearing organs have been shown to produce spontaneous

otoacoustic emissions [12], which may indicate that spon-
taneous oscillations do arise in vivo. Current theories of
frequency-selective hearing assume that hair cells self-
tune to the onset point of the spontaneous oscillations,
since at that point hair cells should exhibit pronounced,
frequency-selective sensitivity to mechanical stimulation
[13–19].

Nonlinear biological oscillators, including neuronal,
cardiac, and circadian pacemaker circuits are known to
respond sensitively to external signals through phase-
locking, also known as entrainment [20, 21]. Phase-
locking of hair bundles to periodic mechanical pertur-
bations has likewise been reported in the literature [9].
This raises the possibility that hair cells performing large-
amplitude spontaneous oscillations might be able to de-
tect weak, periodic signals by phase-locking. In this pa-
per we explore the phase-locking of spontaneously oscil-
lating hair bundles subjected to external stimuli over the
full physiological range of frequencies and amplitudes.
We demonstrate that the amplitude of the phase-locked
component of the spontaneous oscillations exhibits a nar-
row, frequency-selective response, which broadens with
increasing drive amplitude. By comparison between our
experimental results with an analysis of the driven Nor-
mal Form Equation, we relate stereociliary bundle phase-
locking to the well-known Arnold Tongue of the theory
of dynamical systems [20]. For lower drive amplitude,
phase-locking proceeds via an infinite-period bifurcation
and at higher amplitudes via a super-critical Hopf bifur-
cation [22].

MODE-LOCKING OF STEREOCILIARY

BUNDLES

We imaged bundle movement in an optical microscope,
recording images at 1000 frames per second [23]. We used
a customized pipette puller to fabricate elastic glass fibers
of ∼0.5-1 µm tip diameter. The probe was mounted on
a piezoelectric stimulator and attached to a stereociliary
bundle (see the left part of Figure 1). Lateral sinusoidal
displacements were applied to the stereocilia, mimick-
ing the mechanical stimulation evoked by sound in vivo.
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The applied frequency (ω) was varied in 1 Hz increments,
spanning the range of 5-50 Hz, with 10 cycles sent at each
frequency. The full sweep was applied at stimulus ampli-
tudes from 4-120 nm. A 10 nm probe displacement corre-
sponds to, approximately, a 1 pN force on the bundle. A
set of traces showing the response of a hair bundle to an
evenly spaced subset of the complete 2D scan is provided
in the Supplementary Material [24].

Figure 1 illustrates the entrainment dynamics of the
hair bundle at a low amplitude of stimulation. The bot-
tom trace shows the innate dynamics of free stereociliary
bundles. The oscillations are highly anharmonic, noisy,
and occur in bursts. The middle trace shows the sponta-
neous oscillations with a probe attached to the tip of the
bundle, but with no applied force. Bursting is largely
suppressed, and the spontaneous oscillations are more
regular. The top trace shows the oscillations in the pres-
ence of a weak stimulus of increasing frequency applied
to the base of the probe. Decades of drive cycles are indi-
cated by vertical dashed lines. Complete mode-locking is
observed over an interval of three decades. In this inter-
val, the frequency is in the vicinity of the characteristic
frequency of the cell (between 20 and 25 Hz). This re-
gion is flanked by intervals where the number of bundle
cycles is either 11 or 9. The loss or gain of the 2π phase
difference happens regularly, over one to several cycles.
These “phase-slip” events are indicated in the figure by
arrows. The rate of phase-slip production increases with
distance between the stimulus frequency and the charac-
teristic frequency of the cell. Note that the system does
not appear to exhibit resonance: the amplitudes of oscil-
lation are the same inside and outside of the mode-locked
region. Due to the production of phase slips, however, the
phase-locked component of the large-amplitude sponta-
neous oscillation decreases away from the characteristic
frequency, with modest frequency resolution.

To quantify this mode-locking, we plotted the phase-
locked component of the response across the physiological
range of frequencies and amplitudes (see Figure 2). At
low amplitudes of stimulation, the system exhibits mode-
locking around its characteristic frequency, as discussed
above. The phase-locked frequency interval of Fig.1 in-
creases with stimulus amplitude. In the vicinity of the
characteristic frequency, the phase-locked amplitude rises
quite steeply as a function of the applied force, past some
threshold. Away from the natural frequency, the rise in
the phase-locked amplitude with the drive becomes in-
creasingly gradual.

Figure 3 shows that as the force amplitude is increased,
the nature of the mode locking process changes qualita-
tively. At drive frequencies below the characteristic fre-
quency, the oscillation pattern shows variation from cycle
to cycle. The top trace displays the bundle’s oscillation
entrained near the low-frequency boundary of the mode-
locking interval, from 5-8 Hz. In the frequency intervals
on the left, extra spike-like excursions can be seen, an
example of which is indicated by an arrow, that does
not amount to a phase slip. In this region, a complex

and incommensurate secondary spike pattern develops,
superimposed on a carrier wave that follows the drive.
As one approaches the characteristic frequency, this sec-
ondary pattern is diminished (full traces are shown in
Supplementary Material [24]). The bottom trace shows
the mode-locking of spontaneous oscillations to the stim-
ulus. The anharmonic oscillation pattern is repeated
rather precisely from cycle to cycle.

BIFURCATION DIAGRAM

The triangular shape of the 1:1 mode-locking plot in
Fig.2 is a characteristic feature observed in a variety of
non-linear dynamical systems, and is known as an Arnold

Tongue [25]. The simplest description of bundle motion
based on dynamical systems theory is the “Normal Form
Equation” (NFE) for the supercritical Andronov-Hopf bi-
furcation. It has been extensively used to model the dy-
namics of hair bundle response at the critical point, corre-
sponding to the onset of spontaneous oscillation [14, 15].
Here, we examine whether the NFE captures the mode-
locking dynamics of hair bundle oscillations by an exter-
nal drive, away from the critical point.
The NFE for an Andronov-Hopf bifurcation in the

presence of an external stimulus is defined as:

ż = (µ+ iω0)z − |z|2z + Feiωt (1)

where z is the generalized complex displacement variable,
ω0 the natural frequency, µ the control parameter, F the
stimulus amplitude, and ω the stimulus frequency. We
will briefly summarize the different mode-locking bifur-
cations that are encountered.
We look for solutions of the form z = r(t)eiωt+iφ(t),

with r(t) denoting the amplitude and φ(t) the phase dif-
ference between drive and displacement. Mode-locking
corresponds to the case when both are time-independent.
Substituting into Eq.1 leads to two coupled first order
differential equations:

ṙ = r(µ− r2) + F cosφ (2)

φ̇ = −(ω − ω0)−
F

r
sinφ. (3)

At zero forcing( F = 0) and for positive µ, the solution
yields harmonic oscillation with amplitude r = µ1/2 and
with a constant rate of change of the phase φ̇ = −(ω−ω0),
with oscillation frequency ω0. For weak external drives,
with stimulus amplitude F small compared to µ3/2, re-
taining r ≈ µ1/2 yields a good approximation. The re-
maining equation for the phase

φ̇ = (ω0 − ω)− (F/µ1/2) sinφ (4)

is familiar both from the driven pendulum and the the-
ory of Josephson Junctions [22, 26]. If the dimensionless
stimulus amplitude F/µ1/2 exceeds the detuning param-
eter |ω − ω0|, then the phase equation admits a static
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Mode-Locking – Phase Slips+ Phase Slips

FIG. 1: (Color) Left panel: Bottom image: scanning electron microscope image of a stereociliary bundle, in a top-down view.
Top image: optical image of a glass fiber attached to the row of tallest stereocilia. The space bars in both images denote 1 µm.
Right panel: Mode-locking at a drive amplitude of 20 nm. Bottom trace: spontaneous oscillations of a free stereociliary bundle.
Middle trace: spontaneous oscillations of a stereociliary bundle with an elastic glass probe attached to its tip with a stiffness
of 100 µN/m with no imposed deflection. Top trace: sinusoidal deflections are imposed on the bundle with a 20 nm amplitude
and with increasing frequency from 17 to 23 Hz (red trace). The displacement of the base of the probe is shown overlaid in
black, which has been arbitrarily scaled for visibility. Frequency increases by 1 Hz every ten cycles. Decades of drive cycles
are indicated by vertical dashed lines. Events of phase slip between bundle and probe are indicated by arrows. The magnified
portion shows a “phase-slip” event.
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FIG. 2: (Color) Phase-locked component of the response (in
nm) of a stereociliary bundle subject to sinusoidal deflection,
over a range of drive frequencies (5-50 Hz in 1 Hz increments).
Each stimulus frequency is presented for ten periods. The
corresponding bundle motion trace is split into ten segments
and then averaged. A single sine wave of fixed frequency is
fit to the averaged response and its amplitude is extracted to
obtain the phase-locked component. Linear interpolation was
applied along the stimulus amplitude direction. Stimulus was
applied at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 60, 80, 100 and
120 nm (amplitudes refer to the base of the probe).

solution:

sinφ = (ω0 − ω)/(F/µ1/2) (5)

which corresponds to mode-locking. If F/µ1/2 is less than
|ω − ω0|, there is no static solution. The phase angle
remains most of the time near π/2, but periodically, the
phase sweeps rapidly over 2π. The time-averaged rate of
change of the phase

< φ̇ >= [(ω0 − ω)2 − (F 2/µ)]1/2 (6)

can be viewed as the production rate of 2π phase-slips.

The phase-slip production rate goes to zero when the de-
tuning parameter |ω − ω0| equals F/µ1/2 at the onset
of mode-locking. This form of mode locking is known
either as an “infinite-period bifurcation”, since the pe-
riod of precession diverges at the critical point, or as
a Saddle-Node on an Invariant Circle (“SNIC”) bifur-
cation, because two fixed points, a saddle and a node,
coalesce and annihilate on a limit-cycle [22].
To analyze mode-locking at higher levels of the stimu-

lus amplitude, one must locate all the fixed points of the
system. Define

g(r, φ) = r(µ− r2) + F cosφ (7)

and

h(r, φ) = −(ω − ω0)−
F

r
sinφ. (8)

Fixed points are determined by the conditions g(r∗, φ∗) =
h(r∗, φ∗) = 0. These two conditions combine to yield a
cubic equation for r∗2 that has either three real roots,
with at least one of them a saddle point, or one real root
and two complex conjugate roots. Mode-locking corre-
sponds to a stable fixed point, hence the real root of the
equation. The stability of the fixed points is determined
by the Jacobian matrix:

A =

(

∂g
∂r

∂g
∂φ

∂h
∂r

∂h
∂φ

)

(r∗,φ∗)

(9)

The nature of the bifurcation depends on the eigenval-
ues of this matrix. For a mode-locking transition occur-
ring via a SNIC bifurcation, Det[A] must change sign
at the critical point. If, on the other hand, the tran-
sition occurs via a supercritical Andronov-Hopf bifurca-
tion, then Tr[A] must change sign at the critical point,
while Det[A] remains positive. It should be noted that
these are necessary but not sufficient conditions for SNIC
and Andronov-Hopf bifurcations; we follow conventions
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FIG. 3: (Color) Mode-locking at a drive amplitude of 120 nm. The drive frequency of the top trace is near the low-frequency
boundary of the mode-locking interval (from 5 to 8 Hz). The arrow indicates a spike-like event. The bottom trace displays the
progression of the mode-locking, with a reduction of the secondary pattern. The scale bar to the left indicates excursion of the
hair bundle; the overlaid stimulus trace (black) has been arbitrarily scaled for visibility.
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FIG. 4: (Color) Phase-locked amplitude as computed from

Eq.1, using scaled variables F/µ3/2 and ω/µ. The black lines
indicate Saddle Node on an Invariant Circle (“SNIC”) bifurca-
tions and the yellow lines Andronov-Hopf bifurcations. They
meet at a Bogdanov-Takens (BT) bifurcation. The intersec-
tion of the phase-locked region with the horizontal axis at the
tip of the triangle is ω0/µ. Tr[A]=0 along the yellow dashed
line, and Det[A]=0 along the black dashed line. These ad-
ditional bifurcations are not detected experimentally as the
system remains mode-locked in both regions I an II.

established for the forced Kuramoto model [27]. Figure
4 shows the locus of the SNIC bifurcations in the (F -ω)
plane as a black border and that of the Andronov-Hopf
bifurcations as a yellow border, both computed in the
above manner. The computed amplitude of the phase-
locked component, in response to sinusoidal forcing, is
displayed in a color-coded manner.

The enclosed region marked I contains three fixed
points: a stable node and a saddle point occurring on
an invariant circle, as well as an unstable fixed point.
The stable node corresponds to mode-locking. The sta-
ble node merges with the saddle point along the SNIC
border. The region marked II contains only a single real
fixed point, a stable node. Region III encloses an unsta-
ble fixed point at the center of a limit cycle.

Figure 4 is a simplified bifurcation diagram of the
driven Normal Form Equation. The full bifurcation di-

agram is more complex. It contains additional bifurca-
tions, such as the co-dimension 2 Bogdanov-Takens bi-
furcation that separates the SNIC and supercritical Hopf
bifurcations and a line of so-called “crisis” bifurcations.

NUMERICAL FITS

We now compare the results of this analysis to the
experimentally measured phase-locked response. The
dimensionless theoretical mode-locked amplitude was
scaled to match the data, and the characteristic fre-
quency was chosen to correspond to that of the hair cell
in Fig. 2. The Bogdanov-Takens points were selected
to match the points of inflection seen in the experimen-
tal plot (F = 40 nm, f = 12 Hz, and f0 = 21 Hz).
Apart from this scaling, the only fitting parameter used
was the control parameter µ. The specific choice of the
Bogdanov-Takens point is rendered somewhat ambigu-
ous by the noise inherent in a biological system. We
tested the sensitivity of the fits to the specific choice of
the Bogdanov-Takens point, as the noise inherent in a bi-
ological system broadens the inflection region. The qual-
ity of the fits was not substantively affected by small
variation in the location of this multi-critical point (see
Supplementary Material [24]).
In Fig. 5, we compare the measured (blue dots) and

computed (red lines) responses at selected slices in the
horizontal direction, corresponding to frequency sweeps
at specific stimulus amplitudes. The best choice for the
ratio of ω0 and µ was found to be 1.3, which produced the
optimal fit over the whole phase space. This method thus
provides us with a route to estimate the control parame-
ter µ for hair cells. At low stimulus levels (bottom panel),
the phase-locked amplitude has a well-defined maximum
around the natural frequency. This resembles a reso-
nant response, but it should be recalled that the plot
displays only the component mode-locked to the stimu-
lus frequency. The degree of broadening of the frequency
selectivity under increasing amplitude of stimulation is
well reproduced by the simulation.
Figure 6 compares the experimental and theoretical

phase-locked response along vertical slices, correspond-
ing to stimuli of increasing amplitudes at fixed selected
frequencies. The ratio of ω0 and µ was kept the same as
in Fig. 5. The slope of the curves shown in the panels can
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FIG. 5: (Color) Data and numerical fits to slices through the
Arnold Tongue, taken along the horizontal axis. The data are
indicated with blue dots, and the red lines show the numer-
ical fits. The Bogdanov-Takens boundary point was selected
to correspond to the point of inflection seen in the experi-
mental plot, and the characteristic frequency ω0 to match the
peak in the response (Fbt = 40 nm and fbt = 12 Hz, with
characteristic frequency f0 = 21 Hz). The scaling factor µ for
the overall response was varied to optimize the fits; no ad-
ditional free parameters were introduced. (Fscale = 24.09 =

Fbt/(0.53µ
3/2), fscale = 7.52 = (f0 − fbt)/(0.56µ), µ = 2.14

ω0/µ = f0/fscale/µ = 1.3) Note: We fixed the intersection
between the two curves, trace = 0 and det = 0, to be at
the above points. This falls in the close vicinity rather than
exactly at the Bogdanov-Takens point [27]. As these are indis-
tinguishable experimentally, we refer to this as the BT point
for conciseness.
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FIG. 6: (Color) Data and numerical fits to slices through
the Arnold Tongue, taken along the vertical axis. The data
were binned into 5 Hz intervals, with blue dots (indicating
the average of five neighboring frequencies), and the error
bars showing the standard deviation of the phase-locked am-
plitude. The red lines show the numerical fits. (Scaling an
fitting parameters are the same as for figure 5.)

be viewed as a measure of the susceptibility of the system
to mechanical perturbation. Slices that correspond to
transitions through the supercritical Andronov-Hopf bi-
furcation (a, g, and h in the Figure) show a more gradual
increase in the mode-locked amplitude than those that
transition through a SNIC bifurcation (c, d, e), which

exhibit a sudden onset of phase-locking. The traces b
and f pass through the vicinity of the Bogdanov-Takens
point, and hence show intermediate characteristics.
We note that some features apparent in the data are

not fully reproduced by the model: the computed curve
overestimates the phase-locked amplitude at low frequen-
cies and the sharpness of the onset of mode-locking. Fur-
ther, the exact oscillation profiles are not reproduced by
the numerical simulation. Inside a phase-slip, the com-
putational model predicts a decrease in amplitude, that
is not seen in the data. Near the supercritical Hopf bifur-
cation, the measured secondary pattern is considerably
more spiky than the theoretical prediction.

DISCUSSION AND CONCLUSION

The NFE captures the main features of the mode-
locking dynamics of hair bundles poised in the sponta-
neously oscillatory regime. With only one fitting param-
eter, the numerical model yields remarkable agreement
with the measured data, across frequencies and ampli-
tudes that span the physiological range of amphibian sac-
cular hair cells.
We explored the question of how hair bundles that

exhibit large-amplitude spontaneous oscillations detect
weak external signals. The innate oscillations mode-lock,
in a frequency-selective manner, to periodic external de-
flection in the pN range. A general conclusion of this
study is that mode-locking to a low-amplitude external
drive proceeds via a SNIC bifurcation. As the sponta-
neous oscillations phase-lock to the applied signal, phase-
slip events are observed that are reminiscent of similar
events in condensed-matter systems, such as Josephson
Junctions. At the center of a phase-slip event, the ap-
plied signal and the bundle response are out of phase by
π. The out-of-phase condition could lead to an increase
or decrease in the tension of the tip link that connects
the stereocilia and thus rapidly modulate the opening
probability of the mechano-sensitive ion channels.
We note that the NFE is a simplified model equation.

More complex biological phenomena, including myosin-
mediated adaptation and other calcium-dependent mech-
anisms, are not described by this formalism. However, it
does capture the generic features associated with mode-
locking, including the experimentally observed Arnold
Tongue. Other model equations that describe mode-
locking, such as the driven van der Pol oscillator, the
Chirikov Map, the Circle Map, and the forced Kuramoto
model, all have similar mode-locking bifurcation dia-
grams [25].
The parameter µ determines the location of the bun-

dle in the Arnold Tongue phase diagram, and hence con-
trols the dynamics of its mode locking to external signals.
A biological hair cell could have a feedback mechanism
whereby it modulates this internal parameter and thus
self-tunes to the vicinities of different bifurcations. As the
various transitions in the phase-locking diagram display
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different characteristics, the hair bundle could thus ad-
just its susceptibility, frequency selectivity, and/or mode-
locking dynamics.
In summary, we explored both experimentally and the-

oretically the dynamics of mode-locking exhibited by hair
bundles subjected to a periodic stimulus. The mode-
locked region in the (F -ω) plane is well described by
the driven Normal Form Equation, yielding the Arnold
Tongue bifurcation diagram that captures the main fea-
tures of the dynamic response. We found that hair-
bundles performing large-amplitude spontaneous oscilla-
tions are capable of rapidly mode-locking to external sig-
nals, with signatures of different bifurcations apparent at
increasing amplitudes.
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