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Abstract

By applying the Edwards self-consistent field theory, we calculate the polymer density and free

energy excesses caused by the presence of nano-colloids in the excluded volume polymer system.

Using the obtained results, we have calculated the depletion potential U as a function of the

separation between colloids, colloid radius, polymer volume fraction, and polymer gyration radius.

Upon analyzing the obtained results against the known exact asymptotic small-separation limit and

scaling relations, we propose an approximate expression for U that builds upon our exact result.

This expression is shown to give excellent agreement with Monte Carlo simulations. Reliability

of the derived analytical expression for the depletion potential and its relation to the previous

theoretical and simulation work are thoroughly discussed.

PACS numbers: 82.35.Np,82.35.Gh
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I. INTRODUCTION

Two or more colloidal particles immersed in the system of non-adsorbing polymers

change the density structure of this system, thus inducing effective entropic interactions

between the immersed colloids. These polymer mediated (PMF) entropic interactions be-

tween nanoscopic colloidal particles, termed ”depletion forces”, are in the core of many

biologically and technologically relevant phenomena such as red blood cell adhesion,1 DNA

mediated depletion interactions2 and size-exclusion polymer chromatography.3 Despite more

than 50-year history of thorough investigations of PMF, the role of the intra- and inter-

polymer interactions in the formation of the depletion/enhancement polymer layers near

colloidal particles and the influence of the properties of these layers on PMF is rather poorly

understood theoretically. In the first place, this lack of understanding is caused by the

significant technical difficulties in associated theoretical development. Those difficulties be-

come especially pronounced in the case of small colloid radius R-to-polymer gyration radius

RG ratios q−1 ≡ R/RG, generally referred to as the protein limit.4 This limit generally de-

scribes the case encountered in the majority of practically important situations, where the

colloidal particles can easily penetrate polymer coils and simultaneously interact with many

polymers. From the theoretical standpoint, in the described protein limit the polymers can

not be modeled as individual soft particles interacting with colloids, which brings essential

mathematical complications to the theoretical description of PMF. The origin of these com-

plications stems from the many-body nature of the interactions of small ”protein” colloids

with polymer monomers inside polymer coils, which affect the local polymer density corre-

lations inside these coils. The magnitude of the above polymer density correlations, in turn,

is known5,6 to significantly depend on the excluded volume interactions in the polymer sys-

tem. These excluded volume interactions affected, in particular, by the solvent screening,6

can therefore have decisive influence on the magnitude and range of the polymer mediated

forces acting between nano-colloids. The present paper is intended to provide quantitative

analytical understanding of the above described effects of the excluded volume interactions

and polymer-to-colloid size ratio on PMF by developing the exact analytical approach based

on the Edwards self-consistent mean-field theory (SCMFT).

Originally, SCMFT has been widely used6–9 for describing the density structure of the

semi-dilute polymer systems in confinement. By making use of the random mixing model
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for the direct correlation function of polymers,7 SCMFT can be unified7,10 with standard

density functional theory to be successfully used in describing the density structure of dense

polymer systems, such as polymer melts7,11, polymer blends,12 and diblock copolymers.10

The main technical difficulty in developing SCMFT approach lies in the necessity of solving

the Edwards modified diffusion equation5 that contains the polymer density dependent self-

consistent term that renders this equation essentially non-linear. To date, no exact solution

of this equation is known even for the relatively simple case of a single colloid in the presence

of interacting polymers. Few analytical results for the polymer density profiles near colloids,

including the interpolation formula of Fleer et. al.13 and the ’ground state’ solution of

Odijk14 have been obtained by resorting to rather drastic approximations. Though being of

significant practical importance, those approximate results call for more systematic analysis

of the effect of finite chain length and excluded volume interactions on the structure of

the depletion polymer layers formed near colloids. For instance, adopting the long chain

(”ground state”) approximation in Ref.[14] resulted in the conclusion that the excluded

volume interactions have no effect on the nano-colloid immersion energy and structure of

the depletion layer. In contrast, according to the results obtained in the present work, the

excluded volume interactions cause significant corrections to the ”ideal” structure of the

polymer density in the vicinity of a nano-colloid. In the present theory, the significance of

these corrections are quantified by introducing the ”non-ideality” parameter u ≡ Nvρ that

equals to the product of the polymerization degree N , polymer density ρ, and the excluded

volume parameter v. Note that u can be of the order of unity or less even at very large

N ∼ 105, thus rendering the negligence of finite N corrections adopted in the above standard

long chain (”ground state”) approximation to be inadequate in many practically important

cases. Note that the approach developed in the present work makes it possible to avoid

not only resorting to the ground state approximation N >> 1, but also using any other

perturbative parameters apart from q−1 ≡ R/RG.

The described problems in the analytical description of density structure of the polymer

depletion layers formed around nanoparticles carries over to the depletion forces mediated

by these layers. Here we focus on the entropic depletion interactions15 between nano-colloids

mediated by interacting polymers that have been a subject of growing interest and increas-

ing diversity due to their ability to cause phase separation (e.g. colloid flocculation) in the

polymer-colloid mixtures. Despite their importance, the theoretical studies of these interac-
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tions in the protein limit are mainly restricted to the Monte-Carlo simulations,16,17 scaling

analysis18,19 and numerical polymer self-consistent theory.20,21 Although the above methods

give very useful insight into the depletion forces, neither of them has advantages of pure

analytical approach that would make it possible to explicitly elucidate a complicated in-

terplay of the effects of the excluded volume, finite polymer length and polymer-to-colloid

size ratio on the magnitude of these forces. In particular, an important relevant issue of

the effect of solvent quality on the magnitude of the depletion forces acting between nano-

colloids immersed in polymer solution completely falls out of the scope of existing theoretical

work. The only relevant analytic solution obtained22 in the framework of the Polymer Ref-

erence Interaction Site Model (PRISM) describes the effects of non-ideality on the depletion

interactions in terms of the artificially defined polymer correlation length. Clearly, such

parametric description can hardly be applied to describe the important screening effect of

the solvent on the depletion interactions between nano-colloids in polymer solutions. With

all its usefulness and mathematical simplicity, the described PRISM approach is based on

rather drastic approximations such as representing each colloid by a single site and using

”preaveraging assumption”.23 In contrast, the self consistent field theory used in the present

work makes it possible to study polymer density correlations in the presence of colloids

without resorting to the above artificial approximations.

In the present work, we employ SCMFT theory to describe the depletion interactions be-

tween nano-colloids immersed in the semi-dilute polymer solution. We will show that taking

the protein (”small colloid”) limit q = RG/R >> 1 of the SCMFT equations provides seldom

opportunity to obtain analytic solution of these equations without resorting to any addi-

tional (e.g. ”ground state”) approximations. In order to avoid terminological confusions, we

explicitly define the semi-dilute solution as a relatively low monomer concentration solution

with polymer densities ρP equal and higher than the overlap density ρ∗P ≡ 3/(4πR3
G). The

developed approach is therefore appropriate for describing the depletion interactions in the

density regimes ranging from the chain overlap threshold to relatively high polymer den-

sities exceeding the overlap threshold by several times. A smooth crossover between these

two limiting regimes is quantified by the correlation length λ that naturally arises in our

theory. The correlation length λ varies from its threshold value λ = RG at ρP = ρ∗P to

polymerization degree independent strong-overlap value λ = ξ at ρP >> ρ∗P , ξ being the

de Gennes correlation length.6 In addition to the described semi-dilute polymer solution,
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the developed approach can be applied to the excluded volume (”real”) polymer system5

in the absence of solvent. As long as this latter system can provide an adequate model of

polymer melts at not very high densities, our approach can be used for the description of

the depletion interactions in polymer melts. Note that care must be exercised in applying

the developed SCMFT to analyzing PMF mediated by dense polymer melts, since this ap-

proach ignores the short range correlations arising from the hard-core interactions between

monomers that can be important at high polymer densities. We will elaborate on this point

in Sec. II devoted to the thorough description of the main guidelines of SCMFT and used

approximations in relevance to the investigated physical systems.

The main aim of the present work is to develop an exact analytic approach that gives

an explicit account for the above effect of the excluded volume interactions and solvent

quality on the depletion forces, as described by the self-consistent field theory. As an initial

step in achieving this goal, we intend to thoroughly investigate the technical aspects of the

associated thermodynamic problems in Section II. In the next Section III, we calculate the

quantities associated with the immersion of a single nano-colloid into polymer system, such

as polymer density profile around this nano-colloid and its immersion energy. In Section IV

we apply the developed approach to the investigation of the depletion potential for different

solvent conditions. Section V is devoted to the comparative analysis of our analytical findings

against previous results obtained by Monte Carlo (MC) simulations, scaling arguments, and

field-theoretic small radius expansion method. Finally, in Section VI we conclude by giving

a comprehensive description and analysis of the obtained results.

II. IMMERSION ENERGY AND DEPLETION POTENTIAL AS DETERMINED

BY EDWARDS SELF-CONSISTENT MEAN FIELD THEORY

We start by giving mathematical formulation of the self-consistent mean field theory

(SCMFT) as applied to the study of the depletion interaction mediated by real polymers.

The main idea of SCMFT lies in describing the excluded-volume interactions among seg-

ments of the polymer chains by an effective potential V that in turn is self-consistently ex-

pressed through the polymer number density ρ. The relation between the density structure

of polymers and the above self-consistent potential is established by the following Edwards

5



equation5 of the form

∂nQ̂(
−→r , n) = ∇2

−→r Q̂(
−→r , n)− V (ρ)Q̂(−→r , n), (1)

where Q̂(−→r , n) is the coordinate −→r -dependent end density that describes the probability to

find one end of the polymer of the polymerization degree n in the point −→r provided that its

other end is placed elsewhere in the free space Θ not occupied by hard bodies. Hereafter,

all lengths are measured in the polymer segment Kuhn length b divided by
√
6, so that, for

instance, the radius of gyration of polymer reads RG =
√
N , N being the polymerization

degree.

The mean-field potential V that enters Eq.(1) as an external potential serves as a ve-

hicle to describe the excluded volume interactions in specific polymer systems. The self-

consistency of the above mean field theory is achieved through considering the above po-

tential V to be polymer density-dependent. This formally introduced dependence mimics

the realistic property of polymer systems that the strength and range of the excluded vol-

ume interactions depends on the polymer density ρ. Note that along with the conceptual

simplification brought in by using the above mean-field description, comes certain difficulty

in correct defining the thermodynamic functions of the polymer system. In particular, care

must be exercised in establishing the relationship between the free energy of polymers and

the depletion potential mediated by these polymers, since V depends on the thermodynamic

state of the polymer system. We will focus on the mentioned thermodynamic aspect of the

problem after explicitly defining the mean field potential V .

A simplest way to specify the mean-field potential V lies through using the ran-

dom mixing model7 for excluded volume interactions that amounts to replacing the true

polymer-polymer direct correlation function c(−→r ,−→r ′) by the model expression according to

c(−→r ,−→r ′) = vδ(−→r − −→r ′), δ(−→r ) being the Dirac delta function centered at point −→r . This

approximation leads to the following expression6,7 for the mean field potential V

V = β−1vρ, (2)

where β = (kT )−1 is the reciprocal temperature, with k and T being the Boltzmann constant

and the absolute temperature, respectively, v is the excluded volume parameter6 that quan-

tifies the polymer excluded volume interactions, ρ is the coordinate dependent monomer

number density. Note that Eq.(1) with the potential V defined by the equation Eq.(2) can
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be used to describe two different polymer systems. Setting v = b3 in Eq.(2) leads to the

mean field potential that is conventionally used5 for describing the steric monomer excluded

volume effect in polymer melts. Setting v = b3(1 − 2χ) provides6 the extension of this de-

scription of the excluded volume effect to the case of semidilute solutions with the interaction

between polymers and solvent described by the Flory parameter χ. In this formulation, the

case of purely steric interactions between polymers v = b3 comes as the ’athermal’ limit

χ→ 0 of the excluded volume parameter of the semidilute polymer solution.

Note that for practical purposes it is sometimes more convenient to use the mean-field

potential V̂ with the subtracted ’bulk’ part, defined by

Vex = β−1vNρPη, η =
ρ

ρb
− 1, (3)

where ρP is the bulk polymer number density defined as a density of the polymer system

far away from any hard body immersed in this system and ρb ≡ NρP is the corresponding

bulk monomer number density. The reduced potential Vex given by Eq.(3) can be formally

obtained from Eq.(1) with the potential V given by Eq.(2) by substituting the reduced end

density Q = Q̂ exp (vρbn) into this equation, Eq.(1). It is straightforward to show that this

substitution does not change the form of Eq.(1), apart from the fact that the potential V

occurs to be replaced by Vex.

The monomer number density ρ that enters the formula for the self-consistent field V

given by Eq.(2) can be expressed5 through the end density Q, to be written in the form

ρ(−→r ) = ρP

∫ N

0

Q(−→r , n)Q(−→r ,N − n)dn. (4)

Substituting the above expression for ρ into Eq.(2) turns Edwards equation in Eq.(1) into the

closed integro-differential equation with respect to the end-density Q. Solving this equation

for Q provides a direct route to calculating the polymer number density by the formula

given by Eq.(4). The thus obtained expression for the polymer density can in turn be used

for calculating the polymer-mediated potential as is described in what follows.

In order to relate the polymer number density to the immersion (solvation) energy W of

a single colloid and the depletion potential U acting between two colloids one must correctly

define the free energy of the polymer system in the presence of colloids. One proven way to

do so, is to first determine the free energy of an ideal system and then include the non-ideal

correction derived from the above described random mixing model. The free energy Fid of
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an ideal polymer system can be derived exactly, without resorting to any approximations.

To simplify this derivation, it is instructive to employ the grand potential Ωid of an ideal

polymer system, which is conventionally defined by the negative of the logarithm of the

grand partition function Ξ. The essential simplification coming from the ideality of the

polymer system is that Ξ can be straightforwardly expressed through the partition function

of a single polymer chain Z, to be written in the form Ξ = exp (Z). In turn, Z equals7 to the

integral of the density of the ideal polymer system over the volume Θ available to polymers

divided by the polymerization degree N , which immediately leads to βΩid = −N−1
∫
Θ
ρd3r.

The free energy Fid can be found by applying the standard Legendre transformation that

amounts to the formula

Fid = Ωid +

∫

Θ

ρ(µ− β−1V )d3r, (5)

where µ is the polymer chemical potential (per monomer) and the potential V is defined by

Eq.(2). It is important to note that V in Eq.(5) plays a role of the auxiliary external potential

that does not represent any real external field. According to the guidelines of SCMFT, this

potential, considered as an external one in Eq.(5), is to be adjusted to maximize the total

grand potential of the polymer system. This adjustment leads7 to the expression for V given

by Eq.(2). However, the thus obtained potential V represents only the part of the excluded

volume effect. An additional non-ideal contribution to the polymer free energy comes from

the direct interactions between the monomers described in what follows.

Using the standard definition5 of the the direct correlation function c of the monomer-

monomer interactions, the non-ideal correction Fint to the ideal free energy Fid can be

conventionally expressed as

Fint = 2−1

∫

Θ

d3r′
∫

Θ

c(−→r ,−→r ′)ρ(−→r )ρ(−→r ′)d3r.

Applying the above described random mixing approximation c = vδ(−→r −−→r ′) and using the

explicit expression for the mean-field potential V given by Eq.(2) takes the expression for

the total free energy F = Fid + Fex to the form

F = (µ− (βN)−1)

∫

Θ

ρ(−→r )d3r − (2β)−1v

∫

Θ

ρ(−→r )2d3r. (6)

Note that in Eq.(6), the effect of the monomer excluded volume interactions is expressed

through the only parameter v. This final expression for the free energy does not contain any

external field term initially introduced in Eq.(4) for an auxiliary purpose of describing the
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mean field representing the excluded volume interactions. It is important to note that in the

case of uniform polymer system, Eq.(6) reduces to the well-known24 mean field expression

for the polymer free energy of the form βF = Θ(N−1 logN−1ρb + 2−1vρ2b), with βµb =

N−1 log (N−1ρb) + vρb being the per-monomer chemical potential of the uniform polymer

system with density ρb.

The above expression for the free energy can be used to derive all the thermodynamic

functions of the polymer system in the presence of colloids, with the effect of the excluded

volume interactions taken into account. In the reminder of this section, we will focus on the

derivation of the immersion energyW of a single colloid and the polymer mediated depletion

potential U acting between two colloids. The immersion energy W (at infinite dilution) is

defined as the work needed to reversibly bring a colloid from the infinity to its actual

position in the polymer system, while maintaining constant chemical potential. Similarly,

the potential of the depletion interaction U(H) acting between two colloids mediated by

polymers that are maintained in thermodynamic equilibrium is defined as the work needed

to reversibly bring these bodies from infinite separation to a separation distance H . In the

above both cases, this work can be evaluated as an excess grand potential ∆Ω caused by

the presence of colloids in polymer system. The grand potential Ω of the polymer system

can be straightforwardly derived from the expression for the free energy given by Eq.(6)

by applying standard Legendre transformation. In the absence of an external field, the

appropriate Legendre formula reads

Ω = F − µ

∫

Θ

ρ(−→r )d3r, (7)

which immediately leads to the following expression for Ω

Ω = −(βN)−1

∫

Θ

ρ(−→r )d3r − (2β)−1v

∫

Θ

ρ(−→r )2d3r. (8)

Note that for homogeneous polymer system, the grand potential Ω given by Eq.(8) reduces

to the negative of the osmotic pressure Pb = N−1ρb + 2−1vρ2b multiplied by the volume Θ

available to polymers, as should be expected. The excess grand potential (relative to the

bulk system) is thus determined by the formula

∆Ω = Ω + PbΘ = −(βN−1)

∫

Θ

(ρ(−→r )− ρb)d
3r − (2β)−1v

∫

Θ

(ρ(−→r )2 − ρ2b)d
3r. (9)

According to the definitions of the immersion energy W and the depletion potential U

given right above Eq.(7), the obtained excess grand potential ∆Ω given by Eq.(9) can be
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directly identified with W and −U in the corresponding cases. For further references, it is

therefore instructive to give a simplified form of the expression in Eq.(9) for the case when

the polymer density only slightly deviates from the bulk density ρb. Up to the leading order

in the difference ρ− ρb, this expression reads

β∆Ω = −(1 + u)ρbN
−1

∫

Θ

η(−→r )d3r, (10)

where we have introduced the important parameter of non-ideality u = vNρb that describes

the combined effect of the excluded volume interactions and finite polymer length (degree of

polymerization). Eq.(10) expresses the excess grand potential through the reduced density

η defined in Eq.(2). In order to obtain η one has to solve Edwards equation in Eq.(1) for the

end density Q for given locations of the colloids in polymer system and then use the thus

obtained Q in the definition of ρ given by Eq.(4). Solving Edwards equation in the presence

of boundary conditions imposed by hard colloids is therefore a main stage of calculating the

colloid immersion energy and depletion potential. This calculation will be described in the

next two sections for the cases of one and two colloids immersed in the polymer system,

respectively.

III. IMMERSION FREE ENERGY AND POLYMER DENSITY PROFILE

AROUND A SINGLE NANO-PARTICLE

As has been mentioned in the previous section, the excess density η given by Eq.(4) is

the key quantity that determines the excess grand potential caused by the presence of a

particle. η can in turn be expressed through the end density Q, which can be obtained

as the solution of the Edwards equation given by Eq.(1) in the presence of the boundary

condition that describes the interaction of polymers with the particle surface. For the case

of purely entropic interaction between the particle and polymers, this condition reduces5

to the standard Dirichlet boundary condition that amounts to the condition that the end

density Q must be zero at any point of contact of the polymers with the particle surface.

As a first step of calculating the end density, we will solve the Edwards equation given

by Eq.(1) in the leading order in the particle radius R. By imposing the standard initial

condition5 Q(−→r , 0) = 1 that describes the equiprobable distribution of the free polymer ends

in the space not occupied by the particles, one can write the spherically symmetric solution
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of the Edwards equation in the form

Q = 1− Rψ(x, n)

r
, (11)

where r is the radial variable in the reference frame with the origin placed in the center of

the particle and x = r − R is the distance from the particle surface. The first term in the

right hand side (r.h.s.) of Eq.(11) gives the end density of the polymers in the bulk, and

the second term corrects for the presence of the particle. The structure of this second term

results from the property of the Laplacian ∇2 in the spherical coordinate system that can

be expressed as ∇2(ψ(r)/r) = (∂2rψ(r))/r.

In the absence of the excluded volume interactions (v = 0) the function ψ reduces to the

well known25,26 expression of the form

ψ(n, x) = erfc(x/(2
√
n)) (12)

that is exact for any R.

Substituting the expression for the end density given by Eq.(11) and linearizing with

respect to R results in the following equation for the function ψ(n, x)

(∂n − ∂2x)ψ = −2uf(x), (13)

where the function f is given by the expression

f(x) = N−1

N∫

0

ψ(n, x)dn. (14)

The Dirichlet boundary condition and the initial condition Q(−→r , 0) = 1 imposed on the so-

lution of the Edwards equation given by Eq.(1) causes the function ψ to satisfy the following

boundary and initial conditions

ψ(n, 0) = 1, ψ(0, x) = 1. (15)

Note that according to Eq.(13), the expression for the polymer excess density

η =

(
1− Rf(x)

r

)2

− 1, (16)

that is exact up to the leading order in R is given solely in terms of the function f . In order

to calculate η one therefore has to first solve simultaneous equations Eq.(13) and Eq.(14)

for this function.
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According to the above derivation, in the leading order in R the problem of calculating

the end density Q reduces to the boundary value problem for the function ψ described

by Eqs.(13-15). This problem can be further simplified by reducing the partial differential

equation given by Eq.(13) to the integral equation with respect to the function f . For this

purpose one must invert the differential operator ∂n − ∂2x in the left hand side of Eq.(13) in

the presence of the boundary and initial conditions given by Eq.(15). The result reads

ψ = erfc(
x

2
√
n
)− 2u

n∫

0

∞∫

0

dyf(y)(κ(x− y, t)− κ(x+ y, t))dt, (17)

where κ(x, n) = (2
√
πn)−1 exp(−x2/4n) is the Gaussian defined as the solution of the

potential-free Edwards equation, Eq.(1), with the imposed initial condition of the form

κ(x, 0) = δ(x).

Substituting the expression for ψ given by Eq.(17) into the definition of the function f

in Eq.(14), one arrives at a closed linear integral equation for f of the form

f(x) = N−1

N∫

0

erfc(2−1n−1/2x)dn− 2uR−1
G

∞∫

0

f(y)T (x, y)dy, (18)

where the kernel T (x, y) = T0(x − y) − T0(x + y) of the integral in the right hand side

of Eq.(18) is expressed through the function T0 that is given by the expression T0(x) =

(2/3)π−1/2(1 + x2)e−(4N)−1x2 − x (1 + 2x2/3) erfc(x).

The main difficulty in solving the integral equation given by Eq.(18) stems from the

fact that the integration over x in the r.h.s. of this equation is performed over the half

space x > 0. In order to avoid the associated mathematical difficulties that arise from this

fact, we will first reduce the above integral to the equivalent form of the integral over the

full space −∞ < x < ∞. In performing this reduction, we use the important symmetry

property of the kernel T (x, y) that can be expressed in the form T (−x, y) = −T (x, y). By

making use of this symmetry property, on can easily show that the function f satisfies the

identity f(−x) = 2 − f(x), which can be straightforwardly derived directly from Eq.(18).

The above two symmetry identities results in the following identity (1− f(−x))T (−x, y) =
(1− f(x))T (x, y) that can be straightforwardly used in order to bring Eq.(18) to the form

f(x) = f0(x)− 2uR−1
G

∞∫

−∞

f(y)T0(x− y)dy, (19)
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where the function f0 can be most conveniently expressed in the form of the integral

f0(x) = N−1

N∫

0

erfc

(
x

2
√
n

)(
1 + 2u

(
1− n

N

))
dn.

Note that analytically taking the integral in the above expression for f0 leads to quite

cumbersome expression that we do not show here for the sake of brevity.

In contrast to the integral equation given by Eq.(18), the obtained Eq.(19) can be straight-

forwardly solved by first reducing this to the linear equation for the Fourier transform f̂ of

the function f , solving this equation for f̂ and transforming back to the coordinate x-space.

The result of these tedious but straightforward manipulations reads

f(x) = 1− 2

π

∞∫

0

sin kx(D1(k
2R2

G) + uD(k2R2
G))

k(1 + uD(k2R2
G))

dk, (20)

where D(x) = 2(e−x + x− 1)/x2 is the Debye function, and D1(x) = (1− e−x)/x.

Substituting the above expression for f into Eq.(20), one arrives at the following expres-

sion for the function ψ that describes the decay of the polymer end density with increasing

the distance from the particle surface.

ψ =
2

π

∞∫

0

sin kx(1− e−k2n)

k(1 + uD(k2R2
G))

dk. (21)

Note that setting u = 0 in the above expression allows for the analytic integration that

takes ψ given by Eq.(21) to its ideal limit described by Eq.(12). For non zero values of the

non-ideality parameter u the analytic integration is not possible, so one has to resort to

numerical evaluation of ψ.

The end density Q and the excess polymer density η can be expressed through the

calculated functions f and ψ using the equations given by Eq.(11) and Eq.(16), respectively.

Integrating the excess density η over the volume available to polymers and substituting the

result into Eq.(10) one arrives at a simple expression for the excess grand potential ∆Ω on

the form

∆Ω ≡W = 3φP (βRG)
−1R, (22)

where φP = 4πρPR
3
G/3 is the polymer volume fraction.

According to the explanations given right above Eq.(9), the calculated excess grand po-

tential ∆Ω is to be identified with the energy cost W (minimal work) that is needed to bring
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the particle from the infinity to the initially homogeneous polymer system with the chain

density ρP ≡ 3(4πR3
G)

−1φP . Interestingly, the colloid immersion energy W given by Eq.(22)

does not depend on the excluded volume parameter v, so that the effect of the non-ideality

of the polymer chains does not appear in the leading order in R. Moreover, expressing the

immersion energy in the equivalent form W = 2πρbb
2R/3 shows that the only parameter

describing the polymer system that enters W is the monomer number density ρb. Conse-

quently, the immersion energy W does not depend on the polymerization degree N at fixed

monomer bulk density ρb.

The colloid radius dependence of the immersion energy W given by Eq.(22) is in agree-

ment with the simple result WO ∼ R/RG of a scaling analysis performed by Odijk in

Ref. [14] for a small colloid interacting with Gaussian polymer coils. However, due to the

approximate nature of this analysis, the above scaling result misses the important prefactor

3φP ≡ 2πρbb
2RG/3 calculated in our exact approach. This exact prefactor takes into account

the effect of monomer density ρb and removes the dependence of W on the polymerization

degree N at fixed ρb. These exact dependencies of our result for W on ρb and N can be

explained by observing that the immersion energy of a small colloid does not depend on the

size of much larger polymer coils. Rather, it depends only on the local monomer density

quantified by ρb, as has been concluded from the structure of Eq.(22) at the end of the

previous paragraph.

It is instructive to compare the obtained analytic results with the available predictions

of the Scheutjens-Fleer (SF) numerical approach described in Ref.[13]. This comparison

is performed in Fig. 1 that shows the monomer number density profiles around spherical

colloids for several values of the colloid radius R. As can be clearly seen from this Figure,

the reduced number density ρ/ρb ≡ 1 + η calculated by Eq.(16) with the function f given

by Eq.(20) shows very good agreement with the numerical solution of the SF self-consistent

equations performed at N = 1000, χ = 0.4 for small colloid radii R = b; 3b. For these two

cases, our theory shows slightly better agreement with the SF results than the interpolation

expression derived in Ref.[13], of the form

ρ = ρb

(
x+R tanh (xδ)

x+R

)2

, δ =

√(
π

4R2
G

+
vρb
2

)
, (23)

represented by the dotted curves in Fig.1. The observed good agreement between the ana-

lytic theory and SF numerical results slightly deteriorates for larger colloid radius R = 10b
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thus empirically setting the limit of validity of the used in our theory small radius expan-

sion to approximately q ≡ RG/R >∼ 10000.59/10 ≈ 6. It is interesting to note that the

interpolation formula (FST) given by Eq.(23) shows just the opposite trend giving better

predictions for larger colloid radii. The demonstrated overall good agreement between the

results of the analytical and numerical theories speaks in favor of the adequateness of the

developed approach to the described case of small colloids.

Finally, its worth noting that the obtained expression for W formally coincides with

the well-known19 asymptotically exact result for the colloid immersion energy of the form

WSC = AgN
−1ρbR

3−1/νR
1/ν
G specialized to the case of the Gaussian polymers as described by

the corresponding exponent ν = 1/2. The universal constant Ag in the above expression that

is obtained with help of the renormalization group theory evaluates to 18.4 for the excluded

volume polymers, which makes the main difference with the present result that estimates

the corresponding coefficient as 4π ≡ 12.57. Interestingly, the above result for WSC is also

N -independent at fixed monomer number density ρb, which independently corroborates our

main conclusion drawn from the above analysis of Eq.(22). We will get back to the analysis

of the above expression for WSC in Section V where we intend to compare our findings with

previous theories.

IV. DEPLETION INTERACTION BETWEEN NANO-PARTICLES

In this section we apply the mathematical formalism developed in the previous section

in order to investigate the depletion potential acting between two nano-particles with the

effect of the excluded volume taken into account. We consider two spherical particles of the

radius R with the centers separated by a distance H . The particles are immersed into a

good polymer solution as described by the Flory parameter6 0 < χ < 1/2. We chose to work

in the reference frame with the origin placed in the center of one of the particles hereafter

referred to as the ’first’ particle. For the sake of notational convenience, we introduce the

position vectors −→r1 and −→r2 pointer away from the particle centers to the point described by

the position vector −→r . In the chosen reference frame, the vectors −→r1 and −→r2 are given by

the expressions −→r1 = −→r and −→r2 = −→r −H
−→
k , respectively,

−→
k being the unit vector pointed

away from the center of the first particle to the center of the second particle.

As compared to the considered case of one particle, the case of two particles involves
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more complicated geometry consideration, which brings added difficulty into the associated

mathematical development. In order to deal with these complications, it is instructive to

work with the Laplace transform of the end density Q̃(s) =
∫
∞

0
Q(n)e−sndn. Note that the

solution of the Edwards equation for the end density Q given by Eq.(1) must be symmetric

with respect to the plane equidistanced from the centers of the particles. This symmetry

requirement causes that the Laplace transform of the end density takes the following form

Q̃ = s−1 − R

(
1− Rsψ̃(x1)

H

)(
ψ̃(x1)

|−→r1 |
+
ψ̃(x2)

|−→r2 |

)
, (24)

where ψ̃ is the Laplace transform of the function ψ(x) given by Eq.(21), x1,2 = |−→r1,2| − R

denote the distances from the corresponding particle surfaces to the point−→r and the function

ψ(x) satisfies the same equations, Eqs.(13)-(14), and the boundary and initial conditions,

Eq.(15), as in the case of single particle. The form of the prefactor of the second term in the

brackets in the r.h.s. of Eq.(24) ensures that the end density Q satisfies Dirichlet boundary

condition on the surfaces of each particle.

Substituting the Laplace transform of the end density given by Eq.(24) into Eq.(4) for

the number density ρ, integrating over the space variable according to the formula given by

Eq.(10), and taking the inverse Laplace transform, one arrives at the following expression

for the excess grand potential

β∆Ω = 8ρPR
2R4

GH
−1

∞∫

0

kD(k2R2
G) sin kH

1 + uD(k2R2
G)

dk (25)

As has been explained right above Eq.(9), the excess grand potential given by Eq.(25)

can be directly associated with the negative of the potential U of the depletion force acting

between colloids. In reduced notations, this potential reads

U = − 6φP

πhq2

∞∫

0

kD(k2) sin kh

1 + uD(k2)
dk, (26)

where we have introduced reduced separation between particles h = H/RG. Recall that

for semi-dilute solvent conditions the non-ideality parameter u = vρbN is related to the

Flory parameter χ that describes the interaction between polymers and solvent molecules

by u = Nρbb
3(1−2χ). Note that for θ-conditions described by the equality χ = 1/2, Eq.(26)

reduces to the well-known27–29 expression for the leading-order term of the depletion potential
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acting between nano-colloids in the presence of non-interacting polymers, of the form

U = 8ρbb
3q−2(6N)−1/2

(
π1/2e−h2/4 − π(h−1 + 2−1h)erfc(2−1h)

)
. (27)

According to the obtained expression for the depletion potential given by Eq.(26), the

whole effect coming from the interaction among polymers is described by the term propor-

tional to u in the denominator of the fraction under the integral in the r.h.s. of Eq.(26).

Therefore, the excluded volume interactions always play in favor of reducing the absolute

magnitude of the depletion potential. In order to verify this statement, in Fig. 2 we have

plotted the depletion potential U given by Eq.(26) as a function of the reduced separation

between colloids (H − RG)/RG for the polymer volume fraction φP = 0.43, colloid radius

R = 10b and several values of the Flory parameter χ. This Figure quantitatively corrobo-

rates the above conclusion that the stronger the screening of the polymer excluded volume

interaction by the solvent, the weaker the effect of these interactions on the depletion po-

tential. For the chosen values of φP and R, the largest difference between the values of the

depletion potential U calculated in the boundary cases χ = 0 and χ = 1/2 reaches the order

of magnitude of U evaluated at χ = 0.

For the convenience of practical use, it is instructive to derive simplified version of the

exact expression given by Eq.(27) that would make it possible to explicitly elucidate depen-

dence of U on the involved parameters. The integral in the r.h.s. of Eq.(27) can be easily

performed by resorting to the widely used5 approximation for the Debye function of the

form D(x) ≈ 2/(2+x) . This results in the following simple approximation for the depletion

potential

βU = −4πρbb
2R2

3H
exp

(
−H
λ

)
, (28)

where the parameter λ = RGξE(2ξ
2
E +R2

G)
−

1

2 that naturally arises in the above calculation

can be interpreted as the correlation length that describes smooth crossover from the dilute

polymer densities to high densities ρP >> ρ∗P significantly exceeding the overlap threshold

density ρ∗P . This crossover can be elucidated by analyzing the form of the correlation length

λ that varies from its dilute limit RG/
√
2 to the dense limit expressed by the N -independent

Edwards correlation length6 ξE = b(2
√
3vρb)

−1. We will return to the above discussion of

the correlation length λ in the next Section, where we will compare different strategies of

defining λ for arbitrary degrees of the chain overlap.
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Another important conclusion can be drawn from the form of the expression given by

Eq.(28). Similarly to Eq.(27), this expression is given by the product of the N -independent

at-contact depletion potential βUc = −4πρbb
2R2/(3H) and N (RG) dependent exponential

factor that describes the decay of the depletion potential with increasing the separation H .

As will be shown in Section V this structure of the depletion potential is in agreement with

the exact asymptotic form of the depletion potential at small separations and Monte Carlo

simulations.

The expression for U given by Eq.(26) describes the desirable leading term of the depletion

potential calculated in the protein limit q >> 1. As will be shown in the next section, this

expression has quite tractable structure that can be qualitatively understood by scaling

analysis.

V. COMPARISON WITH PREVIOUS WORK

Very useful insight into the behavior of the depletion potential as a function of the sepa-

ration between colloids H is provided by the previous theories based on the field-theoretical

small radius (”short distance”) expansion (FT)19 and scaling analysis (SC).18. It is therefore

instructive to compare our findings for the colloid immersion energy W and the depletion

potential U obtained in the previous sections from the exact solution of the self-consistent

Edwards equation with the above result. Recall the results forW and U obtained in Ref.[19]

for these quantities

βWsc = AgρPR
3q

1

ν , βUsc = (βWρ−1
P )2K(h), (29)

where Ag is the universal (i.e. independent on the gyration radius) constant and ν is the

Flory exponent that respectively evaluate to Ag = 18.4 and ν = 0.59 for the excluded volume

polymers; K(h) is the normalized polymer density correlation function in the bulk polymer

solution with chain number density ρP = ρb/N . It is important to note that RG in Eq.(29)

stands for the polymer gyration radius of the corresponding bulk polymer system, so that for

the excluded volume polymers RG scales6 as N3/5 rather than N1/2. In the limit H << RG,

K(h) is known19,30 to assume the form

K0(h) = ρPσgH
−3h

1

ν , (30)

where σg = 0.069 is the universal constant obtained by the renormalization group method.31

18



For further development it is important to emphasize that the above formulas forWSC and

USC are valid for arbitrary degrees of overlap among the polymer coils in semi-dilute polymer

solution. This fact is thoroughly explained in Ref. [19], so here we restrict ourselves to

proving that Eq.(29) reduces to the well known result32 βWdG = a(R/ξ∞)3−1/ν of de Gennes

for the immersion energy in the limit of strong overlap among polymer coils. This proof relies

on the fact that ξ∞ that represents the correlation length of strongly overlapped polymer coil

system at high polymer volume fractions φP ≡ 4πρPR
3
G/3 >> 1, is polymerization degree

independent even at small monomer densities ρb ∼ ρPR
1/ν
G corresponding to the semidilute

conditions. This fact determines the exponent m = −ν/(3ν − 1) in the scaling relation6

ξ∞ ∼ RG(4πρPR
3
R/3)

m for the polymer correlation length ξ∞ in the above strong overlap

limit φP >> 1. The above scaling relation can be conveniently expressed in the form

ξ1/ν−3
∞

= 4πρPR
1/ν
G /3 ∼ ρb (31)

that clearly shows that ξ∞ is indeed polymerization degree independent. Substituting ρPR
1/ν
G

derived from Eq.(31) into the r.h.s. of the first equation in Eq.(29) one recovers the above

de Gennes result βWdG = a(R/ξ∞)3−1/ν with the coefficient a = 3Ag/4π. Making the same

substitution into the r.h.s. of the second equation in Eq.(29) results in

K0(H) =
4πρ2Pσg

3

(
ξ∞
H

)3−1/ν

, (32)

which, up to the prefactor proportional to ρ2P , coincides with the scaling result of Sear.18

Note that the derived strong-overlap asymptotic forms of the immersion energy WdG and

correlation function given by Eq.(32) rely on the scaling relation for the correlation function

ξ∞ given by Eq.(31) that is only valid in the limit φP >> 1. In the vicinity of the overlap

threshold, where the correlation length is polymerization-degree dependent, one has to use

universal relations given by Eq.(29) valid for arbitrary φP ≥ 1.

Note that despite its high accuracy in predicting at-contact depletion potential U(H =

2R),19 the above expression for Usc in Eq.(29) fails19 to give a correct prediction for the de-

pletion potential at large separations H >∼ RG. Since the exact correlation function of the

semi-dilute polymer solution is generally unknown, in order to describe the case of separa-

tions of the order or larger than the gyration radius H ∼ RG one has to resort to simplifying

approximations. To describe the strong-overlap limit of the polymer correlation length at

large separations H >> ξ∞, a simple mean-field expression for KE ∼ exp (H/ξE)/ξE de-

rived by Edwards5 is frequently used, where ξE = b/
√
12vρb is the N -independent Edwards
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correlation length.6 Note that ξE provides a mean-field counterpart of the scaling result of

de Gennes given by Eq.(31), which explicitly takes into account quality of the solvent. The

above expression for KE , however, does not reduce to the exact asymptotic limit18 given by

Eq.(32) for small separations H <∼ ξ∞, thus failing to adequately describe the depletion

potential at small separations H << RG. Summarizing the above arguments, the existing

FT and SC theories18,19 are only capable of describing the above limiting cases of small

(H << RG, ξ) and large (H >> ξ,RG) separations, respectively, which cannot be unified

to adequately describe the intermediate case H ∼ RG, ξ. It is therefore instructive to de-

rive an approximate expression built upon the exact self-consistent result for U , Eq.(26),

which would provide a consistent description for arbitrary ratios H/RG and give the correct

asymptotic form K0 at H << RG.

Quite interestingly, the exact, up to the leading order in R, expressions for the colloid

immersion energy W and the depletion potential U respectively given by Eqs.(22) and (26)

can be formally presented in the same form as that of their FT counterparts given by

Eq.(29). This direct analogy can be elucidated by recognizing the fact that the FT result

for the immersion energy Wsc reduces to its exact counterpart W given by Eq.(22) upon

substituting the Gaussian exponent ν = 1/2 and the constant Ag = 4π ∼ 12.57 into the

expression for Wsc in Eq.(29). The same holds true for the FT result for the depletion

potential Usc written in the form given in Eq.(29), provided that the correlation function K

in the r.h.s. of the second equality in Eq.(29) is taken in the form

Kex(h) =
σgρP
πH3

∞∫

0

D(k2h−
1

ν )k sin k

1 + uD(k2h−
1

ν )
dk. (33)

It is straightforward to check that substituting the Gaussian exponent ν = 1/2 and the

new value of the universal constant σg = (2π)−1 ∼ 0.16 into the expression for Kex given

by Eq.(33) takes the above expression for Usc back to the form of its exact counterpart U .

Moreover, in the limit of small separations H << RG, correlation function Kex given by

Eq.(33) reduces to the desirable exact asymptotic expression given by Eq.(30).

As a conclusive step of the above comparative analysis of the results of the FT and the

present self-consistent field theory, we shall propose a ”hybrid” expression for the depletion

potential. This expression reduces to both the self-consistent result given by Eq.(26) and the

above described FT results upon choosing an appropriate Flory exponent ν and the complex

universal constant A2
gσg. Substituting correlation function Kex given by Eq.(33) into the
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expression for Usc given by the second equality in Eq.(29) results in the above ”hybrid”

expression for the depletion potential of the form

βU = −
4A2

gσgρPR
6

πH3

(
RG

R

) 2

ν

∞∫

0

D(k2h−
1

ν )k sin k

1 + uD(k2h−
1

ν )
dk. (34)

The above expression for U , Eq.(34), combines the advantages of the present self-consistent

approach that is capable of describing the separation dependence of U for arbitrary relations

between H and RG, and findings of FT that explicitly take into account the semi-dilute

nature of the polymer solution at H << RG. Recall that this expression is constructed

in such a way that substituting the values ν = 1/2 and A2
gσg = 8π into Eq.(35) gives

the expression for the depletion potential derived from the exact solution of the Edwards

equation in Section IV. On the other hand, taking the limit H << RG takes U expressed by

Eq.(34) to the form given in Eq.(29) with the asymptotically exact correlation function K0

given by Eq.(30). Interestingly, the exact value of the coefficient A2
gσg = 18.42×0.069 = 23.36

known19 from the renormalization group theory is pretty close to its self-consistent theory

counterpart A2
gσg = 8π = 25.13, which adds to the accuracy of Eq.(34) in bridging between

the above FT and SCMFT results.

In order to gain better understanding of the separation dependence of the above hybrid

depletion potential, one has to investigate the integral term in the r.h.s. of Eq.(34). In order

to simplify the analysis of this approximate expression, here we employ rather drastic but

widely used approximation5 for the Debye function of the form D(x) = 2/(2 + x). Using

this approximation makes it possible to perform the integration in the r.h.s. of Eq.(34)

analytically, leading to a simple expression for U of the form

βU = −
3A2

gσgφP

4π

(
R2

HRG

)3− 1

ν

exp

(
−
(
H

λ

) 1

2ν

)
, (35)

where we have introduced the characteristic length of the depletion interaction λ ≡ RG(2(1+

vρbN))−ν . Note that according to the above definition, the deviation of λ from the dilute-

limit correlation length5 λG ≡ RG/2 is totally defined by the value of the non-ideality

parameter u ≡ Nvρb. If the value of this parameter is large enough, λ reduces to the

well known5 N -independent expression for the strong-overlap limit of the correlation length

ξE = b(2
√
3vρb)

−1 mentioned in the above.

It is instructive to derive the strong-overlap limit of the above expression for the depletion

potential given by Eq.(35). Substituting the appropriate correlation length λ = ξ∞ into this
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expression and using the relation between RG and ξ∞ given by Eq.(31), one arrives at the

following expression for the depletion potential describing the limit φP >> 1

βU∞ = −
3A2

gσg

4π

(
R2

Hξ

) 4

3

exp

(
−
(
H

ξ

) 5

6

)
. (36)

For the sake of generality, in Eq.(36) we have omitted the subscript ∞ that describes only

specific scaling approximation for the strong-overlap limit ξ of the correlation length. ξ in

Eq.(36) has a status of the N -independent strong-overlap limit of the generally unknown

true correlation length of the semi-dilute polymer solution, which is not restricted to its

specific scaling form given by Eq.(31). Note that the above expression for U∞ depends on

the polymer density only through the correlation length ξ, as is should be expected in the

limit of strong overlap of the chain coils, where all properties are solely determined by this

correlation length.6

Note that similarly to the FT result given by Eq.(29), the expression for the depletion

potential given by Eq.(35) has a structure of a product of the squared reduced immersion

energy βWρ−1
P = AgR

3−1/νR
1/ν
G and the negative of the correlation function K. The corre-

lation function K that enters Eq.(35) therefore has the form

K = σgρPH
−3(H/RG)

1

ν exp (−H/λ) 1

2ν . (37)

It is straightforward to check thatK given by Eq.(37) reduces to the above mentioned known

mean-field expression5 for Gaussian polymers (ν = 1/2) with the mean-field correlation

length ξ replaced with its finite polymer length counterpart λ = RG(2(1+vρbN))−ν . On the

other hand, introducing the Flory exponent ν = 3/5 into the above expression for K ensures

the correct asymptotic form of the correlation function at small separations H << RG given

by Eq.(30) for the semi-dilute regime. It is important to note that Eq.(35) shows slightly

slower exponential decay (∼ exp (H/λ)5/6) of the depletion potential U with increasing the

separation H than the scaling result for U derived in Ref.[18] by making use of the Edwards

mean field correlation function described right below Eq.(30).

Alternatively to using the above specific definition, the characteristic length λ can be

treated as an adjustable parameter that can be derived from plausible arguments. One

feasible way to evaluate λ is to apply the compressibility sum rule31 for the correlation

function K written in the form
∫
K(H)d3H = β−1ρP

(
∂Π

∂ρP

)
−1

, (38)
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where Π is the osmotic pressure of the bulk polymer system. Substituting the correla-

tion function K given by Eq.(37) with σg = (2π)−1 into Eq.(38) results in simple explicit

expression for λ in terms of Π, of the form

λ = RG

(
4νβ

∂Π

∂ρP

)
−ν

. (39)

Note that using the Gaussian exponent ν = 1/2 and mean field expression24 βΠ = ρP+vρ
2
b/2

for the osmotic pressure, takes Eq.(39) back to the form λ = (2(1 + u))−1/2 obtained in the

above.

A clear advantage of the expression given by Eq.(39) is in the possibility to obtain more

precise evaluation for λ by using more advanced expression for the polymer osmotic pressure

in terms of the polymer density. One such highly accurate expression is given31 by the

renormalization group theory. A few estimates for λ for several values of the polymer

volume fraction based on this expression are shown in Table 1. In what follows, we will

compare these estimates against the corresponding values of λ obtained from the fit of the

calculated depletion potential to the results of the previous Monte Carlo (MC) simulations.

An important remark as to the validity of Eq.(35) is in order here. Specifically, care

must be exercised when using this expression for evaluating the depletion potential U at

small separations H >∼ 2R. This is because the exact self-consistent counterpart of this

expression for U is derived by making use of the expansion in series of polymer-colloid size

ratio q−1, which implies that R is assumed to be the smallest length in the system. This

reservation as to the validity of the used small colloid radius expansion in the limit of small

separations H >∼ 2R that equally refers to the above FT and SC results, is confirmed by the

comparison of the present theoretical findings with the results of MC simulations obtained in

Ref.[16]. Moreover, a detailed analysis of this simulations shows that the depletion potential

U experiences exponential decay with decreasing the separation in the whole range of the

studied H , rather than power law decay ∼ H−2ν predicted by the SCMFT, FT and SC

theories. This exponential decay of U observed in MC simulations is not in agreement with

the obtained approximate expression given by Eq.(35), FT result given by Eqs.(29,30) and

scaling estimate18 U ∼ (R/ξ)8/3((R/ξ)4/3 − 1)−2ξH−1 exp (−H/ξ) evaluated at small and

intermediate separations H <∼ RG.

Interestingly, however, that Eq.(35) excellently fits to the above MC simulation data if

one replaces the prefactor of the exponential in the r.h.s. of Eq.(35) with its contact value
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calculated at H = 2R. This replacement takes Eq.(35) to the form

βUA = −κφP exp (−H/λ) 1

2ν , κ = 3(4π)−1A2
gσg(2q)

1

ν
−3. (40)

Given the parameters used in the simulations in Ref.[16], the polymer-colloid size ratio

evaluates to q ≡ RG/R = (2000)0.59/10 = 8.9, which results in the coefficient κ taking the

value of 0.11. Substituting this exact value of κ into the first equality in Eq.(40) and using λ

as an adjustable parameter we have fitted the above results of the Monte Carlo simulations

for several values of the polymer volume fraction φP shown in Table 1. The results of this

fitting procedure are shown in Fig. 3. As is clearly seen from this Figure, the exponential

form of the expression for U given by Eq.(40) with λ given in the second column of Table 1

for respective values of φP excellently fits to the simulation results. Given the approximate

nature of the expression for UA in Eq.(40), it is instructive to check how the adjusted values of

λ compare against those derived from the compressibility sum rule given by Eq.(39). Recall

that in calculating those latter values we use the known31 highly accurate renormalization

group theory expression for the osmotic pressure Π. The results of this comparison are

shown in Table 1. According to this Table, the predictions of Eq.(39) slightly underestimate

the values of λ extracted from the fit of the depletion potential UA given by Eq.(40) to the

simulations for the polymer volume fraction φP = 0.43 that corresponds to the case of dilute

polymer solution. For larger values of φP = 1.29, 2.58, 5.16 that describe the semi-dilute

regime, the agreement between the calculated and fitted values of λ is very good. This

overall good agreement speaks in favor of that Eq.(40) with plausible values of λ given in

Table 1, provides adequate description of the MC results in the whole range of separations H

and polymer densities ρP . Moreover, Eq.(40) give very accurate estimate for the at-contact

(H = 2R) value of U that excellently agrees with the simulation results without using any

adjustable parameters.

Despite the fact that the expression for the depletion potential UA given by Eq.(40)

shows very good agreement with the results of the MC simulations, this expression cannot

be credited for being systematically derived from the results of our rigorous self-consistent

approach. This expression therefore has a status of the interpolation formula that circum-

stantially provides very good description of the simulation results. The expression for the

depletion potential UA given by Eq.(40) builds upon approximate formula for U given by

Eq.(35) with refined prefactor of the exponential, so that this prefactor gives correct limit
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H >∼ 2R. We therefore attribute the remarkably good agreement between predictions of

Eq.(40) and MC simulations to the fact that the former expression for UA properly describes

the above small separation limit, that appears to be not properly handled by either SCMFT,

FT theories or scaling arguments.

VI. RESULTS AND DISCUSSION

In the present work we have calculated the polymer density and free energy excesses

caused by the presence of nano-colloids in the excluded volume polymer system and the

depletion interaction acting between nano-colloids in this system, by making use of the

Edwards self consistent mean field theory.

One clear advantage of the present approach lies in the fact that, in contrast to the field-

theoretic method and scaling arguments, this approach makes it possible to analytically

calculate the coordinate dependent polymer density in the presence of colloids. This advan-

tage is achieved at a cost of resorting to the small colloid radius perturbative solution of

the Edwards equation, Eq.(1), owing to the complexity of this equation associated with the

presence of the non-linear self-consistent term describing the excluded volume interactions.

Using the above described advantage of our approach, we have calculated the density

profile of polymers in the vicinity of a single colloid and compared our findings, Eqs.(16,20),

against the results of Scheutjens-Fleer numerical procedure.13 This comparison is illustrated

in Fig. 1 that shows good agreement between the theory and SF results for small colloid

radii R = b, 3b, and satisfactory agreement for larger colloid radius R = 10b. This result

empirically sets limitations of the validity of our approach to q = RG/R >∼ 6, which

naturally stem from the nature of the developed theory that relies on the small colloid

radius expansion.

By making use of the above small colloid radius expansion of the excess polymer density

in the presence of colloids, we have calculated the leading terms of the colloid immersion

energy W and the depletion potential U given by Eq.(22) and Eq.(26), respectively. Based

on these results, we have shown that the role of the excluded volume interactions in the

formation of the depletion layers near colloids can be quantified by a single complex param-

eter u = vρbN . For a typical polymer system this parameter can be of order of unity even

at large polymerization degrees N , which put in question the adequateness of the popular
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approximation scheme known as ”ground state theory”6 to describing the depletion interac-

tions. Interestingly, similarly to what is observed in one-chain polymer system,14 the above

excluded volume parameter u cancels out in the final expression for the colloid immersion

energy W in the leading order in q−1, thus eliminating the excluded volume effect on W .

W is shown to be proportional to the monomer bulk density, the only relevant parameter

describing polymer system that affects the colloid immersion energy in the limit q >> 1.

Similarly to its ideal counterpart given by Eq.(27), the calculated leading term of the

depletion potential U given by Eq.(26) is shown to be proportional to the squared colloid

radius. In contrast to the linear dependence of U on the polymer volume fraction φP

observed for ideal polymers (cf. Eq.(27)), the depletion potential mediated by the excluded

volume polymers shows intricate non-linear dependence on φP . Since this dependence cannot

be expressed in simple analytic form, we have investigated the depletion potential given

by Eq.(26) graphically, by plotting this potential for several values of the Flory-Huggins

parameter χ that quantifies the effect of solvent screening on the polymer excluded volume

interactions. According to this plot shown in Fig. 2, the effect of the excluded volume leads

to the suppression of the depletion force acting between colloids. Since the screening effect

of the solvent diminishes the polymer excluded volume interactions, increasing χ results in

increasing the absolute magnitude of U at fixed polymer volume fraction φP and colloid

radius R.

In order to improve the applicability of the developed approach to realistic polymer

systems, we proposed a ”hybrid” expression for the depletion potential U expressed by

Eq.(35). This ”hybrid” expression builds upon rescaling the parametric dependence of our

exact result, Eq.(26), on the polymer-colloid size ratio q and the reduced separation h =

H/RG according to the rules q → q2ν , h → h2ν . Setting the introduced exponent ν to its

Gaussian value ν = 0.5 takes the above ”hybrid” expression back to our exact self-consistent

field theory result given by Eq.(26). Using the Flory exponent ν = 0.59 in Eq.(35) leads to

U having the well known correct small-separation asymptotic form given in Eq.(34) for the

semi-dilute good solvent conditions. In the proposed ”hybrid” form, our expression for the

depletion potential agrees with the results of the small radius field-theoretic expansion,19

scaling arguments,18 and properly describes the at-contact depletion potential obtained by

MC simulation16 without using any adjustable parameters.

Despite the above good agreement with previous work, the derived ”hybrid” expression
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shows more rapid decay of the depletion potential with increasing the separation H between

colloids than that observed in MC simulations in Ref.[16]. Excellent agreement with these

simulation results can be achieved by the slight modification of the expression for U given

by Eq.(35) that amounts to replacing the prefactor in this expression by its at-contact

value taken at H = 2R. This modification results in the expression for the depletion

potential UA given by Eq.(40) that has a status of the interpolation formula that bridges

the asymptotic limits of small H << RG and large H >> RG separations between colloids.

The fact that the above interpolation formula gives more adequate description of the above

MC simulations than the present self-consistent, field-theoretic and scaling results can be

attributed to that this formula better describes the small separation limit H ∼ 2R. In this

limit, MC simulations show exponential decay U ∼ exp (−h2ν) rather than power law decay

U ∼ H−2ν predicted by all the above theories at H <∼ RG.

We have to note that the above comparison between the theory and simulations should

not be considered conclusive, since this is based on analyzing the only available instance

of the MC simulations performed in the protein limit. Only more extensive simulations of

the depletion interaction in this limit can reveal if the above excellent agreement with the

interpolation formula given by Eq.(40) is circumstantial or not. In all cases, the derived

hybrid expression for the depletion potential, Eq.(35), appears to provide a solid basis for

investigating the depletion interactions in different settings. This expression can also serve

for constructing different approximations or interpolation formulas for practical use, similar

to the expression for UA given by Eq.(40).
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Captions to figures and tables

Fig.1: Comparison of the calculated polymer density profile near a single colloid against

the predictions of the Scheutjens-Fleer numerical approach (Ref.[13]) and the interpolation

formula obtained in Ref.[13] for several values of the colloid radius. Polymer volume fraction

and Flory-Huggins parameter are set to φP = 0.43 and χ = 0.4, respectively.

Fig.2: Polymer depletion potential as a function of the reduced separation between col-

loids for several values of the Flory-Hugging parameter. Polymer volume fraction and the

colloid radius are set to φP = 0.43 and R = 10b, respectively.

Fig.3: Comparison of the Monte Carlo simulations of the depletion potential with the

predictions of Eq.(40) for several values of the polymer volume fraction and the colloid radius

R = 10b.

Table 1: Comparison of the values of the characteristic length λ extracted from fitting

the Monte Carlo results by Eq.(40) against predictions of Eq.(39)

Figures

FIG. 1:
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FIG. 2:

FIG. 3:

Tables

φP λ/RG from fit λ/RG from Eq.(39)

0.43 0.209 0.344

1.29 0.159 0.189

2.58 0.116 0.118

5.16 0.076 0.070
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