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Transport of suspended Brownian particles dc driven along corrugated narrow channels is numer-
ically investigated in the regime of finite damping. We show that inertial corrections cannot be
neglected as long as the width of the channel bottlenecks is smaller than an appropriate particle
diffusion length, which depends on the the channel corrugation and the drive intensity. With such a
diffusion length being inversely proportional to the damping constant, transport through sufficiently
narrow obstructions turns out to be always sensitive to the viscosity of the suspension fluid. The
inertia corrections to the transport quantifiers, mobility and diffusivity, markedly differ for smoothly
and sharply corrugated channels.

PACS numbers: 05.40.-a,05.60.Cd,51.20.+d

I. INTRODUCTION

Brownian transport in narrow corrugated channels is a
topic of potential applications to both natural [1–3] and
artificial devices [4]. Depending on the amplitude and ge-
ometry of the wall modulation, corrugated channels fall
within two distinct categories, see Fig. 1: (i) smoothly
corrugated channels. Also called entropic channels [5],
these quasi one dimensional (1D) channels were intro-
duced first in Ref. [6] and further investigated in Refs.
[7–14], as an instance of two (2D) or three dimensional
(3D) systems describable in terms of an effective 1D ki-
netic equation. These are typically modeled as periodic
channels with axial symmetry and unit cells delimited
by bottlenecks which are assumed to be narrow with re-
spect to the cell dimensions, i.e., the channel cross sec-
tion and the period; (ii) compartmentalized (or septate)
channels [15–21]. These channels are sharply corrugated
channels formed by identical compartments separated by
thin dividing walls and connected by narrow openings
(pores) centered around their axis. At variance with the
case of smoothly corrugated channels, diffusion in com-
partmentalized channels cannot be reduced to an effec-
tive 1D kinetic process directed along the axis. Accord-
ingly, driven transport in such strongly constrained ge-
ometries exhibits distinct features, which cannot be rec-
onciled with the known properties of Brownian motion
in quasi-1D systems [3, 22, 23].

Corrugated channels are often used to model transport
of dilute mixtures of small particles (like biomolecules,
colloids or magnetic vortices) in confined geometries [4].
Each particle is subjected to thermal fluctuations with
temperature T and large viscous damping constant γ,
and a homogeneous constant force directed locally paral-
lel to the channel axis. Such a dc drive is applied from the
outside by coupling the particle to an external field (for
instance, by attaching a dielectric or magnetic dipole, or
a magnetic flux to the particle), without inducing drag
effects on the suspension fluid. Interparticle and hydro-
dynamic interactions can thus be ignored; for a more

FIG. 1: (Color online) Sketch of a smoothly corrugated (a)
and a compartmentalized 2D channel (b) directed along the
x axis. In both cases the channel unit cell is xL long and yL
wide; the radius of the connecting bottlenecks or pores is ∆.

detailed discussion on the validity of this simplifying as-
sumption we refer the readers to Refs. [5, 14].

In this paper we investigate the relevance of the iner-
tia effects due to the viscosity of the suspended particle.
As is often the case with biological and most artificial
suspensions [4], the Brownian particle dynamics in the
bulk can be regarded as overdamped. This corresponds
to (i) formally setting the mass of the particle to zero,
m = 0, or, equivalently, to make the friction strength
γ tend to infinity, and (ii) assuming F smaller than the

thermal force F0 = γ
√
kT/m; for the validity and the

corrections to the Smoluchowski approximation see in
cited Refs. [28]. The current literature on corrugated
channels invariably assumes such an overdamped limit.
But how large is an “infinite” γ (or how small a “zero”
m)? The answer, of course, depends on the geometry of
the channel.

Our main conclusion is that the overdamped dynam-
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FIG. 2: (Color online) Rescaled mobility, γµ, in a smoothly corrugated channel with r = xL/yL = 1, ∆/yL = 0.1, and (a) vs.

γ/γF for different F ; (b) vs. F/FT for different γ. The relevant scaling parameters are FT = kT/∆, γT =
√
mkT/∆, Eq. (8),

and γF =
√
mF/∆, Eq. (9). The dashed lines represent, respectively, the fitting power laws (γ/γF )α in (a) and (F/FT )−α/2 in

(b), both with α = 1.4 (see Sec. III). In (c) γµ is plotted vs. γ/γF (main panel) and F/F0 (inset) for γ/γT = 0.8, F/FT = 125,
and different cross-section ratios, ∆/yL. The corresponding fitting exponents α are also reported in the legend. In the inset, F
is expressed in units of F0 instead of FT for graphical reasons. The dependence of γµ on the geometry of the channel unit cell
for low damping and small drives is illustrated in (d), where γµ is plotted vs. rγ/γT . The predicted linear law with slope π/4
[32] is represented by a dotted line [see also Eq. (12) and text following].

ics assumption for Brownian diffusion through pores of
width ∆ subjected to a homogeneous drive F , applies
only for γ �

√
mkT/∆, and γ �

√
mF/∆ [28], ir-

respective of the degree of corrugation. This means
that inertial correction cannot be neglected as long as
Brownian diffusion is spatially correlated on a length
(lT =

√
mkT/γ at small dc drive, or lF = mF/γ2 at

large dc drive) of the order of or larger than the pore
width ∆. Therefore, for sufficiently narrow pores or suf-
ficiently large drives, inertia always comes into play by
enhancing the blocking action of the channel bottlenecks.

This paper is organized as follows. In Sec. II we in-
troduce the Langevin equation formalism employed in
our simulation code. Simulation data for the particle
mobility and diffusivity are analyzed in Sec. III as func-
tions of the drive, the channel geometry, and the damping
constant in sinusoidally corrugated channels. We report
significant deviations from the best known overdamped
regime. In Sec. IV we consider the case of septate chan-
nels for which dependable fitting formulas could be an-
alytically obtained. Inertial effects in these two limiting
corrugation regimes are compared in Sec. V. Finally, in

Sec. VI we add some concluding remarks.

II. MODEL

Let us consider a point-like Brownian particle of mass
m diffusing in a 2D suspension fluid contained in a peri-
odic channel with unit cell xL× yL, as illustrated in Fig.

1. The particle is subjected to a homogeneous force ~F .
The damped dynamics of the particle is modeled by the
2D Langevin equation,

m
d2~r

dt2
= −γ d~r

dt
+ ~F +

√
γkT ~ξ(t), (1)

where ~r = (x, y). The random forces ~ξ(t) = (ξx(t), ξy(t))
are zero-mean, white Gaussian noises with autocorrela-
tion functions 〈ξi(t)ξj(t′)〉 = 2δijδ(t−t′), with i, j = x, y.
Here, γ plays the role of an effective viscous damping con-
stant incorporating all additional effects that are not ex-
plicitly accounted for in Eq. (1), like hydrodynamic drag,
particle-wall interactions, etc. We numerically integrated
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Eq. (1) by a Milstein algorithm [29]. The stochastic aver-
ages reported in the forthcoming sections were obtained
as ensemble averages over 106 trajectories with random
initial conditions; transient effects were estimated and
subtracted.

As anticipated in Sec. I, we considered two categories
of periodic channels, smoothly corrugated and septate
channels. The symmetric walls of smoothly corrugated
channels have been modeled by the sinusoidal functions
±w(x), where

w(x) =
1

4

[
(yL + ∆)− (yL −∆) cos

(
2πx

xL

)]
, (2)

see Fig. 1(a)]. The compartments of the septate channels
are rectangular and the dividing walls have zero width,
see Fig. 1(b).

Two quantifiers have been used to best represent the
different transport properties of these two channel ge-
ometries in the overdamped limit, γ →∞:

(i) mobility. The response of a Brownian particle in
a channel subjected to a dc drive, F , oriented along the
axis direction, x, is expressed by the mobility,

µ(F ) = 〈v(F )〉/F, (3)

where 〈v〉 ≡ 〈ẋ(F )〉 = limt→∞[〈x(t)〉 − x(0)]/t. In en-
tropic channels µ(F ) increases from a relatively small
value for F = 0, µ0, up to the free-particle limit,
γµ∞ = 1, for F → ∞ [11]. We recall that in a smooth
channel a free particle drifts with speed v∞ = F/γ, that
is, with γµ = 1. On the contrary, in compartmentalized
channels γµ(F ) decreases monotonically with increasing
F towards a geometry dependent asymptotic value, γµ∞,
equal to the ratio of the pore to the channel cross-section
[15], that is

γµ∞ = ∆/yL, (4)

(ii) diffusivity. As a Brownian particle is driven across
a periodic array of bottlenecks or compartment pores, its
diffusivity,

D(F ) = lim
t→∞

[〈x2(t)〉 − 〈x(t)〉2]/2t, (5)

picks up a distinct F dependence. In entropic channels
with smooth bottlenecks, for F →∞ the function D(F )
approaches the free diffusion limit, D(∞) = D0, after go-
ing through an excess diffusion peak centered around an
intermediate (temperature dependent [11]) value of the
drive. The bulk or free diffusivity, D0, is proportional
to the temperature, D0 = kT/mγ. Such a peak signals
the depinning of the particle from the entropic barrier ar-
ray [30]. In compartmentalized channels, instead, D(F )
exhibits a distinct quadratic dependence on F [17, 19],
reminiscent of Taylor’s diffusion in hydrodynamics [31],
that is, for ∆� yL,

D(F )

D0
=

1

2

(
F∆

kT

)2

. (6)

This observation suggests that the particle never frees
itself from the geometric constriction of the compartment
pores, no matter how strong F .

These two quantifiers of mobility and diffusivity can
also be used to assess the magnitude of the inertia effects.
We remind here that, in the absence of external drives
and for any value of the damping constant, Sutherland-
Einstein relation [24–27]:

γµ0 = D(0)/D0, (7)

establishes the dependence of the transport parameters
on the temperature and the channel compartment geom-
etry under equilibrium conditions [15].

In preparation for the quantitative analysis of our nu-
merical data, we remark that Eq. (1) can be conveniently
rewritten in terms of the rescaled units t → γt/m and

x/lT , with lT =
√
mkT/γ. A straightforward dimen-

sional argument shows that, for any given channel unit
cell xL × yL, both the particle rescaled mobility, γµ, Eq.
(3), and its rescaled diffusivity, D/D0, Eq. (5), are func-

tions of the rescaled drive, F/F0, with F0 = γ
√
kT/m,

and three cell parameters, typically, the pore width,
∆/lT , the pore-to-channel cross-section ratio, ∆/yL, and
the compartment aspect-ratio, r = xL/yL (see Table I).
Note that a simultaneous rescaling of all lengths by a
factor κ would correspond to a noise intensity rescaling,
T → T/κ2. Throughout our simulations we assumed
narrow channels with small bottlenecks, meaning that
xL ≥ yL and ∆� yL.

III. CORRUGATED CHANNELS

As anticipated in a preliminary report [32], inertial ef-
fects in corrugated channels become apparent both for
small γ and for large F . Upon inspecting Fig. 2 we re-
alize that inertia tends to suppress the particle mobility
through the channel bottlenecks. Indeed, in the under-
damped limit, γ → 0, the rescaled mobility drops to zero,
no matter what F [Fig. 2(a)]. In particular, when ex-

pressing γ in units of γF =
√
mF/∆, see Eq. (9) below,

the mobility curves at large drives tend to collapse on
a universal curve well fitted by the power law (γ/γF )α

with α = 1.4. Correspondingly, in Fig. 2(b) the mobility
decays like F−α/2 for small F � FT .

The power law, γµ ∝ (γ/γF )α, introduced here is only
a convenient fit of the rescaled mobility function, even if
it holds for two or more decades of γ/γF . [Note that the
power law γµ ∝ F−α/2 works throughout the entire F
range explored in Fig. 2(b).] The analytical form of that
function remains to be determined. The data reported
in Fig. 2(c) clearly suggests that the fitting exponent, α,
slightly depends on ∆, with α→ 2 in the limit ∆→ 0.

The dependence of the rescaled mobility on the sys-
tem parameters in the underdamped limit is further il-
lustrated in Fig. 2(d), where at low γ and for vanishingly
small drives, the mobility grows proportional to the as-
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TABLE I: Summary of characteristic scaling parameters and their meaning

F0 = γ
√

kT
m

Thermal force: viscous force experienced by a Brownian particle

with thermal velocity vth =
√
kT/m.

D0 = kT
γ
, v∞ = F

γ
Free diffusivity and velocity in bulk.

lT =
√
mkT
γ

Thermal length: distance covered by a Brownian particle diffusing
with thermal velocity vth in the relaxation time, m/γ.

lF = mF
γ2

Ballistic length: distance covered by a driven Brownian particle
drifting with velocity v∞ in the relaxation time, m/γ.

γT =
√
mkT
∆

Damping cut-off at the pore (zero drive): lT = ∆.

γF =
√

mF
∆

Damping cut-off at the pore (strong drive): lF = ∆.

DT = kT
γT

, FT = kT
∆

Scaling parameters introduced in Figs. 2-5;
obtained by replacing γ with γT , respectively, in D0 and F0.

pect ratio r = xL/yL of the channel unit cell and the
pore cross section ∆.

Deviations from the expected overdamped behavior are
the more prominent in the diffusivity data. As shown in
Fig. 3, at large γ the curves D(F ) approach the horizon-
tal asymptote D(F ) = D0, as expected [11]. However,
beyond a certain value of F , seemingly proportional to
γ2 (inset), these curves abruptly part from their horizon-
tal asymptote with a sort of cusp. In the underdamped
limit, the F dependence of the diffusivity bears no resem-
blance with the typical overdamped behavior. At low γ,
all D(F ) data sets collapse on a unique curve [Fig. 3, in-
set], which tends to a value smaller than D0 for F → 0,
and diverges for F →∞, like F β with β ' 1. Such power
law holds for large γ, as well, though for sufficiently large
F , only. Indeed, for exceedingly large F , all D(F ) curves
seem to eventually approach a unique asymptote, irre-
spective of γ.

By comparing the plots of Figs. 2-3 we conjecture
that corrections due to inertia become significant in two
regimes, namely:
(i) at low drives, under the condition

γ . γT =
√
mkT/∆ . (8)

This characteristic damping was used to rescale the mo-
bility data in Fig. 1 [see also Fig. 2(b), inset]; moreover,
in Fig. 3, for γ < γT the diffusivity becomes a monotonic
function of F with no plateau around D0. The physical
meaning of γT is simple. For γ < γT the thermal length
lT =

√
mkT/γ grows larger than the width of the pores,

∆, so that the Brownian particle cannot reach the nor-

mal diffusion regime, implicit in the Sutherland-Einstein
relation, before bouncing off the pore walls. As a con-
sequence, the Smoluchowski approximation fails in the
vicinity of the bottlenecks.

Replacing γ with γT in the bulk quantities D0 and
F0 yields, respectively, DT = kT/γT and FT = kT/∆.
These are the γ-independent rescaling factors introduced
in Figs. 2-3 to characterize the inertia effects of the pore
constrictions;
(ii) at high drives for

γ . γF =
√
mF/∆ . (9)

As pointed out in Ref. [19], the large drive regime sets
on when the length scale of the longitudinal particle dis-
tribution grows smaller than the pore size, namely for
F � FT . In the presence a strong dc drive, the condi-
tion γ � γT does not suffices to ensure normal diffusion:
the additional condition that ∆ � lF is required. Here,
lF = mF/γ2 represents the ballistic length of a driven-
damped particle, that is an estimate of the bouncing am-
plitude of a driven particle against the bottleneck. Upon
increasing F at constant γ, lF eventually grows larger
than ∆ and inertia comes into play. This mechanism is
clearly responsible for the abrupt increasing branches of
D(F ) in Fig. 3. A synoptic comparison of all charac-
teristic scaling parameters of the system is displayed in
Table I.

In conclusion, low and large drive limits are quantita-
tively defined as F � FT and F � FT , respectively. As
γF was introduced to characterize the large drive (ballis-
tic) regime, clearly γF > γT . This means that applying



5

10-1 101

100

102

104

102

100

103 γ/γT =   
 0.1
 0.2
 0.4
 1
 2.5
 6.25
 16
 40

D
/D

0

F/F0  

10-1

D
/D

T

F/FT

FIG. 3: (Color online) Rescaled diffusivity, D/D0, vs. F/FT
(main panel) and D/DT vs. F/F0 (inset) in the corrugated
channel of Eq. (2) with r = 1, ∆/yL = 0.1, and different
γ. The scaling parameters introduced here are DT = kT/γT
and F0 = γ

√
kT/m. The solid line in the inset is the heuristic

power law of Eq. (17).

a large external drive makes the effects of inertia all the
stronger. On the other hand, if we decrease ∆, while
keeping F constant, inertia effects are controlled by γT
rather than by γF , as eventually γT > γF . The smooth
crossover between these two regimes is responsible for the
weak ∆ dependence of the fitting exponent α in Fig. 2.

An analytical derivation of the transport quantifiers
in the presence of strong inertial effects (low γ and/or
large F ) proved a difficult task. This is the case, for
instance, of the universal mobility curve in the inset of
Fig. 2(a). To gain a deeper insight on this and related
issues we address next the particular case of a rectangular
compartmentalized channel.

IV. SEPTATE CHANNELS

The role of inertia in compartmentalized channels is il-
lustrated by the plots of Fig. 4. In panel (a) the rescaled
mobility curve γµ(F ) at low damping exhibits a horizon-
tal asymptote for F →∞. However, in comparison with
the overdamped case reported in Sec. II, such an asymp-
tote is proportional to ∆ only for relatively narrow pores
(see also inset) and is strongly suppressed with decreas-
ing γ. The dependence of the mobility on the damping
constant is better illustrated in panel (b), where γµ lin-
early increases with γ before reaching the limit predicted
in the overdamped regime [15, 17–19]. Similar behaviors
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F/F0 (a) and vs. γ/γT (b); diffusivity, D/D0, vs. F/FT (c).
The remaining simulation parameters are reported in the leg-
ends. The relevant scaling parameters are F0 = γ

√
kT/m,

FT = kT/∆, and γT =
√
mkT/∆. Inset of (a): γµ vs.

F/FT for different r and ∆/yL. Inset of (b): γµ vs. γ/γT
for different ∆/yL and r. Inset of (c): D/D0 vs. ∆/yL for
F/FT = 2 103. The dotted curves represent the approximate
analytical expressions of Eqs. (11) and (15), respectively for
the mobility in (b) and the diffusivity in (c) (main panel and
insets). In (b) the quantity γµ|∞ was estimated from the hor-
izontal asymptotes. Note that γµ∞ (see Sec. II) is known to
be proportional to ∆ for F → ∞ [horizontal arrows, Eq. (4)],
and to | ln ∆| for F → 0 [19].
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were observed both at low (inset) and large drives (main
panel). For large drives the rescaled mobility actually
converges toward the estimate γµ|∞ of Eq. (4).

The dependence of the rescaled mobility on the com-
partment geometry is further illustrated in the inset of
Fig. 4(b): in the zero drive limit and for low γ, the mo-
bility is proportional to the aspect ratio r = xL/yL and
the pore size, ∆, as already reported for the corrugated
channels of Fig.2(d).

Contrary to the smoothly corrugated channels of Sec.
III, the drive dependence of the diffusivity is apparently
not much affected by inertia. As shown in Fig. 4(c),
the curves D(F ) keep diverging quadratically with F ,
irrespective of the compartment size and the damping
constant, like in the overdamped limit. In the notation
introduced above for the corrugated channel, D(F ) scales
like F β but, contrary to Fig. 3, here β = 2. The power
law dependence of D(F ) on the pore size and the channel
width is displayed in the insets of Fig. 4(c).

Although of lesser applicability, septate channels have
a practical advantage over smoothly corrugated channels,
as they are characterized by well distinct time scales,
which often allow convenient analytical approximations.
The problem under study is no exception.

Let us consider first the rescaled mobility at large
drives, F � FT . As anticipated in Secs. I and III,
two time scales control the particle current through the
channel: (i) the bulk relaxation time, m/γ, and (ii) the
ballistic time across the pore, m/γT . The latter is a mea-
sure of transient effects that may be detected only at the
shortest distances, here, the pore width. To bridge the
above time scales we introduce the effective relaxation
time τeff = m/γeff , where the effective damping constant
is defined as

γeff = γ(1 + γT /γ). (10)

Correspondingly, the rescaled mobility function can be
approximated to

γµ =
γµ|∞

1 + γT /γ
, (11)

where γµ|∞ denotes the rescaled mobility in the over-
damped limit, γ → ∞. Despite its being a simple inter-
polating formula, Eq. (11) fits quite closely the simula-
tion curves of Figs. 4(a) and (b) for large drives (main
panel). Note that the horizontal asymptotes for large
γ coincide with the expected values of γµ|∞, whose de-
pendence on the compartment geometry, noise and drive
intensity is analytically known [17–20].

Let us consider next the rescaled mobility at low drives,
F � FT . For F = 0 the transport quantifiers γµ0 and
D(0) can be formally expressed in terms of the mean exit
time, τ̄e, of the Brownian particle out of a single compart-
ment, namely, D(0) = x2

L/4τ̄e and µ0 = D(0)/kT , see
Eq. (7). An analytical expression for τ̄e as a function of
the compartment geometry is only available in the over-
damped dynamics approximation [33]. In the absence of

a fully analytical treatment, we interpret the numerical
results shown in the inset of Fig. 4(b) by assuming a
1D collisional dynamics along the x axis. At very low
damping and F = 0, the particle bounces off the same
compartment wall with rate 2vth/xL (attack frequency),
but only a fraction ∆/yL of such collisions leads to a pore

crossing. As a consequence, τ̄e ∼ xLyL/2∆
√
kT/m and

γµ0 ∼
γxL

2
√
mkT

∆

yL
=
r

2

γ

γT
, (12)

which reproduces with the linear fit in the inset of Fig.
4(b). Note that such a qualitative argument applies to
the weakly corrugated channels of Fig. 2(c), as well. In
that case, however, vth must be replaced by (2/π)vth,
to account for an almost isotropic 2D distribution of the
ballistic trajectories inside the compartment; correspond-
ingly, the factor 1/2 on the r.h.s. of Eq. (12) should be
changed to π/4, see Fig. 2(d).

The scaling law of the diffusivity at large drives,
D(F ) ∝ F β with β = 2, can be quantitatively deter-
mined by generalizing an argument originally introduced
for the overdamped regime [19]. For large F , the instan-
taneous particle velocity, v(t) ≡ ẋ(t), switches between a
locked mode with v0 = 0, as it sticks against a compart-
ment wall, and a running mode with v∞ = F/γ, as it
runs along the central lane of the channel. In view of Eq.
(4), it is clear that the particle spends a fraction 1−∆/yL
of the time in the locked mode, and the remaining ∆/yL
of the time in the running mode. The random variable
v(t) can thus be modeled as a dichotomic process with
subtracted autocorrelation function [34]

C(t) ≡ lim
s→∞

[〈v(t+ s)〉 − 〈v〉][〈v(s)〉 − 〈v〉]

= (v∞ − v0)2 τ̄0τ̄∞
τ̄2

exp

(
− τ̄ t

τ̄0τ̄∞

)
,

where τ̄0 = (1 −∆/yL)τ̄ and τ̄∞ = (∆/yL)τ̄ are the av-
erage permanence times, respectively, in the locked and
running mode; their sum, τ̄ , is the relaxation time con-
stant of the dichotomic process, still to be determined.
The spatial diffusivity D(F ) can be obtained by integrat-
ing C(t) over time and then making use of the explicit
expressions for v0, v∞, τ̄0, and τ̄∞, namely

D(F ) =

∫ ∞
0

C(t)dt =

(
F

γ

)2 [
∆

yL

(
1− ∆

yL

)]2

τ̄ . (13)

To determine the unknown time constant τ̄ = (yL/∆)τ̄∞,
we notice that a particle remains in the running mode for
a time τ̄∞ of the order of the time it takes to diffuse out
of the central channel lane, namely, for low damping,

2D0τ∞ =
1

4
[(yL + ∆)2 − (yL −∆)2]. (14)

By inserting the analytical expression for τ∞ thus derived
into Eq. (13) and taking for simplicity the limit of narrow
pores, ∆� yL, one arrives at

D(F )

D0
=

∆

2yL

(
F

FT

)2

. (15)
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FIG. 5: (Color online) Channel with tunable corrugation, Eq.
(16): rescaled mobility, γµ vs. F/FT for different eta. Other
simulation parameters: r = 1, ∆/yL = 0.1, and γ/γT = 0.8.

The dashed line is the power law (F/FT )−α/2 with α = 1.4
drawn in Fig. 2(b) for η = 2.

This expression is independent of γ and well reproduces
all simulation data of Fig. 4(b) at large F or, more pre-
cisely, under the condition that γ � γF .

On comparing the asymptotic laws for the diffusivity
at γ → 0, Eq. (15), and at γ → ∞, Eq.(6), one would
expect D(γ → 0)/D(γ →∞) = ∆/yL. On the contrary,
in Fig. 4(c) we immediately notice that all D(F ) curves
approach the same asymptotic scaling law, Eq.(6). As
discussed for the corrugated channels, the overdamped
diffusion scaling law, Eq. (15), holds only under the con-
dition that γ � γF . Correspondingly, here as well, in-
creasing F such that F > γ2∆/m, or lF � ∆, makes
inertia effects on confined diffusion emerge (though in a
less dramatic way).

V. DISCUSSION

The comparison between transport properties in
smoothly and sharply corrugated channels is suggestive
of the role played by the channels profile in the presence
of inertia. In principle, both channel geometries of Sec.
III and IV could be reproduced by means of one para-
metric profile function, say,

wη(x) =
1

2

[
∆ + (yL −∆) sinη

(
πx

xL

)]
, (16)

with tunable exponent η [35]. This function coincides
with w(x), Eq. (2), for η = 2 and approaches a rect-
angular compartment xL × yL for η → 0. The divide
between smoothly and sharply corrugated channels can
be set at η = 1, where the two sides of the bottleneck
profile change from concave, for η > 1, to convex, for
η < 1. Such change in the pore geometry affects, for in-
stance, the drive dependence of the rescaled mobility at

low damping, see Fig. 5. All curves γµ(F ) with η > 1
decay with the same approximate power law as reported
in Fig. 2(b) for η = 2. For η < 1, instead, the behav-
ior of γµ(F ) is as in Fig. 2(b) (sinusoidally corrugated
channel), at low F , and in Fig. 4(a) (septate channel),
at large F . Without further analyzing the η dependence
of the transport quantifiers, we now discuss certain dif-
ferences and similarities between sinusoidal and septate
channels.

In both types of channels, the diffusivity grows asymp-
totically with the drive according to a power law, D(F ) ∝
F β , where β = 2 for septate channels and β = 1 for sinu-
soidal channels. For smoothly corrugated channels this
result may come as a surprise, since, for large damp-
ing, the diffusivity is known to approach its bulk value,
D(F → ∞) = D(0). The asymptotic power law with
β = 1 illustrated in the inset of Fig. 3 results from the
enhanced trapping effect due to the underdamped par-
ticle bouncing back and forth against the compartment
walls. A simple qualitative argument yields [32]

D(F )

DT
∼ π

8

xLF

kT
= r

π

8

yL
∆

F

FT
, (17)

in rather good agreement with our simulation data (see
inset of Fig. 3). Note that, lowering the temperature, for
small damping D(F ) diverges like T−1/2, which means
that diffusion is the result of chaotic ballistic collisions.

Inertia corrections to the drive dependence of the diffu-
sivity are not as dramatic in septate channels, Fig. 4(c),
as they appear in corrugated channels, Fig. 3. This ex-
plains why the role of the threshold γF , Eq. (9), is less
prominent for sharply corrugated channels. On a closer
look, however, one notices that, on increasing γ, the
data points for D(F )/D0 approach the predicted oblique
asymptote of Eq. (15) at larger and larger F , consistently
with the large-drive inertial regime γ � γF .

Finally, we notice that septate and sinusoidally corru-
gated channels also differ in the large-drive behavior of
their mobilities at low damping. While in septate chan-
nels γµ(F → ∞) was shown to approach a small but
finite value, γµ|∞(γ/γT ), see Eq. (11), the mobility in
sinusoidal channels was numerically fitted by the scal-
ing law γµ(F →∞) ∼ (γ/γF )α, where α is an increasing
function of ∆ with α(∆→ 0) = 2 [Fig. 2(c)]. This means
that in sinusoidal channels 〈v(F )〉 [and not γµ(F )] tends
to a finite asymptotic value. By definition, the rescaled
mobility can be written as γµ ∼ (xL/τ̄d)(γ/F ), where τ̄d
denotes the mean drift time of a particle across a com-
partment in the presence of a strong drive. Accordingly,
as α → 2, the drift time τ̄d becomes insensitive to the
(large) drive, which hints at an emerging ballistic dy-
namics [36]. We also remark that the above scaling law
for γµ(F →∞) applies to all pore geometries with η ≥ 1
[35], see Fig. 5; for septate channels, η → 0, such a scal-
ing law, with 1 < α < 2, closely reproduces the decaying
branch of the mobility curves displayed in Fig. 4(a).
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VI. CONCLUSIONS

The main result of this work is that for real physical
suspensions flowing through confined geometries, both in
biological and artificial systems, pore crossings grow in-
creasingly sensitive to the suspension fluid viscosity with
decreasing the pore radius. With respect to previous at-
tempts at incorporating finite-mass effects in the analysis
of Brownian transport through corrugated narrow chan-
nels [37–39], we stress that the inertial effects reported
here are not of mere academic interest [32].

Inertial effects can be directly observed, for instance,
in a dilute solution of colloidal particles driven across a
porous membrane or an artificial sieve [40, 41]. On the
other hand, channel profiles at the micro- and nanoscales
can be tailored as most convenient [42]. As detailed in
Ref. [32], the experimental demonstration of inertial ef-
fects on Brownian transport through narrow pores is to
become accessible when manipulating artificial particles
of micrometric size by means of well established exper-

imental techniques [43–46]. For nano-particles, like bio-
logical molecules, detecting such effects will require more
refined experimental setups.
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