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A model of self-driven particles similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226]
but with metric-free interactions is studied by means of a novel Enskog-type kinetic theory. In this
model, N particles of constant speed v0 try to align their travel directions with the average direction
of a fixed number of closest neighbors. At strong alignment a global flocking state forms. The
alignment is defined by a stochastic rule, not by a Hamiltonian. The corresponding interactions are
of genuine multi-body nature. The theory is based on a Master equation in 3N-dimensional phase
space, which is made tractable by means of the molecular chaos approximation. The phase diagram
for the transition to collective motion is calculated and compared to direct numerical simulations.
A linear stability analysis of a homogeneous ordered state is performed using the kinetic but not
the hydrodynamic equations in order to achieve high accuracy. In contrast to the regular metric
Vicsek-model no instabilities occur. This confirms previous direct simulations that for Vicsek-like
models with metric-free interactions, there is no formation of density bands and that the flocking
transition is continuous.

PACS numbers:87.10.-e, 05.20.Dd, 64.60.Cn, 02.70.Ns

I. INTRODUCTION

One of the most important unsolved problems in sta-
tistical physics is finding a global description of far-from-
equilibrium systems with many interacting objects. Such
a unified theory would be especially useful for biological
systems since they operate far from thermal equilibrium.
Instead of looking for such a general theory we focus on a
minimal nonequilibrium model which still displays inter-
esting physics such as pattern formation and collective
motion. The goal is to provide inspiration for a more
general approach by constructing a quantitative theoret-
ical framework for the minimal model. We consider a
model similar to the Vicsek-model (VM) of self-propelled
particles [1, 2] which is simple enough to be treated nu-
merically and analytically. The VM was introduced in
1995 to describe the swarming of fish and birds [3]. In
this model, pointlike particles are driven with a constant
speed. At each time step, a given particle assumes the
average direction of motion of the particles in its neigh-
borhood, with some added noise. This model constitutes
a dynamical version of the 2D XY model, because the ve-
locity of the “bird”, like the spin of the XY model, also
has fixed magnitude and continuous rotational symme-
try. As the amplitude of the noise decreases, the system
undergoes a phase transition from a disordered state, in
which the particles have no preferred global direction,
to an ordered state, in which the particles move col-
lectively in the same direction. Hence, unlike the XY
model, Vicsek’s model exhibits long-range orientational
order at non-zero noise. This surprising fact motivated
renormalization group studies by Toner and Tu [4] which
confirmed the stabilization of the ordered phase far from
the flocking threshold. The phase transition was origi-
nally thought to be continuous [3], but recent numeri-

cal work [5] indicates that the transition is discontinuous
with strong finite-size effects. The numerical studies also
revealed that large density waves develop right next to
the threshold while still maintaining global orientational
order.

Recently, it was shown by means of an Enskog-like ki-
netic theory that the ordered phase of the VM is linearly
unstable near the threshold [6]. This instability was pro-
posed as a possible explanation for the density waves and
discontinuous nature of the phase transition. Another
study for a related model with continuous time found a
similar instability by means of a Boltzmann equation [7],
see also Ref. [8]. The VM assumes interaction with all
neighbors within a fixed metric distance. Recent experi-
ments by Ballerini et al [9] on flocks of several thousand
starlings indicate that this interaction rule might not be
appropriate for animal flocks. Instead, it was discovered
that each bird interacts on average with a fixed num-
ber of neighbors, typically six to seven. This constitutes
a topological or metric-free interaction because not the
metric distance is relevant but who are the closest neigh-
bors. Ballerini et al argue further that due to evolution-
ary pressure the main goal of interaction among individ-
uals is to maintain cohesion. By comparing simulations
with the regular VM and a modified VM with metric-free
interactions they found that flocks, when facing preda-
tors, kept cohesion much better in the metric-free model.
This further supports the idea that metric-free interac-
tions should be dominant in animal flocks. While quite a
number of analytical and numerical studies about self-
propelled particles with metric interactions have been
published [10–18], not much exists for topological inter-
actions [19–21]. In particular, no rigorous theory for the
metric-free model of Ref. [9] exists. In order to construct
a theory which can be applied directly to this minimal
computer model as well as to experiments we adopted
the original genuine multi-particle interactions and did
not restrict ourselves to binary interactions. Since other
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2D experiments on shoaling fish estimate the number of
tracked neighbors to be between three to five [22] we ex-
plored a range of interaction partner numbers between
two and seven.
The main results of this paper are a) the rigorous

derivation of an Enskog-like kinetic equation for the one-
particle density for the metric-free model of Ref. [9] from
first principles, and b) a linear-stability analysis of this
kinetic equation, which showed that the flocking state is
linearly stable against perturbations of any wavelength.
The remainder of this paper is structured as follows.

In Sec. II we define the metric-free model. In Sec. III
we set up an exact equation for the N -particle proba-
bility density and derive the kinetic equation Eq. (18).
In Sec. IV homogeneous solutions of this equation are
discussed and the phase diagram of the order-disorder
transition is calculated. Sec. V deals with the linear sta-
bility analysis of the ordered phase, and Sec. VI describes
direct simulations. A summary is given in Section VII.
Details concerning hypergeometric functions, exact solu-
tions for special cases and integral tables are relegated
to Appendix A, B, and C, respectively. In Appendix D
the Enskog kinetic approach is compared with the corre-
sponding Boltzmann approximation.

II. MODEL

We consider a metric-free version of the VM, which
was introduced in Ref. [9]. This two-dimensional model
consists of N pointlike particles with continuous spatial
coordinates ri(t) and velocities vi(t) which evolve via two
steps: streaming and collision. During a time step τ ,
particles stream ballistically: xi(t + τ) = xi(t) + τvi(t).
The magnitude of the particle velocities is fixed to v0.
Only the directions θi of the velocity vectors are updated
in the collision step by first finding the M − 1 closest

neighbors for a given particle i where M ≥ 2 is a fixed
parameter. The directions of motion of particle i and its
neighbors determine the average direction,

Φi = arctan

[

∑M
j sin(θj)

∑M
j cos(θj)

]

. (1)

The new flying directions follow as θi(t+ τ) = Φi(t)+ ξi,
where ξi is a random number chosen with a uniform prob-
ability from the interval [−η/2, η/2]. In the context of the
VM [1, 2] this constitutes an angular noise model with
noise strength η. The particles are always updated in par-
allel. Note, that in the original VM [3] the number of in-
teraction partners is fluctuating and density-dependent,
whereas the range of interactions is fixed to the radius R
of a circle around a given particle. It is the opposite in
the metric-free model. Here, the number of interaction
partners, M , is a fixed parameter but the interaction
range fluctuates. For example, for small local density
ρ(r), the next neighbors can be far away but no mat-
ter how geographically isolated a particle is, it is always

connected with M − 1 others via the metric-free interac-
tion rule, Eq. (1). To potentially allow comparison with
experiments [9, 23] and simulations [19], a large number
M = 5 to 8 can be chosen.
We define an effective interaction range Reff by inte-

grating the density over a circle and equating the result
with the partner number M :

M =

∫

◦

ρ(r) dr = πR2
effρ0 (2)

resulting in

Reff =

√

M

πρ0
(3)

Another important length scale is the mean free path
(mfp) given by the distance a particle travels between
collisions,

λ = τ v0 . (4)

Note that the mfp is density-independent in VM-like
models because of the discrete nature of the dynamics
and because the particles have zero volume.
The metric-free model is then characterized by four

dimensionless control parameters: the noise strength η,
the ratio of the mfp to the effective interaction radius,
Λ = λ/Reff, the partner number M , and the normal-

ized system size, L̃ = L/λ, of the L × L simulation box
with periodic boundary conditions. Secondary parame-
ters of less obvious physical relevance, such as the total
particle number N and the average density ρ0 = N/L2

can be easily expressed in terms of the four character-
istic parameters, for example, using Eq. (3) one finds,

N = MΛ2L̃2/π. The thermodynamic limit, N → ∞, is

then equivalent to L̃ → ∞ while keeping M , η and Λ
constant.

III. KINETIC THEORY

Recently, a kinetic formalism for the Vicsek model be-
yond the Boltzmann theory has been developed [6]. Such
an approach is particularly useful for the metric-free VM,
where particles always interact with about four to seven
neighboring particles at once. These genuine multi-body
interactions cannot be described by the binary collision
approximation of the Boltzmann equation [21].
The starting point for the kinetic formalism is a

discrete-time Master equation in 3N-dimensional phase
space for the N-particle probability density

P (θ(N),X(N) + τV(N), t+ τ) =
1

ηN

∫ η/2

−η/2

dξ(N)

×
∫ 2π

0

dθ̃(N) P (θ̃(N),X(N), t)

N
∏

i=1

δ̂(θi − ξi − Φi) (5)
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where X
(N) ≡ (x1,x2, . . . ,xN ) and θ(N) ≡

(θ1, θ2, . . . , θN ). The periodically continued delta

function δ̂(x) =
∑∞

m=−∞ δ(x + 2πm) accounts for
angular periodicity, θ ≡ θ + 2πm. The velocities
V

(N) ≡ (v1,v2, ...,vN ), are given in terms of angle
variables, vi = v0(cos θi, sin θi). The collision integral

contains integrations over the pre-collisional angles θ̃j
and over N independent sources of angular noise. This
equation is exact and can also be interpreted as the
discrete-time analogue of the Liouville equation. Equa-
tions of this type have been used before, for example, to
analyze particle-based simulation methods for fluid flow
[24, 25].
Assuming that particles are uncorrelated prior to col-

lisions, the probability distribution can be expressed as
a product of identical one-particle probability distribu-

tions: P (θ(N),X(N)) =
∏N

i=1 P1(θi,xi). This approxi-
mation of molecular chaos (MC) is valid at moderate and
large noise strength η and large mean free path λ = τ v0
compared to the effective interaction radius Reff. It can
be seen as a dynamic mean-field approximation because
it neglects pre-collisional correlations.
The assumption of large mean free path, Λ =

λ/Reff ≫ 1 is not very realistic for a system of swarming
agents because it would allow agents to bypass others at
very close distances without including them in the sub-
sequent interaction. Nevertheless, the MC ansatz is very
useful for several reasons. First, approximations some-
times turn out to have a much larger range of validity
than expected. For example, in a particle-based simula-
tion method for fluid flow [26], the MC approximation
gave correct results for most transport coefficients down
to Λ = 0.1. Second, the MC ansatz generates the lowest
order terms in an expansion of the exact kinetic theory in
the parameter ε = 1/Λ and thus can be seen as the first
step towards a more complete theory. In this paper, we
analyze these MC contributions and leave higher order
terms for future work.
The usual procedure [24, 25] to derive a kinetic equa-

tion for the one-particle distribution function, f(θ,x, t) =
NP1(θ,x, t), is to multiply the N-particle equation with
the microscopic one-particle density,

∑

i δ(θ−θi)δ(x−xi),
for the field variables (θ,x), and to integrate over all
phases, that is all particle positions xi and angles θi.
The left hand side of eq. (5) reduces then to NP1(θ,x+
τ v, t + τ) = f(θ,x + τ v, t + τ) because integrating out
k phases leads to N − k particle probabilities such as in
the following example,

∫

dθi dxiP (θ(N),X(N)) = P (θ(N−1),X(N−1)) . (6)

The collision term on the r.h.s. of Eq. (5) becomes

I(θ,x) =
N

η

∫ η/2

−η/2

dξ

∫

V

dx2 . . . dxN

∫ 2π

0

dθ̃1 dθ̃2 . . . dθ̃N

× δ̂(θ − ξ − Φ1)
f(θ̃1,x)

N

f(θ̃2,x2)

N
. . .

f(θ̃N ,xN )

N
. (7)

FIG. 1: Illustration for the derivation of Eq. (8) with M = 5
collision partners. The selected particle 1 is fixed to the center
of the circle of radius Rj . Particle 2 is integrated over the
ring with inner radius Rj and outer radius Rj+1 = Rj +∆R
whereas the remaining M−2 collision partners are integrated
over the inner circle.

The overall prefactor N results from the fact that the
particles are physically identical and thus every δ(θ −
θi)δ(x − xi) term in the one-particle density yields the
same contribution. In Eq. (7), without loss of generality,
particle 1 was chosen to play a preferred role. Its position
x1 is fixed to the field point x but the positions of the
other particles 2, 3, . . .N must be integrated over. These
integrations are more difficult than they appear because
the average angle Φi has an implicit dependence on all
particle positions. For example, in a system with M = 4
interaction partners, if particles 2,5, and 7 happen to be
the closest ones to particle 1, only they are included in the
calculation of the average angle, Φ1 = Φ1(θ̃1, θ̃2, θ̃5, θ̃7),
but none of the others. If for example, x2 is moved fur-
ther away from x, another particle, say number 9, might
become one of the closest four and will replace particle
2 in the calculation, thus Φ1 = Φ1(θ̃1, θ̃9, θ̃5, θ̃7). For
yet another spatial arrangement of particles, Φi is deter-
mined by a different set of M particles. That means,
the 2N − 1 position and angular integrals are not inde-
pendent of each other, they are coupled by the singular

collision kernel δ̂(θ − ξ − Φ1). Fortunately, it is possible
to rearrange the collision term and to reduce the number
of integrals from infinity (in the thermodynamic limit,
N → ∞) to the small finite number 2M − 1. In contrast
to other kinetic approaches [21] no additional approxi-
mations are required (see also Appendix D).

The main idea is to draw a set of concentric circles
with radii Rj = j∆R, j = 1, 2 . . .∞, around particle 1
at x1 = x. The circle distance, ∆R, will eventually be-
come infinitesimal. Next, one picks M − 1 particles out
of the available N particles, puts one of them in the ring
j (between Rj+1 and Rj) and distributes the other M−2
ones inside the circle of radius Rj , see Fig. 1. The re-
mainingN−M particles are placed outside the ringRj+1.
There is (N−1)(N−2)!/((M−2)!(N−M)!) possibilities
to segregate particles into three general areas: outside,
inside the inner circle and inside the ring. The outside
particles are allowed to move over the entire space but
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without crossing into the ring or the inner circle. The
single particle in the ring can move inside the ring only,
and the inner circle particles are allowed to take any po-
sition within that circle but cannot cross into other areas.
For fixed ring label j these rules describe all possibilities
to have exactly M interaction partners within a circle of
radius Rj+1 but not within a smaller circle Rj . Situa-
tions where there is more than one particle in the ring
are irrelevant in the limit ∆R → 0 because the probabil-
ity for these events goes faster to zero than the one for
single occupancy of the ring. By increasing j to j + 1,
that is by going to the next larger ring and redistribut-
ing particles into the three zones, one realizes that none
of the new configurations could have already occurred at
smaller j. We have thus constructed an alternative de-
scription of the particle positions in terms of ring number
j, particle labels and positions inside three distinct zones.
For ∆R → 0 this representation is completely equivalent
to the original description in terms of (x1,x2, . . . ,xN ),
meaning that no double counting or omission of config-
urations occur. This new description is crucial for the
evaluation of the position integrals because for every con-
figuration the identity of the M interacting particles is
fixed. The collision integral, eq. (7), can now be split in
an infinite sum over the radii Rj where M particles are
inside Rj +∆R and where N −M particles are outside,

I(θ,x) =
N(N − 1)(N − 2)!

η(M − 2)!(N −M)!

∫ η/2

−η/2

dξ

∫ 2π

0

dθ̃1 . . . dθ̃N

∑∞
j=1

∫

R(j)

dx2

∫

C(j)

dx3 . . . dxM

∫

O(j)

dxM+1 . . . dxN

× δ̂(θ − ξ − Φ1)
f(θ̃1,x)

N

f(θ̃2,x2)

N
. . .

f(θ̃N ,xN )

N
.(8)

The index R(j) at the first spatial integral denotes inte-
gration over a thin ring centered around x with inner and
outer radii Rj = j∆R and Rj+1 = (j + 1)∆R, respec-
tively. The index C(j) means that the integration goes
over the entire interaction circle with radius Rj , and O(j)
denotes integration over the area outside a circle with ra-
dius Rj+1. The combinatorial prefactor can be simplified
for large N as

N !

(M − 2)!(N −M)!
≈ NM

(M − 2)!
(9)

and using the definition of the particle density ρ as the
zeroth moment of f ,

∫ 2π

0

f(θ,x) dθ̃ = ρ(x), (10)

the integration over the angles θ̃M+1 . . . θ̃N of the outside

particles can be performed,

I(θ,x) =
1

η(M − 2)!

∫ η/2

−η/2

dξ

∫ 2π

0

dθ̃1 . . . dθ̃M

∑∞
j=1 Pj(x)

∫

R(j)

dx2

∫

C(j)

dx3 . . . dxM (11)

δ̂(θ − ξ − Φ1)f(θ̃1,x) . . . f(θ̃M ,xM ) (12)

where Pj is the contribution from the outside particles,

Pj(x) =

∫

O(j)

dxM+1 . . . dxN
ρ(xM+1)

N

ρ(xM+2)

N
. . .

ρ(xN )

N
.

(13)
Defining the average particle number in a circle of radius
Rj+1 centered around x as

M j(x) =

∫

C(j+1)

ρ(x′) dx′ (14)

and using the fact that integrating the density over the
entire space is equal to the total particle number N ,

∫

all space

ρ(x′) dx′ = N (15)

one finds that

∫

O(j)

ρ(x′)

N
dx′ = 1− M j(x)

N
(16)

which, in the thermodynamic limit, gives

Pj = lim
N→∞

(

1− M j

N

)N−M

= e−Mj (17)

Combining Eqs. (12) and (17) leads to the final evolution
equation for the one-particle density of the metric-free
model

f(θ,x+ τ v(θ), t + τ) =

lim
∆R→0

1

(M − 2)!

∫ η/2

−η/2

dξ

η

∫ 2π

0

dθ̃1 . . . dθ̃M

∑∞
j=1 e−Mj(x)

∫

R(j)

dx2

∫

C(j)

dx3 . . . dxM (18)

× δ̂(θ − ξ − Φ1)f(θ̃1,x)f(θ̃2,x2) . . . f(θ̃M ,xM )

Eq. (18) has a highly nonlocal and nonlinear colli-
sion term. For example, the exponent M j is a func-
tional of the density ρ which is itself a functional of f ,
M j = M j [ρ[f ]]. However, this equation is still analyti-
cally tractable. Note the integrations across interaction
radii which describe collisional momentum transfer – a
key feature of the Enskog equation – and absent in Boltz-
mann approaches [7, 21], see Appendix D.
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IV. HOMOGENEOUS SOLUTIONS AND

PHASE DIAGRAM

It is useful to first study homogeneous stationary solu-
tions, f(θ,x, t) = f̄(θ), of the Enskog-like kinetic equa-
tion (18). The integrands are now independent of posi-
tion, and, for infinitesimal ∆R, the ring integral and the
circle integrals in (18) can be replaced by

∫

R(j)

dx2 ≃ 2πRj ∆R

∫

C(j)

dx3 = πR2
j and

M j = π(Rj +∆R)2ρ0 ≃ πR2
jρ0 . (19)

For ∆R → 0, the sum
∑

j ∆R goes over to the integral
∫

dR, and after substituting z = R
√
πρ0 one finds for

the r.h.s. of Eq. (18),

I(θ) =
ΨM (θ)

ρM−1
0

2

(M − 2)!

∫ ∞

0

z2M−3exp(−z2) dz

ΨM (θ) =
1

η

∫ η/2

−η/2

dξ

∫

dθ̃1 . . . dθ̃Mδ(θ − ξ − Φ1)

×f̄(θ̃1)f̄(θ̃2) . . . f̄(θ̃M ). (20)

The integral over z is solvable for all M ,

2

(M − 2)!

∫ ∞

0

z2M−3exp(−z2) dz = 1 (21)

and the kinetic equation (18) takes the form of a nonlocal
fixed point equation for the function f̄(θ),

f̄(θ) = I(θ) =
ΨM (θ)

ρM−1
0

(22)

This equation constitutes a nonlinear singular Fredholm
integral equation of the second kind.

A. Disordered state

From direct numerical simulations of VM-like models
[3, 5] and from previous analytical work on the regular
VM [6], we expect f = f0 = ρ0/(2π) to be a fixed point of
the collision integral, independent of noise strength and
partner number M . This constant solution describes the
disordered phase of the model because it does not depend
on the angle, and thus every flying direction θ occurs
with the same probability. In order to check this expec-
tation we expand the collision operator of Eq. (22) into
an angular Fourier series which regularizes the singular

collision kernel δ̂(θ − ξ − Φ1),

I(θ) = C0 +

∞
∑

k=1

[Ckcos(kθ) +Hksin(kθ)] (23)

where

C0 =
1

2π

∫ 2π

0

I(θ)dθ

Ck =
1

π

∫ 2π

0

cos(kθ) I(θ)dθ

Hk =
1

π

∫ 2π

0

sin(kθ) I(θ)dθ for k > 0 (24)

Since f0 does not depend on θ, only integrals of type
∫ 2π

0
cos(kΦ1) dθ̃1 . . . dθ̃M and

∫ 2π

0
sin(kΦ1) dθ̃1 . . . dθ̃M

occur when f0 = ρ0/(2π) is inserted into ΨM in Eq. (20)
and Ck and Hk are evaluated. These integrals vanish
for nonzero k because the average angle Φ1 takes all val-
ues between 0 and 2π with the same probability. Hence,
Ck = Hk = 0 for k > 0 and it remains to find C0. After
integrating over the noise and the pre-collisional angles

one obtains
∫ 2π

0
ΨM dθ = ρM0 and

C0 =
ρ0
2π

= f0 (25)

Thus, we indeed find that f0 is always a fixed point of
the collision operator I,

I[f0] = f0 . (26)

This is a nice confirmation that the alternative repre-
sentation of the particle configuration in terms of rings,
described in the previous section, is correct, and that no
relevant configurations were left out or overcounted.

B. Ordered state

An ordered state of self-propelled particles is charac-
terized by particles which have the same nonzero average
flying direction. Such a state breaks the rotational sym-
metry of the model and represents another fixed point
of the integral equation (22). Its one-particle density,
ford, depends on the angle and has a maximum at some

arbitrary angle θ̂ which is the direction of ordered mo-

tion. We choose θ̂ = 0 because then only Fourier cosine
coefficients are needed,

ford(θ) =
∞
∑

k=0

gk cos(kθ) (27)

The integral equation (22) reduces to an infinite set of
algebraic equations,

gk = Ck(g0, g1, . . . g∞) (28)

where the Ck are the Fourier coefficients of the collision
operator I(θ), see Eq. (24). The calculations for k = 0
are identical to the ones for the disordered phase analyzed
above, thus g0 = C0 = ρ0/(2π). To proceed, we assume
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M 1 2 3 4 5 10

K1
c 1/2 1/π 0.2624 0.2249 0.2008 0.141

TABLE I: Analytical (M = 1, 2, 3) and numerical results
(M ≥ 4) for the integrals defined in Eq. (30). The asymptotic

behavior for M → ∞ is, K1
c ∼

√

π/(16M).

that near a specific value of the noise, η = ηC , only the
lowest Fourier modes are relevant,

g0 ≫ g1 ≫ g2 ≫ . . . (29)

which can be easily verified a posteriori. To find this
critical noise ηC , all terms with k > 1 are neglected, and
only the equation for k = 1 in (28) is evaluated. Inserting
f = ρ0/(2π) + g1cos(θ) into the collision operator and
solving Eq. (24) for C1 yields

C1 = g1Γ +O(g1g2g
M−2
0 )

Γ(η) =
4M

η
sin

η

2
K1

C(M) (30)

K1
C(M) =

1

(2π)M

∫ 2π

0

dθ̃1 . . . dθ̃M cosΦ1 cos θ̃1

Setting C1 = g1, η = ηC in Eq. (30) and using the
asymptotic vanishing of all higher modes, Eq. (29), at
the critical point leads to an implicit equation for the
critical noise,

Γ(ηC) = 1 . (31)

The M -dimensional integral K1
C was calculated numer-

ically for 2 ≤ M ≤ 20 as well as analytically for
M = 1, 2, 3 and M → ∞, see Appendix C and also Ta-
bles I and II. These calculations are very similar to the
ones for the network model of Ref. [10].
The critical noise is plotted as function of partner num-

ber M in Fig. 2. For large M , this mean field phase dia-
gram agrees well with the one of the regular Vicsek model
[6], and shows the same asymptotic behavior ηC → 2π
for M → ∞. This is because for large M , the probability
distribution for the actual radius of interaction becomes
very narrow, thus the observed radii of interaction are
very close to the average radius Reff. Alternatively, this
can be explained in the context of the regular VM. There,
for large density, the actual particle number in a circle
with fixed radius is very close to the average number M .
However, even at very large M , when the critical noise is
almost identical for both models, there remains to be an
important difference in the stability of the ordered phase
which we will analyze further below. As a result, the reg-
ular and the metric-free VM become only asymptotically
identical, at infinite M .

C. Order parameter calculations

The physical meaning of Γ, defined in Eq. (30), can be
understood by expressing the average particle momen-

0 1 2 3 4 5 6 7
                           M

0

1

2

3

4

η
C

Metric-free VM: Theory
Regular VM: Theory
Metric-free VM: Simulation

FIG. 2: The critical noise ηC of the metric-free VM calculated
from Eqs. (30, 31) as a function of the number of collision
partners M in comparison with results for the regular VM
from Ref. [6]. Direct simulation results for N = 5000 particles
and large Λ = λ/Reff = 5.66 are shown by the full circles. If
the noise η is below the symbols, the system is found in the
ordered phase with a non-zero total momentum. The dashed
line just serves as a guide to the eye.

tum w as the first moment of f ,

w = ρu =

∫ 2π

0

v(θ)f(θ)dθ (32)

v = v0(cos θ, sin θ) , (33)

where u is the local macroscopic velocity. According to
Eq. (27) we also have

g1 =
1

π

∫ 2π

0

cos θ f(θ) dθ =
wx

πv0
(34)

Hence, the Fourier mode g1 is proportional to the x-
component of the momentum whereas the y-component

is zero in the special case of θ̂ = 0 considered here. The
quantity Γ can be interpreted as the amplification fac-
tor of momentum which can always be locally created
or destroyed because the collision rules, Eq. (1), do not
conserve momentum. One finds that Γ < 1 for η > ηC .
Thus, above the critical noise, a small nonzero momen-
tum quickly goes to zero, and the system reaches the dis-
ordered phase with all gk = 0 for k > 0. Below the critical
noise, η < ηC , the amplification factor Γ is larger than
unity, an initially small momentum is amplified, higher
modes g2, . . . g∞ get excited until a stationary state with
nonzero momentum is reached. In order to quantitatively
describe this ordered state and to determine whether the
order-disorder transition is continuous or discontinuous,
the first few members of the hierarchy of equations have
to be analyzed for η < ηC . The smaller the noise η, the
more members have to be included in order to achieve
acceptable accuracy. It is convenient to normalize the
Fourier modes with 2g0 = ρ0/π,

Gk =
gk
2g0

(35)
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because, for zero noise, all modes gk, k > 0 become equal
to 2g0. The normalized modeG1 corresponds to the order

parameter |∑N
i=1 vi|/(v0N) typically used in direct sim-

ulations of flocking models [3, 5]. In order to keep track
of the relative sizes of terms, we introduce the book keep-
ing parameter ǫ and assume the scaling Gk ∼ ǫk. This
scaling was used previously [6] and can be easily verified
after the modes Gk have been calculated, see Fig. 3. In-
cluding terms up to order ǫ7, the first six members of the
fixed point equations in angular Fourier space, Eq. (28),
for M = 2 interaction partners were found as,

G0 =
1

2

G1 =
A1

π
(2G0G1 −

1

3
G1G2 +

1

5
G2G3 −

1

7
G3G4 + . . .

G2 =
A2

4
G2

1

G3 =
A3

π
(G1G2 −

2

3
G0G3 +

1

5
G1G4 −

1

7
G2G5 + . . .

G4 =
A4

4
G2

2

G5 =
A5

π
(G2G3 −

1

3
G1G4 +

2

5
G0G5 −

1

7
G1G6 + . . . with

Ak =
2M+1

ηk
sin

(

ηk

2

)

(36)

The r.h.s of Eq. (36) contains only quadratic terms be-
cause there is only binary interactions. For M = 3 only
cubic terms appear because all collisions are of three-
body type.
The general structure of the fixed point equations for

arbitrary M and k = 1, 2, . . .∞ is given by

Gk = Ak

∞
∑

{ij=0}

J (k)(i1i2i3 . . . iM )Gi1Gi2 . . . GiM

J (k)(i1i2i3 . . . iM ) = δ
(M)
k

1

(2π)M

×
∫ 2π

0

dθ̃(M) cos(kΦ)cos(i1θ̃1) . . . cos(iM θ̃M ) (37)

with dθ̃(M) ≡ dθ̃1 dθ̃2 . . . dθ̃M . The Kronecker symbol

δ
(M)
k ≡ δk,±i1±i2...iM (38)

emphasizes that an angular integral J (k)(i1i2i3 . . . iM ) is
nonzero only if some addition or subtraction of its lower
indices is equal to the hierarchy level, k = ±i1±i2 . . . iM .
For example, for M = k = 3 the term G3G2G2 would
appear in the equation for G3 since 3 + 2 − 2 = 3 but
not the term G2

1G2 because ±1 ± 1 ± 2 is never equal
to 3 for any combination of plus and minus signs. We
expect this property to be a consequence of rotational
symmetry but were not able to find a mathematical proof.
These angular integrals are M -dimensional and can be
evaluated analytically for certain cases such asM = 3 but
it is easier to determine them numerically, see Appendix

C. However, even the numerical evaluation is very time
consuming for high integral dimension M ≥ 7 and for
high mode numbers k and in.
If the fixed point hierarchy, Eq. (37) is truncated at

level k = kT and only terms up to order ǫkT are included,
a single algebraic equation of order kT −1 can be derived
for the order parameter G1. This equation was solved for
various truncation levels, see Fig. 3 a) for M = 2, Fig.
13 for M = 3, and Fig. 14 for M = 7. Even for relatively
large kT = 5, the accuracy quickly detoriates if the noise
is smaller than about 50 % of the critical noise, as seen
in Fig. 3 a). In order to overcome this restriction, the
integral equation, Eq. (22), was solved directly by an
iterative numerical procedure which resolves the distri-
bution function using 500 angular modes, details will be
given elsewhere [27]. In Fig. 3 one sees that this gives
excellent accuracy even very close to zero noise where
G1 = 1 is predicted analytically. Once G1 is known,
all the higher modes can be calculated and serve as the
ground state solution in the stability analysis presented
in the next section.
Evaluating the algebraic equation for G1 near the crit-

ical noise gives

G1 ∼
(

ηC − η

ηC

)1/2

, (39)

thus, leading to the critical exponent 1/2. This is ex-
pected for a mean field theory and was also found for the
regular VM [6]. This means that at the mean-field level
and as long as the ordered phase is stable against fluc-
tuations near the flocking threshold, the order-disorder
transition is continuous. One also finds the general scal-
ing Gk ∼ [(ηC − η)/ηC ]

k/2, which is confirmed in Fig.
3 b), Thus, the expansion parameter ǫ can be identified
with

ǫ ≡
√

ηC − η

ηC
. (40)

V. LINEAR STABILITY ANALYSIS

For the regular VM [6] and related metric models [7]
it has been shown that the homogeneous ordered state
is always unstable to long wavelength perturbations in
a small window ηS ≤ η ≤ ηC right below the flocking
threshold ηC . The strongest instability occurs for longi-
tudinal perturbations where the wave vector k of a per-
turbation is parallel to the average flying direction n̂ of
the homogeneous ground state. Once the angle between
n̂ and k increases beyond a critical angle, the system is
stable. This linear instability explains the formation of
large density bands in direct simulations of the VM [3, 5].
These bands, however, have not been observed in simu-
lations of the metric-free model [9, 19]. This leads to the
obvious hypothesis that the ordered state of the metric-
free model is stable. The question is whether it is linearly
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FIG. 3: Order parameter Ω = G1 and higher modes as a func-
tion of the noise for partner number M = 2. a) Analytical
calculations (dashed line) for G1 from Eq. (36) are compared
with the numerical solution (solid line) of the integral equa-
tion (22) and with direct simulations (circles) of N = 5000
particles at Λ = 5.66. The noise for the theoretical curves
was rescaled by ηC,theo = 2.34923, whereas the noise for the
simulation curve was rescaled by the slightly smaller critical
noise ηC,sim = 2.2713. b) The first three modes G1, G2 and
G3 are numerically determined from Eq. (22) and plotted
versus the distance to the threshold, ǫ = (ηC −η)/ηC in order

to verify the scaling Gk ∼ ǫk/2. The straight lines correspond
to the exponents 1/2, 1, and 3/2, respectively . Since G3 is
negative for 0.9 ≤ η/ηC < 1 the absolute value of G3 was
plotted, which leads to the spurious dip at ǫ ≈ 0.1.

or nonlinearly stable or whether it is unstable but only at
huge wavelengths beyond the system sizes used in direct
simulations.

In a previous paper [6], we had first derived the hy-
drodynamic equations from the kinetic description by a
Chapman-Enskog procedure and then analyzed the sta-

bility of the hydrodynamic equations. Such a derivation
is very tedious and involves several additional approxi-
mations such as considering only small spatial gradients
and assuming proximity to the flocking threshold where
higher kinetic modes are enslaved to the lower ones.
Here, we employ a much faster and more accurate ap-

proach to the stability of the model. Bypassing the hy-
drodynamic description completely, we directly impose
spatio-temporal perturbations into the kinetic equation
(18) and analyze their dynamics. Depending on the wave-
length and the distance to the threshold, ηC − η, the re-
sults of these calculations can be refined to the desired
accuracy by increasing the number of kinetic modes to
be included. The validity of hydrodynamic equations for
only density and momentum is questionable anyway for
models where momentum is not conserved because mo-
mentum can be considered a slow variable only in special
cases such as proximity to the threshold. Further away
from the threshold there is no a priori justification to ne-
glect higher kinetic modes since their relaxation rates are
not much different from the one of the momentum.
Introducing a small perturbation

δf(θ,x, t) =
∞
∑

n=0

[δgn cos (nθ) + δhn sin (nθ)]

δgn(x, t) = δĝn eik·x+ωt

δhn(x, t) = δĥn eik·x+ωt, (41)

of the homogeneous steady state f̄(θ), the distribution
function changes to f = f̄ + δf . The corresponding per-
turbations of the Fourier coefficients of f are denoted as
δgn and δhn. For brevity we will omit the time argument
in f , δgn and δhn in the following calculations. The col-
lision operator is now spatially dependent and involves
the following integrals

∮

R

dx′δgn(x
′) = 2πRJ0(kR)δgn(x)

∫

R

dx′δgn(x
′) =

2πR

k
J1(kR)δgn(x), (42)

which lead to
∮

R

dx′f(θ,x′) = 2πR f̄ + 2πRJ0(kR) δf(θ,x)

∫

R

dx′f(θ,x′) = πR2f̄ +
2πR

k
J1(kR) δf(θ,x). (43)

where J0 and J1 are the Bessel functions of the first kind.
Note, the integrals

∮

R dx′ and
∫

R dx′ integrate over the
circumference of and the area inside the circle with ra-
dius R centered around x respectively. Therefore these
integrals are still spatially dependent. The line integra-
tions in Eqs. (42, 43) are related to the ring integral of
Eq. (8) as,

∮

R

dx′ ≡ lim
∆R→0

∫

R

dx′

∆R
. (44)
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Therefore, after replacing
∑∞

j=0

∫

R(j) dx2 by the integral
∫∞

0 dR
∮

R dx′, we have

f(θ,x+ τv, t+ τ)

=
1

(M − 2)!

∫ η/2

−η/2

dξ

η
∫

dθ̃1 . . . dθ̃Mδ(θ − ξ − Φ1)f(θ̃1,x, t)

×
∫ ∞

0

dR

{

exp

[

−πR2ρ0 −
2πR

k
J1(k,R)δρ(x)

]

×
[

2πRf̄(θ̃2) + 2πRJ0(kR)δf(θ̃2,x)
]

×
M
∏

i=3

[

πR2f̄(θ̃i) +
2πR

k
J1(kR)δf(θ̃i,x)

]

}

. (45)

Expanding the exponential function in linear order

exp

[

−πR2ρ0 −
2πR

k
J1(kR)δρ

]

= e−πR2ρ0

(

1− 2πR

k
J1(kR)δρ

)

+O(δρ2) (46)

and integrating over the collision radius R, we arrive at

f(θ,x+ τv, t + τ)

=
1

ρM−1
0

1

η

∫ η/2

−η/2

dξ

∫

dθ̃1 . . . dθ̃Mδ(θ − ξ − Φ1)F(θ̃1, θ̃2, . . . θ̃M ) (47)

where

F(θ̃1, θ̃2, . . . θ̃M )

= f̄1 f̄2 f̄3 . . . f̄M

[

1− (M − 1)
δg0
g0

1F1(M, 2, z)

]

+δf1 f̄2 f̄3 . . . f̄M

+f̄1 δf2 f̄3 . . . f̄M 1F1(M − 1, 1, z)

+f̄1 f̄2 δf3 . . . f̄M 1F1(M − 1, 2, z)

+ . . .

+f̄1 f̄2 f̄3 . . . δfM 1F1(M − 1, 2, z)

+O(δ2). (48)

The abbreviations f̄j and δfj stand for f̄(θ̃j) and

δf(θ̃j ,x) respectively, and 1F1(a, b, z) is the confluent hy-
pergeometric function with argument z = −k2/(4πρ0),
see Appendix A. The nonlinear perturbations (denoted
as O(δ2)) will be neglected in the following. Since the
collision integral (47) is symmetric under permutation of

the pre-collision angles θ̃i, the integrand can be written

as

F(θ̃1, θ̃2, . . . θ̃M )

=

(

M
∏

i=1

f̄i

)

[

1− (M − 1)
δg0
g0

1F1(M, 2, z)

]

+δf1

(

M
∏

i=2

f̄i

)

[

1 + 1F1(M − 1, 1, z)

+(M − 2) 1F1(M − 1, 2, z)
]

. (49)

Note, the integrand Eq. (49) is the general form for M -
particles collision. For the special case, M = 2, where
there is no particle inside the inner circle, this simplifies

to F(θ̃1, θ̃2) = f̄1 f̄2

(

1− δg0
g0

ez
)

+ δf1 f̄2(1 + ez), where

1F1(a, a, z) = ez has been applied.

A. Fourier expansion of the collision integral

The strategy to derive the growth rate ω(~k) is to ex-
press both sides of Eq. (47) in terms of the angular
Fourier coefficients Cn(x, t) and Hn(x, t), in analogy to
the homogeneous case, Eq. (24). By equating the dif-
ferent expressions for Cn and Hn obtained from the left
hand and the right hand side of Eq.(47), a matrix equa-
tion for the perturbations δgk and δhk is constructed.
The dispersion relation ω(k) follows from demanding
that there is a nontrivial solution.
To check the validity of our approach, in particular

expansion Eq. (46), we first calculate the zero mode C0

of the collision integral on the r.h.s. of Eq. (47), namely

C0 =
1

2π

∫ 2π

0

I[f(θ̃,x, t)] dθ (50)

= g0 + δg0 [1 + 1F1(M − 1, 1, z)

+ (M − 2) 1F1(M − 1, 2, z)− (M − 1) 1F1(M, 2, z)]

The confluent hypergeometric functions cancel according
to the identities

1F1(a, b − 1, z)− 1F1(a+ 1, b, z) =
(a− b+ 1)z

b(b− 1)
(51)

× 1F1(a+ 1, b+ 1, z)

1F1(a+ 1, b, z)− 1F1(a, b, z) =
z

b
1F1(a+ 1, b+ 1, z),

and one finds

C0(x, t) = g0 + δg0(x, t) =
1

2π
ρ(x, t) (52)

This is the expected result because the collisions do
change the local velocity and other moments but they
do not modify the local density ρ. The local density is
the zeroth moment of f . Thus, the invariance of density
under collisions requires

ρ =

∫

f(θ)dθ =

∫

I[f(θ)]dθ = 2πC0 (53)
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which is exactly what we found in Eq. (52).
The non-zero modes of the collision integral are

Cn6=0 = Ãn

∫

dθ̃1 . . . dθ̃MF(θ̃1, θ̃2, . . . θ̃M ) cos (nΦ),

Hn6=0 = Ãn

∫

dθ̃1 . . . dθ̃MF(θ̃1, θ̃2, . . . θ̃M ) sin (nΦ).

(54)

where

Ãn =
1

ρM−1
0

2

πnη
sin
(nη

2

)

. (55)

For a homogeneous ordered state close to the flocking

threshold, one has gn ∼ ǫn ∼
(

ηC−η
ηC

)n/2

, where ǫ mea-

sures the relative distance to the critical point, see Eq.
(40). Suppose we want to expand Cn and Hn up to order
of ǫz, we will need all the integrals

∫

dθ̃1 . . . dθ̃MT0(nΦ)T1(k1θ̃1) . . . TM (kM θ̃M ) (56)

which satisfy k1 + k2 + . . . + kM ≤ z, where ki is a
non-negative integer and function Ti(x) is either sin(x)
or cos(x). However, not all the integrals have non-zero
value. We found that integrals which do not satisfy the
condition, ±n ± k1 ± k2 ± . . . ± kM = 0, vanish. Fur-
thermore, if the total number of sin function inside the
integral, including sin(nΦ), is odd, the integral also van-
ishes. For the binary collision case, M = 2, by defining

Kccc
npq ≡ 〈cos (nΦ) cos (pθ̃1) cos (qθ̃2)〉

Kcss
npq ≡ 〈cos (nΦ) sin (pθ̃1) sin (qθ̃2)〉

Kscs
npq ≡ 〈sin (nΦ) cos (pθ̃1) sin (qθ̃2)〉

(57)

with 〈. . .〉 ≡
∫ 2π

0
dθ̃1

∫ 2π

0
dθ̃2/(2π)

2, we have for odd n,

Kccc
npq = (+a1 + a2 + a3)/(2π)

Kcss
npq = (−a1 + a2 + a3)/(2π)

Kscs
npq = (+a1 − a2 + a3)/(2π)

a1 ≡ ip−q−1

p− q
δp+q,n

a2 ≡ ip+q−1

p+ q
δp−q,n

a3 ≡ ip+q−1

p+ q
δq−p,n , (58)

where i is the imaginary unit. When n is even we find

Kccc
npq = +

1

4
δ2p,nδ2q,n

Kcss
npq = −1

4
δ2p,nδ2q,n

Kscs
npq = +

1

4
δ2p,nδ2q,n (59)

B. Fourier expansion on the left-hand side

So far we have considered the Fourier expansion of
the collision integral, which is the right-hand side of the
Enskog-like equation (47). On the left-hand side, writing
down the Taylor expansion around (x, t), we have

f(θ,x+ τv, t+ τ) =

∞
∑

n=0

τn

n!
(∂t + vα∂α)

n
f(θ,x, t)

= f̄ + eτ(ω+ik·v)
∞
∑

q=0

[

δgq cos (qθ) + δhq sin (qθ)
]

(60)

The wave vector k is split into a longitudinal part and a
transversal part with respect to the average direction of
the ordered state n̂, k = k||n̂+k⊥t̂. Since the coordinate
system was chosen with normal direction n̂ = (1, 0) and
transversal direction t̂ = (0, 1), one finds

k · v = v0(k|| cos θ + k⊥ sin θ) (61)

The identities

eix cos θ = J0(x) + 2
∞
∑

n=1

Jn(x)i
n cos (nθ) (62)

eix sin θ = J0(x) + 2i

∞
∑

n=1

J2n−1(x) sin (nθ)

+ 2
∞
∑

m=1

J2m(x) cos (mθ) , (63)

are used to express the factor eτik·v in Eq. (60) in terms
of Bessel functions. Because of simplicity and because
the strongest instabilities of the original Vicsek model
occur in the longitudinal direction, where k = k||n̂, we
restrict ourselves to this case. It is straightforward to
generalize the following analysis to arbitrary directions
of the wave vector. Using Eq. (62) we rewrite Eq. (60)
as

f(θ,x+ τv, t + τ) =

∞
∑

j=0

gj cos jθ

+ eτω

[

J0(τvk) + 2

∞
∑

p=1

Jp(τvk)i
p cos (pθ)

]

×
∞
∑

q=0

[

δgq cos (qθ) + δhq sin (qθ)
]

(64)

This can be further converted into the Fourier series

f(θ,x+ τv, t + τ) = C0 + C1 cos θ + C2 cos (2θ) + . . .

+ H1 sin θ +H2 sin (2θ) + . . . , (65)
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and allows us to read off the coefficients Cn and Hn.
Since, for non-negative integers p, q, and n

〈cos (pθ) cos (qθ) cos (nθ)〉 =
δp+q,n + δp−q,n + δq−p,n

4

〈cos (pθ) sin (qθ) sin (nθ)〉 =
δp+q,n − δp−q,n + δq−p,n

4
(66)

with 〈. . .〉 =
∫ 2π

0 dθ/(2π) we have

C0 =
1

2π

∫ 2π

0

f(θ,x+ τv, t + τ) dθ

= g0 + eτω
∞
∑

p=0

ipJp δgp

Cn6=0 =
1

π

∫ 2π

0

f(θ,x+ τv, t + τ) cos (nθ) dθ

= gn + eτω
[

J0 δgn (67)

+

∞
∑

p=1,q=0

ipJp δgq (δp+q,n + δp−q,n + δ−p+q,n)
]

= gn + eτω
∞
∑

q=0

(

i|n−q|J|n−q| + in+qJn+q

)

δgq

Hn6=0 =
1

π

∫ 2π

0

f(θ,x+ τv, t + τ) sin (nθ) dθ

= eτω
[

J0 δhn

+

∞
∑

p=1,q=0

ipJp δhq (δp+q,n − δp−q,n + δ−p+q,n)
]

= eτω
∞
∑

q=0

(

i|n−q|J|n−q| − in+qJn+q

)

δhq. (68)

In the following, we show examples of Cn and Hn in the
expansion up to order ǫ2,

C0 = g0 + eτω[J0δg0 + iJ1δg1 − J2δg2 + . . .]

C1 = g1 + eτω[2iJ1δg0 + (J0 − J2)δg1

+ i(J1 − J3)δg2 + . . .]

C2 = g2 + eτω[−2J2δg0 + i(J1 − J3)δg1

+ (J0 + J4)δg2 + . . .]

H1 = eτω[(J0 + J2)δh1 + i(J1 + J3)δh2 + . . .]

H2 = eτω[i(J1 + J3)δh1 + (J0 − J4)δh2 + . . .]. (69)

Equating the expansion of the left-hand side, Eqs. (67,
68), to the one of the right-hand side, Eq. (54), a matrix

equation of the following general structure is found,























C00 C01 · · · A01 A02 · · ·
C10 C11 · · · A11 A12 · · ·
...

...
. . .

...
...

. . .

B10 B11 · · · H11 H12 · · ·
B20 B11 · · · H21 H22 · · ·
...

...
. . .

...
...

. . .













































δg0
δg1
...

δh1

δh2

...























= 0 (70)

According to Eq. (34), for the case k = k|| = kx̂ con-
sidered here, the δgi represent longitudinal perturbations
which describe a change of the magnitude but typically
not of the direction of mean flow. The δhi stand for
transversal perturbations which describe odd variations
of the distribution function, δf(θ) = −δf(−θ), and mod-
ify the flow direction. Since we only consider linear per-
turbations, the Cn of Eq. (67) are found to only depend
on δgj but not on δhj . Similarly, Hn depends only on
δhj . Therefore, the block matrices Aαβ and Bαβ are zero.
That means, the δgj, are decoupled from the δhj .
The modes δgn and δhn are neglected for n ≥ nC and

the block matrices Cαβ and Hαβ are truncated corre-
spondingly. This truncation is motivated by the obser-
vation that, for any nonzero noise, the angular Fourier
modes, gn, of the homogeneous ordered state decay to
zero with increasing mode number n. It is plausible to
assume that the perturbations of these modes, δgn and
δhn, show a similar behavior. Of course, this decay will
be quite slow if the noise is much smaller than the criti-
cal noise ηC . This requires a sufficiently large truncation
mode number nC . Its correct choice is discussed in the
following chapter and shown in Fig. 11.
Setting the determinants of both matrices equal to zero

leads to 2nC − 1 different branches of the dispersion re-
lation ω(k). The real part of the growth rate, Re(ω), of
a few of these branches is plotted in Figs. 4 – 11 for dif-
ferent distances to the threshold and for various partner
numbers M .

C. Results and discussion

In order to analyze the dispersion relation we distin-
guish between longitudinal and transversal modes. The
longitudinal modes are shown in the left panels of Figs.
4 – 8 and 10 and are characterized by changes in the
density δρ ∝ δg0 and in the x-component of the average
flow δwx ∝ δg1. These changes are always accompanied
by corresponding perturbations of the higher order an-
gular coefficients, δg2, δg3, . . . δgnC−1. The right panels
depict the growth rates of the transversal modes. We
further distinguish between hydrodynamic and kinetic
modes. The hydrodynamic modes correspond to exactly
conserved quantities and go to zero for k → 0. In Figs.
4 – 8 and 10 they are plotted as solid lines. The kinetic
modes, defined as those going to a non-zero value at zero
wave number, are given as dashed lines. The figures show
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that there are only two hydrodynamic modes. This is ex-
pected because only two quantities are exactly conserved
in the collisions: mass and the individual kinetic energy
of every particle since the particles’ speed never changes.
A closer look reveals that the hydrodynamic mode de-
picted in the left panels of the figures is a sound mode
which is related to longitudinal changes of x-momentum
and density. The hydrodynamic mode in the right panels
of Figs. 4 – 10 corresponds to changes of the y-component
of the momentum. At zero k this mode describes the re-
sponse to a small rotation of all particle velocity vectors
by the same amount. Due to rotational invariance this
is a Goldstone-mode which meets no resistance and ω is
zero.
We label the top dashed line in the left panels as a

“pseudo”-hydrodynamic mode because ω(k = 0) is zero
only at the critical point, η = ηC but is negative away
from this point. This mode is related to the fact that, in
general, momentum is not conserved in VM-like models
but at the critical point there is no amplification of mo-
mentum perturbations. Another way to understand this
is to look at the hydrodynamic equation for the momen-
tum of the VM, Eq. (5) in Ref. [6], which has the general
shape

∂tw = (Γ− 1)w +O(w2
w) + . . . (71)

where Γ is the amplification factor defined in Eq. (30).
At the critical point, Γ(ηC) = 1 and w is small. Thus,
at η = ηC , in linear order in the momentum density w,
momentum is conserved.
In the left panels of Figs. 4 – 6 we observe that the

“pseudo”-hydrodynamic curve drops to lower negative
values the further away one is from the critical point.
In Fig. 6, at η = 0.6ηC , we are so far away from the
critical point that this mode has now similar relaxation
rates as the other purely kinetic modes.
The main result of this linear stability analysis is that

there is no longwave instability. In particular, we found
that Re(ω) of the sound mode, like all other modes, is al-
ways negative at small wave numbers. This is in contrast
to the regular VM whose modes we show for comparison
in Fig. 10. For the VM, the sound mode is clearly unsta-
ble at wave numbers below kC , confirming the previous
result from Ref. [6] which was based on hydrodynamic
equations. In the right panels of Fig. 10 we see that all
transversal modes are stable. More details on the regular
VM will be reported elsewhere, [27].
For small truncation level nC we did see an instability

at higher wavenumbers, for kλ ' 2.6. However, when nC

is increased, this region is shifted to even higher k ≫ 1
whereas ω remained unchanged at low wavenumbers, see
Fig. 11. This strongly suggests that the short wavelength
instability is spurious. It is just a result of neglecting
higher order terms in Eqs. (37) and/or (70) that can
be easily remedified. This result is also consistent with
direct simulations of Ref. [19] which showed no sign of
instabilities at any k. For partner number M = 2 we in-
vestigated how far from the threshold one can go and still

have linear stability of all modes. Figs. 4, 5 and 6 show
that no instability occurs down to η = 0.6ηC . We did
not go to even lower noise because many more terms of
the ground state solution Gn and also more perturbation
modes δgn would be needed to achieve reliable results.
Finally, we were interested in how the large partner num-
bers seen in experiments [9, 22] modify linear stability.
Calculating ω(k) for all M between two and seven, see
Figs. 7, 8 and 9, it is clear that the situation becomes
even better: the larger M is, the more stable the modes,
especially the sound mode, become.

To conclude, at M = 2 – 7 there is no signs of linear in-
stability in the metric-free model at or below the flocking
threshold. This supports previous claims based on direct
simulations [19] that the order-disorder transition in this
model is continuous and is not made discontinuous by
linear instabilities near the threshold.

To understand why the long wave-length instability of
the regular VM does not appear in the metric-free ver-
sion, let us compare the momentum amplification factor
Γ for both models. According to Eq. (30), for the metric-
free case, Γ depends on the partner number M which is
a constant. Thus Γ is the same in regions of low and
high particle density. This is not the case for the met-
ric VM. The amplification factor (which is defined as λ
in Eq. (3) of Ref. [6]) depends on the local number of
collision partners MR(x) which is proportional to the lo-
cal density. Analyzing this expression shows that, in the
metric case, Γ is monotonically increasing with density
and at high density scales as Γ ∼ √

ρ. As a result the
critical noise ηC also increases with density. A possible
explanation for the longitudinal instability of the regu-
lar VM goes then as follows: Assume a spatial region of
low density, ρL < ρ0. The local critical noise, ηC(ρL)
is small, and hence this region corresponds to a point in
either the disordered part of the phase diagram or to a
point which is only slightly below the flocking threshold.
This means, on average, particles go in almost all direc-
tions and the macroscopic local velocity w/ρ is small or
zero. This is consistent with a small amplification rate
Γ ≈ 1 and also with Figs. 3a) and 13, which show that
the average speed decreases monotonically if the flocking
threshold is approached from inside the ordered phase.
In a dense region with ρD > ρ0, the local critical noise,
ηC(ρD) would be significantly larger than η. This region
is then described by a point deep inside the ordered part
of the phase diagram. Thus, particles would be strongly
aligned and the average local speed would be large, con-
sistent with a large Γ. These are exactly the conditions to
form a density wave: particles in high density regions are
more aligned and “invade” regions of lower density where
particles perform a slower average motion and thus are
“not organized enough” to escape from the dense crowd
coming in. In the metric-free model, the local density
does not couple to the average particle motion in this
way. The mechanism for density wave formation dis-
cussed above is absent. A similar discussion of the ab-
sence of instabilities in metric-free models is given in Ref.
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FIG. 4: Real part of the growth rate ω as a function of
wave number for M = 2, close to the flocking threshold, at
η = 0.99ηC , calculated from Eq. (70). Other parameters:
Λ = 2, ρ0 = 0.1.The ground state solution is accurate up to
order ǫ5. Perturbations δgn, δhn with n ≥ 6 were neglected.
Part a) shows solution branches for the determinant equa-
tion, det(C) = 0, where the block matrix Cαβ is defined in
Eq. (70). These curves describe different longitudinal exci-
tations where typically all angular perturbation coefficients
δg0, δg1, . . . δgn are nonzero. Within a particular excitation
mode and for a given wave number, the coefficients δgn occur
in fixed specific ratios to each other. Part b) shows the real
part of the growth rate for different transversal modes which
are composed of the δh1, δh2, . . . δhn. Hydrodynamic modes
are plotted as solid lines, the kinetic modes are dashed. Parts
c) and d) are just zoomed in versions of a) and b), respectively,
to better show the small k behavior.

[21]. In appendix D we relate our approach to the work
of Ref. [21] and investigate the role of collisional momen-
tum transfer by considering various limits of the general
Enskog-like kinetic equation, Eq. (18).

VI. DIRECT NUMERICAL SIMULATION

In order to verify our analytical results we also per-
formed direct numerical simulations of the model defined
in Eq. (1). A quadratic simulation box of size L×L with
periodic boundary conditions is used and seeded with N
particles. Their initial positions and flying directions are
chosen at random. For every particle i, the distances to
all other particles are measured and the M − 1 particles
with the smallest distances are defined as the neighbors
of particle i. This differs from the neighboorhood defini-
tion of Ref. [19] by means of a Voronoi-construction.
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FIG. 5: Real part of the growth rate ω as a function of wave
number for M = 2 and η = 0.90ηC . Notation and other
parameters are the same as in Fig. 4.
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FIG. 6: Real part of the growth rate ω as a function of wave
number for M = 2 far from the flocking threshold at η =
0.60ηC . Notation and other parameters are the same as in
Fig. 4.
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FIG. 7: Real part of the growth rate ω as a function of wave
number for M = 3 close to the flocking threshold, at η =
0.99ηC . Other parameters are the same as in Fig. 4.
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FIG. 8: Real part of the growth rate ω as a function of wave
number for M = 7 at η = 0.99ηC . Other parameters are the
same as in Fig. 4.
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FIG. 9: Real part of the growth rate ω of the sound mode for
different M at η = 0.99ηC . Other parameters are the same
as in Fig. 4.

After the system had relaxed into a stationary state,
we performed a time average of the order parameter

Ω =
1

Nv0

∣

∣

∣

∣

∣

N
∑

i=1

vi

∣

∣

∣

∣

∣

(72)

and plotted it as a function of various parameters, see
Figs. 13 and 14. While typical particle numbers are N =
1000 and 5000, we first performed a test at N = M =
2 because an exact result without the molecular chaos
approximation can be derived for the order parameter

Ω =







(

4
η sin η

4

)2

if η ≤ π

8
[

1 + η − π + cos η
2

]

/η2 if π ≤ η ≤ 2π
(73)

see Eqs. (83, 88) in Appendix B. As seen in Fig. 12 the
simulations for N = 2 are in excellent agreement with
this formula.
Another analytical result was obtained for maximum

noise strength η = 2π where a mapping to a random walk
can be utilized and for large N

Ω(η = 2π) ≈ 7

8

1√
N

(74)

is obtained, see Appendix B. Our simulations were also
in excellent agreement with this expression. The deriva-
tion of the phase diagram relied on the approximation of
molecular chaos. For nonzero noise and finite M , this ap-
proximation becomes exact at infinite mean free path λ.
Therefore, the order parameter and the phase diagram
were measured at a large ratio Λ = λ/Reff = 5.6 and
compared with analytical results in Figs. 13 and 14. In
order to investigate the importance of the mean free path
(mfp), the critical noise at fixed M but different Λ was
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FIG. 10: Regular Vicsek model: Real part of the growth rate
ω as a function of wave number for low density, 〈M〉 = 0.1,
close to the flocking threshold, at η = 0.99ηC . Note the long
wavelength instability in part c). Other parameters: Λ =
λ/R = 4. Details will be given elsewhere [27].
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FIG. 11: Effects of truncating the matrix equation, Eq. (70):
Real part of the growth rate ω of the slowest δgn mode as a
function of wave number for truncation levels nC = 3 (dashed
line), nC = 4 (dotted) and nC = 5 (solid line). Parameters:
M = 2, η = 0.99ηC , Λ = 2, ρ0 = 0.1.

determined, see Fig. 15. We found that for both M = 2
and M = 7 the influence of the mfp is only negligible if
Λ is above one. For smaller mfp’s, the differences are sig-
nificant and are subject to current studies. For example,
ηC drops by almost a factor of three if Λ is reduced from
5.6 to 0.1.
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FIG. 12: The order parameter G1 as a function of noise for
the special case N = M = 2. The exact solution, Eq. (73),
(solid line) perfectly agrees with the simulation (circles).
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FIG. 13: Direct simulations: The order parameter G1 as a
function of noise for various M = 2 . . . 7 and at N = 5000,
Λ = λ/Reff = 5.66. The analytical solution for M = 3 (filled
circles) was obtained from Eq. (37) with terms up to order
ǫ5.

The main assumption of our mean-field theory, the
molecular chaos approximation, predicts that the particle
number in a given box is Poisson-distributed [6]. Hence,
the probability to find n particles in a box of area V is
given by

pn = e−〈n〉 〈n〉n
n!

(75)

where 〈n〉 = V ρ0 is the average particle number in that
box. In order to indirectly test the validity of the molec-
ular chaos approximation, we divided our simulation do-
main into 25×25 quadratic boxes such that 〈n〉 = 8, and
recorded how often a box was occupied by a given particle



16

2 3 4 5 6
 η

0

0.2

0.4

0.6

0.8

1

G
1

M=2  N=5000
M=2  N=1000
M=7  N=5000
M=7  N=1000
M=7  Theory

FIG. 14: Direct simulations: The order parameter for differ-
ent particle numbers: N = 1000 and 5000; Λ = 5.66. The
theoretical result for M = 7 calculated at order ǫ5 from Eq.
(37) is shown by the filled circles.
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FIG. 15: Order parameter for M = 7 at different mean free
paths, Λ = λ/Reff, with N = 1000. The lines just serve as
guides to the eye.

number n. These measurements were averaged over all
boxes and over time. The results for M = 2 are shown in
Fig. 16 and compared to an analytic continuation of Eq.
(75) to real numbers where n! was replaced by the gamma
function, Γ(n + 1). For large noise η = 6, which is far
beyond the order-transition threshold ηC,sim = 2.27, the
histogram shows perfect agreement with the Poisson dis-
tribution. This confirms our expectation that the Molec-
ular Chaos approximation should be valid in the disor-
dered phase. However, at noise η = 2.2, that is in the
ordered phase but only 3% below the threshold, a clear
deviation from the Poisson distribution occurs and the
maximum of the curve lies about 20% below the Poisson
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FIG. 16: Histogram for different noises at M = 2 in com-
parison with the Poisson distribution (solid line) as a func-
tion of particle number per box, n. Simulation parameters:
N = 5000, Λ = 5.66, 〈n〉 = 8, time average over 25000 mea-
surements. The dashed and dotted lines are only guides to
the eye.

curve. This is interesting because despite this deviation
the shape of the order parameter curve and the critical
noise value differ much less from the mean field predic-
tions. Finally, at very low noise, η = 0.3 = 0.13ηC,sim,
the particle number distribution is much wider than the
Poisson distribution. In particular, it is much more prob-
able to find empty boxes and boxes occupied with more
than three times the average number. We see that even
though no density bands are observed as in the regular
VM, there is still anomalously large density fluctuations.

VII. CONCLUSION

We have presented a detailed, systematic derivation of
a kinetic theory for a model of self-propelled particles
with metric-free interactions. This discrete-time model
has genuine multi-body interactions and was introduced
in Ref. [9]. The sole approximation in the derivation
was the assumption of Molecular chaos which we used to
reduce an exact Master-equation for all particles to an
equation for the one-particle density.
This novel Enskog-type kinetic equation, Eq. (18), is

one of the main results of this paper. Using this equation,
the transition from a disordered state to a homogeneous
state of collective motion was studied for various num-
bers of interaction partners, M . We calculated the phase
diagram and the order parameter analytically as well as
numerically and also performed direct simulations. We
found excellent agreement within a few percent between
theory and simulation as long as the mean free path is at
least several times larger than the effective interaction ra-
dius. In order to test the validity of the molecular chaos
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approximation, we recorded particle density histograms
and measured how lowering the mean free path affects
the phase diagram.

Simulations of the regular Vicsek-model showed that
the flocking transition becomes discontinuous once the
system size is beyond a certain critical length [5]. This
observation has been linked to a long wave length in-
stability of the ordered phase right below the flocking
threshold [6, 7]. In this paper, we have performed a lin-
ear stability analysis of the ordered state of the metric-
free model in order to investigate the nature of the flock-
ing transition in the presence of topological interactions.
This was done by directly imposing perturbations into
the kinetic equation without first deriving hydrodynamic
equations. Such derivations are very tedious for models
with a finite time step and multi-body interactions, see
Refs. [6, 24, 25]. If one is only interested in the lin-
ear stability of a certain phase it is more convinient to
use the kinetic equations directly. An additional advan-
tage is that by not imposing closure of the kinetic equa-
tions at a predetermined low level and refraining from
gradient expansions of any kind, higher accuracy and a
larger range of validity of the stability analysis can be
achieved. The main result is that for all partner num-
bers 2 ≤ M ≤ 7 we tested, all modes are stable right
next to the flocking threshold. For select M we verified
that even very far from threshold, no linear instabilities
occur. This result is consistent with direct simulations
of the metric-free model where no high density bands –
a sign of instability – were observed and where the flock-
ing transition was found to be continuous. While our
results do not come as a big surprise, they do rule out
the possibility of a linearly unstable but nonlinearly sta-
ble ordered state. This would lead to an inhomogeneous
ordered state which would be hard to identify in a direct
simulation if the inhomogeneity is small.

The existence of a longitudinal instability can be re-
lated to the different parameters that span the phase di-
agram: In models with metric interactions, the critical
noise depends on local density. Thus, different spatial
regions can be characterized by different phase space dis-
tances, ∆η = ηC(ρlocal)− η, to the flocking threshold. In
metric-free models all regions are at the same distance to
the threshold. With the additional facts that the order
parameter is monotonically increasing with ∆η and that
the critical noise of the metric VM is increasing with
density, an intuitive understanding of the occurence of
density waves in the metric models and of their absence
in topological models can be obtained.

It remains an open question how to systematically go
beyond the approximation of molecular chaos in order
to improve the results at low mfp. One possibility is
to derive additional noise terms in the hydrodynamic or
kinetic equations along the lines of Refs. [28–31]. Work
in this direction is in progress.

We did not derive hydrodynamic equations for the
metric-free model because it is fairly obvious that they
must have exactly the same shape as Eq. (5) of Ref. [6]

which was derived for the regular Vicsek model. This
is because both models have the same symmetries (ro-
tational and translational), no Galilean invariance, and
the same set of conserved quantities (mass and kinetic
energy). The Chapman-Enskog expansion of Ref. [6],
which is basically a gradient expansion, gave all possible
terms allowed by the symmetries and by the order of the
expansion. Therefore, the metric-free model has no other
“choice” than picking the same terms just with different
coefficients.
We also identified the ad hoc Boltzmann-like collision

integral of Ref. [21] as the zero wave number or infinite Λ
limit of our theory for the special case of M = 2, see Ap-
pendix D. This was used to quantify the relevance of “col-
lisional momentum transfer” to the linear stability of the
ordered phase. Finally, the kinetic formalism presented
in this paper might also be useful to treat other “exotic”,
multi-body interaction rules which are often postulated
in ecological modelling of animals [32], human crowds
[33], and interacting robots [34–36].
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Appendix A: Hypergeometric functions

Using the expansion of Bessel function of the first kind

Jn(x) =

∞
∑

s=0

(−1)s

s!(n+ s)!

(x

2

)n+2s

(76)

and the integral
∫ ∞

0

xme−ax2

dx =
Γ[(m+ 1)/2]

2a(m+1)/2
, for a > 0 and m ≥ 0,

(77)
we have
∫ ∞

0

xmJn(x)e
−ax2

dx

=
∞
∑

s=0

(−1)s

s!(n+ s)!

1

2n+2s+1
Γ

(

m+ n+ 2s+ 1

2

)

a−
m+n+2s+1

2

Setting l ≡ (m+ n+ 1)/2, the series becomes

=
1

2n+1al

∞
∑

s=0

(l + s− 1)(l+ s− 2) . . . l(l − 1)!

(n+ s)(n+ s− 1) . . . (n+ 1)n!s!

(−1

4a

)s

=
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2n+1al
Γ(l)

Γ(n+ 1)
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(

l, n+ 1,− 1

4a

)

, (78)
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where

1F1(a, b, z) =

∞
∑

s=0

(a)s
(b)s

zs

s!
(79)

is the confluent hypergeometric function in the notation
of Pochhammer symbol (x)n = x(x + 1) . . . (x + n − 1).
If the argument of Bessel function rescales as x → kx, it
is easy to show that the integral becomes

∫ ∞

0

xmJn(kx)e
−ax2

dx

=
1

2n+1

kn

a(m+n+1)/2

Γ
(

m+n+1
2

)

Γ(n+ 1)

× 1F1

(

m+ n+ 1

2
, n+ 1,−k2

4a

)

. (80)

Appendix B: Exact solutions

A. Case N=2

For M = N every particle is neighbor to every other
particle, which can be analytically exploited. We con-
sider the special case N = M = 2. The order parameter
is expressed as,

Ω =
1

2
〈|n̂1 + n̂2|〉 , (81)

where n̂i are the normalized velocity vectors after a col-
lision. The angular brackets denote the average over the
two uncorrelated angular noises ξ1 and ξ2. The average
angle Φ is the same for both particles and is therefore
irrelevant for the order parameter. We choose it to be
zero. In this case, n̂i = (cos ξi, sin ξi), and we have

Ω =
1

η2

∫ η/2
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dξ1
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∣

∣

∣
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∣

∣
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∣
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∣

(82)

For η ≤ π the integrations are straightforward since |ξ1−
ξ2| ≤ π and give

Ω =

(

4

η
sin

η

4

)2

(83)

For π ≤ η ≤ 2π new variables are introduced,

α1 = ξ1 − ξ2 (84)

α2 = ξ2 , (85)

and the integration area has to be split into several do-
mains in order to correctly treat the absolute value in
Eq. (82). This gives

Ω =
1

η2

[

∫ −π

−η

(−A1) dα1 +

∫ −η/2

−π

A1 dα1

+

∫ π

η/2

(A2) dα1 +

∫ η

π

(−A2) dα1

+

∫ 0

−η/2

A3 dα1 +

∫ η/2

0

A4 dα1

]

(86)

with

A1 =

∫ η/2

−η/2−α1

(−c) dα2

A2 =

∫ −α1+η/2

−η/2

(−c) dα2

A3 =

∫ η/2

−η/2−α1

c dα2

A4 =

∫ η/2−α1

−η/2

c dα2

where c ≡ cos(α1/2).

Integrating over α2 yields,

Ω =
1

η2

[

∫ −π

−η

(−c)(η + α1) dα1 +

∫ −η/2

−π

(+c)(η + α1) dα1

+

∫ π

η/2

(+c)(η − α1) dα1 +

∫ η

π

(−c)(η − α1) dα1

+ 2

∫ η/2

0

(+c)(η − α1) dα1

]

. (87)

After integration we obtain for π ≤ η ≤ 2π:

Ω =
8

η2

[

1 + η − π + cos
η

2

]

(88)

At η = π both expressions, Eq. (83) and (88) match at
Ω = 8/π2 ≈ 0.81. This point, η = π, is also the turning
point of the order parameter curve, Fig. 12.

At the largest noise value, η = 2π, we find Ω = 2/π ≈
0.6366. It is interesting to note that the approximation
for large N and η = 2π, Eq. (94), even works well for this

N = 2 case, since 7/(8
√
2) = 0.6187 is only 3% smaller

than the exact result.
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B. Case N ≫ 1, η = 2π

The order parameter formula, Eq. (81) is generalized
to N particles,

Ω =
1

N

〈∣

∣

∣

N
∑

i=1

n̂i

∣

∣

∣

〉

=

〈
√

[

∑

i

cos ξi

]2

+
[

∑

i

sin ξi

]2
〉

〈

. . .
〉

≡
N
∏

i=1

(

1

η

∫ η/2

−η/2

dξi

)

(89)

Using cos2 ξi + sin2 ξi = 1 the terms inside the square
root can be reordered with the result,

Ω =
1√
N

〈
√

1 +
A+B

N

〉

A ≡ 2
∑

i

∑

j>i

cicj

B ≡ 2
∑

i

∑

j>i

sisj (90)

Since ci ≡ cos ξi and si ≡ sin ξi vary between −1 and
1 the terms A and B will be smaller than N for most
realizations when the particle number N is large. We
therefore attempt a Taylor expansion of the square root
in Eq. (90) whose validity can be checked a posteriori.
We obtain,

Ω =
1√
N

(

1 +
〈A〉+ 〈B〉

2N

− 1

8N2
[〈A2〉+ 〈B〉2 + 2〈AB〉] + . . .

)

(91)

Since the angular noises ξi are uncorrelated one finds

〈A〉 = 〈B〉 = 〈AB〉 = 0

〈A2〉 = 〈B2〉 =
N(N − 1)

2
(92)

Substituting into Eq. (91) gives

Ω =
1√
N

(

1− 1

8
+ . . .+O

(

1

N

))

(93)

Thus, we arrive at the following approximative expression
for the order parameter at N ≫ 1:

Ω(η = 2π) ≈ 7

8

1√
N

. (94)

Appendix C: Integrals for M = 2 and M = 3

In order to calculate the angular integral K1
C(M), see

Eq. (30), and integrals of similar type, the average angle

Φ is expressed by means of the local order parameter
vector LM = (LM,x, LM,y), defined as,

LM =

M
∑

i=1

n̂i (95)

where n̂i = (cosαi, sinαi) = vi/v0 is the normalized
velocity vector for agent i. The sine and the cosine of
the average angle follow as cosΦ = Lx/|L| and sinΦ =
Ly/|L|. The average angle is given by Φ = atan(Ly/Lx).
For M = 2, trigonometric addition rules can be used to
simplify the integrations,

Lx = cosα1 + cosα2 = 2 cos
α1 + α2

2
cos

α1 − α2

2

Ly = sinα1 + sinα2 = 2 sin
α1 + α2

2
cos

α1 − α2

2
(96)

yielding

Φ =
α1 + α2

2
for |α1 − α2| < π

Φ =
α1 + α2

2
+ π for |α1 − α2| > π (97)

for 0 ≤ αi ≤ 2π. The integral over α1 and α2 is split into
four parts,

∫ 2π

0

dα1

∫ 2π

0

dα2 . . .

=

∫ π

0

dα1

(∫ α1+π

0

dα2 . . .+

∫ 2π

α1+π

dα2 . . .

)

+

∫ 2π

π

dα1

(∫ 2π

α1−π

dα2 . . .+

∫ α1−π

0

dα2 . . .

)

(98)

where in the first and third part |α1 − α2| < π, and in
the second and fourth term one has |α1 − α2| > π. All
functions under the integral are now products of sine and
cosine with a linear combination aα1+bα2. Therefore, all
integrals of the kind shown in Eq. (30) can be avaluated
analytically for M = 2. For example, one finds K1

C(M =
2) = 1/π, see Table I. More details and information about
how to exactly evaluate collision integrals for M = 3 and
M → ∞ will be given elsewhere [27].
In order to perform the order parameter calculations

and the linear stability analysis for systems with three-
body interactions, M = 3, the following integrals are
needed:

Kcccc
mpqr ≡ 〈cos(mΦ) cos(pθ̃1) cos(qθ̃2) cos(rθ̃3)〉

Ksccs
mpqr ≡ 〈sin(mΦ) cos(pθ̃1) cos(qθ̃2) sin(rθ̃3)〉

Kscsc
mpqr ≡ 〈sin(mΦ) cos(pθ̃1) sin(qθ̃2) cos(rθ̃3)〉

Ksscc
mpqr ≡ 〈sin(mΦ) sin(pθ̃1) cos(qθ̃2) cos(rθ̃3)〉 (99)

with 〈. . .〉 ≡
∫ 2π

0
dθ̃1

∫ 2π

0
dθ̃2

∫ 2π

0
dθ̃3/(2π)

3. Using the
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definitions

Kcccc
mpqr ≡ S1K

Ksccs
mpqr ≡ S2K

Kscsc
mpqr ≡ S3K

Ksscc
mpqr ≡ S4K, (100)

where K and Si depend on the quadrupel (m, p, q, r),
the numerical values of these integrals for m ≤ 5 and
p+ q + r ≤ 6 can be constructed from Table II.

m p q r K S1 S2 S3 S4

0 0 0 0 1 1 0 0 0

1 0 0 1 0.262433 1 1 0 0

1 0 1 2 0.012774 −1 −1 1 0

1 0 2 3 0.005155 −1 −1 1 0

1 1 1 1 0.023223 −3 −1 −1 −1

1 1 1 3 0.005575 1 1 −1 −1

1 1 2 2 0.016024 1 0 0 1

2 0 0 2 0.108998 1 1 0 0

2 0 1 1 0.097751 1 1 1 0

2 0 1 3 0.005624 −1 −1 1 0

2 0 2 4 0.008794 −1 −1 1 0

2 1 1 2 0.048875 −1 −1 0 0

2 1 1 4 0.005624 1 1 −1 −1

2 1 2 3 0.007209 1 1 −1 1

2 2 2 2 0.017229 3 1 1 1

3 0 0 3 0.058045 1 1 0 0

3 0 1 2 0.038323 1 1 1 0

3 0 1 4 0.002354 −1 −1 1 0

3 1 1 1 0.069670 1 1 1 1

3 1 1 3 0.033448 −1 −1 0 0

3 1 2 2 0.024036 −1 −1 −1 1

4 0 0 4 0.041514 1 1 0 0

4 0 1 3 0.011247 1 1 1 0

4 0 1 5 0.001433 −1 −1 1 0

4 0 2 2 0.005624 −1 −1 −1 0

4 1 1 2 0.048875 1 1 1 1

4 1 1 4 0.022494 −1 −1 0 0

4 1 2 3 0.014417 −1 −1 −1 1

5 0 0 5 0.032937 1 1 0 0

5 0 1 4 0.003923 1 1 1 0

5 0 2 3 0.025773 −1 −1 −1 0

5 1 1 3 0.027873 1 1 1 1

5 1 2 2 0.040060 1 1 1 1

TABLE II: Integrals for M = 3 defined in Appendix C.

Appendix D: Effect of collisional momentum transfer

Assume spatial variations with wavelengths 2π/k that
are much larger than the effective collision range Reff. In
this limit, all fields including the distribution function f
and the density ρ are constant inside a circle which is
centered around position x and has radius Reff. The ex-
ponential prefactor in Eq. (18) becomes small for radii
Rj > Reff and thus very effectively suppresses errors
when f and ρ are crudely approximated far away from
x. This allows us to approximate the value of the den-
sity in the integral of Eq. (14) by ρ(x) for any radius
Rj . Then the integrand is constant and the simple result

M j = πR2
j+1ρ(x) is obtained. Similarly, we can formally

replace the distribution functions f(θ̃i,xi) by their value

at the point x, f(θ̃i,x), where i = 2, 3, · · · ,M , in the
collision integral (18). This effectively ignores field vari-
ations within typical collision distances. After integrat-
ing over the positions of all the collision partners, the
equation becomes,

f(θ,x+ τv, t + τ)

=
1

ρ(x)M−1

∫ η/2

−η/2

dξ

η

∫

dθ̃1dθ̃2 . . . dθ̃M δ̂(θ − ξ − Φ1)

f(θ̃1,x)f(θ̃2,x) . . . f(θ̃M ,x). (101)

The approximative collision term on the r.h.s. contains
only information from the point x but not from surround-
ing points anymore. In an Enskog equation, it is the dif-
ferences in the field values around point x, which account
for the so-called collisional momentum transfer. There-
fore, we have effectively removed this transfer, and Eq.
(101) can be seen as the Boltzmann limit of the more
general Enskog-like kinetic equation, Eq. (18). More-
over, for M = 2, Eq. (101) can be directly compared
with the equation postulated by Peshkov et al. [21]. By
rewriting Eq. (101) into the format of Eq. (47) in or-
der to investigate the linear stability, one sees that the
original integrand F(θ̃1, θ̃2, . . . θ̃M ) is replaced by the fol-
lowing,

F ′(θ̃1, θ̃2, . . . θ̃M ) (102)

=

(

M
∏

i=1

f̄i

)

[

1− (M − 1)
δg0
g0

]

+Mδf1

M
∏

i=2

f̄i.

Again, nonlinear perturbations of order O(δ2) were
dropped in this expansion. Comparing this with Eq.
(49), we note that it can be formally obtained by set-
ting z = 0 in the original kernel. Using the dimension-

less wavenumber k̂ ≡ λk and the definition of effective
collision radius, Eq. (3), we have z = −R2

eff k̂
2/(4Mλ2).

Thus, for z to approach zero, either Λ = λ/Reff must
go to infinity or the wave number must be zero. This
confirms that the approximative Boltzmann-like equa-
tion (101) and hence the kinetic equation proposed in
Ref. [21] present the zero wave number or infinite Λ
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FIG. 17: Real part of the growth rate ω as a function of
wave number for M = 2, at η = 0.99ηC and with density
ρ0 = 0.1. Part a) shows the first two longitudinal modes,
whereas the first transversal mode is shown in b). The re-
sults of the Enskog-like equation, Eq. (47), for various ratios
of mean free path to effective radius, Λ, are shown in dot-
ted, dot-dashed, and dashed lines, whereas the results for the
Boltzmann approach, Eq. (101) are given by gray solid lines.
For the case where Λ is as large as 8, the curves of the origi-
nal Enskog-like equation collapse with those of the Boltzmann
approximation.

limit where collisional momentum transfer is irrelevant.
For M = 2 we compare the stability of the Enskog and
the approximative Boltzmann equations in Fig. 17 where
the growth rates for perturbations of the ordered state are
plotted. As expected we observe that both approaches
agree exactly for zero k and very large Λ ≥ 8. When
Λ is decreased, collisional momentum transfer becomes
more important and the growth rates become more neg-
ative compared to the transfer-free case. Especially for
Λ = 1/4 the difference is very pronounced, even at small
λk < 1. Hence, collisional momentum transfer makes the
ordered phase even more stable. This is consistent with
results for other systems [26], where collisional momen-
tum transfer leads to an additional contribution to the
viscosity and thermal conductivity, causing a stronger at-
tenuation of sound and shear modes. In Fig. 17 one also
sees that the sound mode is not as strongly affected by
collisional momentum transfer as the other modes.
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