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We introduce the idea of transformation trajectories to describe the evolution of nematic shells
in terms of defect locations and director field when the elastic anisotropy and the shell thickness
heterogeneity vary. Experiments are compared to numerical results to clarify the exact role played
by these two parameters. We demonstrate that heterogeneity in thickness is a result of a symmetry
breaking initiated by buoyancy and enhanced by liquid crystal elasticity, and is irrespective of the
elastic anisotropy. In contrast, elastic anisotropy – in particular disfavored bend distortion – drives
an asymmetric defect re-organization. These shell states can be both stable or metastable.

PACS numbers: 61.30.Jf, 68.15.+e, 82.70.Kj

Nematic liquid crystal shells offer an interesting way
for imprinting well defined interaction sites at a surface
using topological defects [1–4]. Controlling the position
of the interaction sites - the defects - is not only impor-
tant from a fundamental point of view but it also deter-
mines the directional interactions and the possible struc-
tures that can assemble from such ground states [1]. In
nematic shells, topological defects arise naturally due to
geometrical frustration of the uniaxial three-dimensional
nematic order parameter, which is confined between two
spherical surfaces. For very thin shells and isotropic
elasticity, i.e. equal splay, K1, and bend, K3, elastic
constants, the tetrahedral symmetry with four topolog-
ical defects characterizes the ground state [5]. The four
defects are of winding number s = + 1

2
, reflecting the

π rotation of the average molecular orientation along a
path encircling each defect. In infinitely thin shells, the
defects become points with two-dimensional topological
charge of +1/2. For such shells, the sum of four such
topological charges is +2, as required by the Poincaré
and Hopf theorem [6]. By functionalizing these defects,
the resultant interactions between shells would emulate
the tetrahedral directionality of the sp3 orbitals of car-
bon, providing a route for the self-assembly of photonic
architectures with tetrahedral symmetry.

The ability to produce shells with other defect con-
figurations would open the routes toward assembling of
numerous complex colloidal structures. Experimentally,
this has already been achieved by changing the thick-
ness inhomogeneity of shells [2]. Alternatively, using
computer simulations on an ideal two-dimensional shell
(with zero thickness), the repositioning of the defects was
achieved by changing the shape of the shells [7, 8], by
exposing them to an external electric field [9] or by in-

troducing elastic anisotropy of the liquid crystal. In par-
ticular, for bend energetically much less favorable than
splay, the four characteristic +1/2 defects are expected
to organize themselves along a great circle on a two-
dimensional shell [10, 11]. Such defect configuration was
recently reported in two independent experimental pa-
pers [12, 13], for a temperature sufficiently close to the
nematic-to-smectic-A (N-SmA) phase transition, where
the elastic constants and the ratio K3/K1 are known
to increase [14]. In contrast to what was predicted for
ideal bidimensional shells, this state is achieved after a
series of transformations where the defects follow com-
plex trajectories. Two plausible scenarios were proposed
to explain this transition. In the first one, the defects
motion would be primarily induced by a change in the
geometry of the shell, with the shell becoming more ho-
mogeneous in thickness [12]. In the second scenario, the
shell would remain heterogeneous and the defect motion
would merely result from a change in the elastic con-
stants asymmetry [13]. However, the exact origin of this
transformation has not been established yet.

In this paper, we complement experiments with
Landau-de Gennes modeling, and study the roles of
the shell thickness, its inhomogeneity, and the elastic
anisotropy K3/K1. We show that multiple (meta)stable
director and defect shell states emerge, as achieved by
driving the system along distinct transformation trajec-
tories. A progressive increase of elastic anisotropy re-
sults in asymmetric shifts of the defect pairs, whereas, a
decrease of thickness inhomogeneity gives roughly sym-
metric shifts. Interestingly, free energy calculations show
that inhomogeneous thickness with lost tetrahedral sym-
metry is inherently favored by the effective nematic elas-
ticity irrespective of the elastic anisotropy. Finally, the
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recently observed repositioning of the defects in nematic
close to the N-SmA transition is shown to be leadingly
determined by the changes in the elasticity anisotropy.
The experimental shells consist of double emulsions

produced in a microfluidic device [4]. The middle fluid is
a nematic liquid crystal, either 4’pentyl-4-cyanobiphenyl
(5CB) or 4-octyl 4’-cyano biphenyl (8CB). The inner and
outer fluids are aqueous solutions that contain 1% wt of
polyvinyl alcohol (PVA) which enforces planar anchoring
of the liquid crystal at the two interfaces. The typical
nematic shells have four defect line segments of winding
number s = + 1

2
, as shown in Fig. 1(a). These defects

are confined to the thinnest part of the shell. The shells
are indeed heterogeneous in thickness: the center of the
inner drop is typically shifted by ∆ with respect to the
center of the outer drop [inset to Fig. 1(b)]. The average
thickness, h, is given by the difference between the outer
and inner radii, h = R − a. In our experiments, R is in
the range of (30− 120)µm and h is (2%− 3%) of R.
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FIG. 1. (a) Top view of an inhomogeneous nematic shell be-
tween crossed polarizers. The four s = 1

2
defects are localized

at the thinnest region. (b) Free energy difference between the
inhomogeneous and the concentric shell, F − Fcon, as a func-
tion of eccentricity ∆/R for K3/K1 = 1 and K3/K1 = 5.6.
Inset shows schematic side view of a shell, with defect pairs
sustaining a relative angle θ.

Both buoyancy effects (due to density mismatch) and
elastic forces are expected to contribute to the thick-
ness heterogeneity and the confinement of defects. To
determine the role of elasticity, we computed the equi-
librium free energy of weightless shells. The simulations
were done using minimization of the phenomenological
Landau-de-Gennes free energy based on the tensorial or-
der parameterQij [15]: F =

∫
LC

(fel + fL) dV +
∫
S
fSdS,

where fel is the elastic free energy density [16]:

fel =
L1

2
Qij,kQij,k+

L2

2
Qij,jQik,k+

L3

2
QijQkl,iQkl,j , (1)

with Qij,k the derivative of the ij-th component of the
Q tensor with respect to the Cartesian coordinate xk,
and L1, L2 and L3 the tensorial elastic constants, which
map to the standard Frank-Oseen elastic constantsKi as:
K1 = 9

4
S2 (2L1 + L2 − L3S), K2 = 9

4
S2 (2L1 − L3S),

and K3 = 9
4
S2 (2L1 + L2 + 2L3S) [17]. The free energy

density fL accounts for the variation of nematic order
fL = A

2
QijQij +

B
3

QijQjkQki +
C
4

(QijQij)
2
, where

A, B, and C are the nematic material parameters. The
surface free energy density fs characterizes the planar-
degenerate anchoring at the outer and inner surfaces of

the shell: fs = W (Q̃ij − Q̃⊥

ij)
2 where W is the anchoring

strength, Q̃ and Q̃⊥ are related to the full order param-
eter tensor, as defined in [18].

We minimize the total free energy numerically by using
an explicit Euler relaxation finite difference scheme [19].
The shells are modeled as closed spherical simulation lay-
ers of mesh points, cut-out from a uniform cubic grid
with resolution δ, which has to be chosen appropriately
to avoid pinning of the defects. Due to the coarseness of
the shell surface on the cubic grid, the absolute values of
the total free energy are calculated within 5− 10% preci-
sion; however, free energy differences of higher precision
(∼ 0.01%) can be attained if performing calculations at
the same allocation of the shell within the mesh. Be-
ing only interested in the equilibrium configurations, the
effects of the fluid flow are neglected. The initial condi-
tions for the relaxation algorithm are typically set as ran-
dom spins at each mesh point inside the simulation layer.
The following numerical parameters are used in simula-
tions if not stated differently: R = 2µm, a/R . 0.95,
h ≥ 10δ, K1 = K2 = K3 = 51 pN (for anisotropic

elasticity K3 was increased); A = −0.172 MJ/m
3
, B =

−2.12 MJ/m
3
and C = 1.73 MJ/m

3
; and W = 5 ×

10−3J/m2. These values approximately correspond to
5CB under strong planar degenerate anchoring [20]; thus
the effects of splay-bend K24 are neglected.

To understand the evolution of the shell states via dif-
ferent transformation trajectories we first analyze the
effects of shell inhomogeneity and the elastic constant
anisotropy on the defect positions in stable shell states.
We examine shells with fixed average thickness h, but
varying shift ∆. The difference between the total free
energy F (∆) of a heterogeneous shell and the free energy
Fcon = F (0) of the corresponding concentric shell is com-
puted for isotropic elastic constants, K3 = K1, and for
a given anisotropy K3/K1 > 1. A typical result is given
in Fig. 1(b) for a simulated shell of thickness h = 0.3R.
Interestingly, we find that F (∆) − Fcon is negative in
both situations, which indicates that heterogeneous shells
(∆ 6= 0) are always lower in energy, even when neglecting
gravity. Buoyancy, which breaks the symmetry at ∆ = 0,
enhances this tendency and favors vertical shifts. For this
reason, we only observe two possible configurations with
the inner drop shifted up or down in the vertical axis,
depending on the relative density of the inner drop with
respect to the outer one.

Although simulations show that the shift ∆ tends to
become maximal, the inner and outer surfaces of exper-
imental shells are not observed to coalesce. This reveals
the existence of a disjoining pressure, probably due to
the presence of PVA, which increases as the nematic film
gets thinner and tends to homogenize the thickness. In
thick shells, the defects localize at the thinnest region;
the ground state is well reproduced by simulations, as
shown in Fig. 2(a,d) for h = 0.1R, ∆ = 0.08R ≈ h, and
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K3/K1 = 1. The director field connects the defects by
pairs: the two closest defects, 1 and 2 in Fig. 2(d), are
connected by a director field that runs along the short-
est arc, whereas the defects 3 and 4 are connected by
the longest arc spanning a large fraction of a great circle.
When reducing ∆, the defects increase their separation
in a roughly symmetrical way, as shown in Fig. 2(e,f), i.e.
the ratio between the 1-2 and 3-4 defect pair distances
remains roughly constant. This is in nice agreement with
experiments when osmosis [2] is used to swell the inner
drop and decrease h, as shown in Fig.2(b,c).

h/R ~ 0.01h/R ~ 0.02h/R ~ 0.03
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FIG. 2. (a − c) Experimental cross polarized micrographs
of three different shells with similar size but different average
thicknesses h, and (d−f) corresponding simulated structures.
The director is shown in black; defects are drawn in red as
isosurfaces of nematic degree of order S = 0.48.

Concomitantly with thickness heterogeneity, the elas-
tic constant anisotropy K3/K1 also affects the position
of the defects. To study their intertwined role, we have
simulated inhomogenous thick shells of fixed geometry
(∆ = cst. ≈ h) and increased K3. Even at relatively
small anisotropy K3/K1 ≈ 1.8, the four defects orga-
nize in an asymmetric configuration, with the angular
distance between defects 1 and 2, θ12, larger than the
angular distance between defects 3 and 4, θ34, as shown
in Fig. 3(a,d). Increasing K3/K1 further enhances this
asymmetry, as shown in Fig. 3(b,e) and Fig. 3(c,f). De-
fects 1 and 2 move towards opposite sides of the sphere -
θ12 increases - until they stabilize in the equatorial plane
for K3/K1 = 5.6. Up to this value, defects 3 and 4 do
not shift - θ34 barely changes. If selectively functional-
ized, the defects 1 and 2, in this large elastic anisotropy
ground state (θ12 ≈ 180◦), could emulate the linear sp
orbitals of carbon. A selective functionalization could
be simplified by the fact that defects 3 and 4 are much
shorter than defects 1 and 2. Upon further increasing
the elastic anisotropy, K3/K1 > 5.6, defects 3 and 4 pro-
gressively migrate towards the equatorial plane - θ34 in-
creases. The migration of the two defect pairs occurs
along two orthogonal great circles, so that, in the final
state, the four defects are located at the vertices of a

square on the equatorial plane. This final state coincides
with the configuration predicted for an ideal bidimen-
sional shell [10, 11].

T-T = 0.10 °CN-S T-T = 0.06 °CN-S T-T = 0.04 °CN-S
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FIG. 3. Increasing elastic anisotropy K3/K1 in an inhomo-
geneously thick shell. (a-c) Side views of simulated shells
with varying elastic anisotropy: K3/K1 = 1.8, K3/K1 = 2.5,
K3/K1 = 5.6, and fixed ∆/R = 0.29; (d-f) Regions of lead-
ing bend (in purple) and splay distortions (in green). Note,
the increase of bend at the top thinner part of the shells.
(g-i) Micrographs of experimental repositioning of the defects
by decreasing temperature T by approaching nematic-smectic
phase transition TN−S , i.e effectively changing K3/K1. The
equilibrium angular distances between defects (red circles
in experiments (j) and simulations (k)) behaves differently
than when the shell thickness become inhomogeneous (blue
squares); note, how defects follow elementary different routes.

The origin of the observed asymmetry in the reposi-
tioning of the defect pairs is revealed by calculating the
bend and splay elastic contributions to the total free en-
ergy. The defects rearrangement towards the equatorial
plane results in longer defect cores, but it also provokes a
re-distribution of the areas where distortions are mostly
bend so that the total free energy decreases. On a sphere,
bend distortion is minimal when the director is along
great circles. As a result, bend distortions can be quanti-
fied using the geodesic curvature of the director field lines
that measures any deviation from a great circle. As θ12
increases due to an increase in the elastic anisotropy, re-
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gions of high geodesic curvature localize to the effectively
thinnest region of the shell, while regions of low geodesic
curvature localize to the effectively thicker region of the
shell, as shown in Fig. 3(a-c). Indeed, calculating the lo-
cal bend or splay elastic free energy density, shows that
the distortion becomes leadingly bend in the thinner re-
gion of the shell [increased purple region at the top in
Figs. 3(d-f)] as defects 1 and 2 move to the equator.
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FIG. 4. (a) Metastable and (b) stable inhomogeneous shell
states with equal defect positions and non-equal director: the
director links defects over the long and over the short arc (see
black lines in schematics). (c) Free energy difference between
the states in (a) and (b). (d) Scheme of transformation tra-
jectories between -director and defect- shell states that can
be controlled by varying inhomogeneity ∆ and elastic con-
stant anisotropy K3/K1. Note transitions (dashed arrows)
and hysteresis in trajectories. The metastable state becomes
unstable at ∆c that may depend substantially on R and h.

Either varying ∆ or K3/K1 induces rearrangements of
defects; however, the way they reorganize is very differ-
ent. We note that, in the experiments reported in Refs
[12, 13], the shell is cooled down near the SmA phase
where K3 increases substantially. Experimentally, the
defects migrate to the equatorial plane in an asymmet-
ric way [Figs. 3(g-i)] that closely matches the simulation
results of Fig. 3. This confirms that the motion is pri-
marily driven by the increase of K3/K1 rather than by
the inhomogeneous decrease of the thickness. The dif-
ferent behaviors shown in Fig. 2 and Fig. 3 are easily
distinguished by plotting the evolution of θ34 with θ12.
Figures 3(j,k) summarize the trends observed both in ex-
periment and in simulations. The angular distance θ34
increases faster with θ12 when varying ∆ (squares) than
when varying K3/K1 (circles). Typically, the errors of
experimental data is under ∼ 2%.

Note finally that different director (meta)stable states
and defect positions could be achieved by gradually
tuning the elastic constant anisotropy and the thick-
ness inhomogeneity (Fig. 4). In shells with inhomoge-
neous thickness, the simulations indeed predict a novel

metastable state [see Fig. 4(a) for ∆/R = 0.05] in addi-
tion to the ground state [Fig. 4(b)]. These states have
distinctly different director fields but identical defect lo-
cations. In the stable configuration, the defects are con-
nected along short arcs, whereas they are connected along
long arcs in the metastable structure. Free energy differ-
ence between the two structures is typically ∼ 1% for
1 µm shells and ∆/R = 0.05 [Fig. 4(c)]. Both stable
and metastable inhomogeneous (homogeneous) states be-
long to the same symmetry group C2 (D2). The evolu-
tion with ∆ and K3/K1 is schematically represented in
Fig. 4(d). The two states are energetically equivalent for
∆ = 0 and K1 = K3. The duality is broken upon in-
creasing ∆ as the defects reposition to the thinner region
of the shell. In simulations, the stable state is commonly
obtained after a thermal quench, whereas the metastable
state can be obtained by gradually increasing ∆ (white
background) until it becomes unstable at ∆c/R ≈ 0.1
for 1 µm shells. The case of large thickness inhomogene-
ity and elastic anisotropy (purple background) has been
investigated in detail throughout the paper. Interest-
ingly, we predict a new phenomenon when keeping the
shell homogeneous in thickness and increasing the elas-
tic constant anisotropy [yellow background in Fig. 4(d)].
In this case, the director arcs of both states (of nearly
same energy) become longer, yet driving strongly differ-
ent repositioning of the defects: either to the equator or
to the poles. More generally, this indicates the impor-
tance of the transformation trajectories when controlling
or generating various states in systems with effectively
reduced dimensionality like nematic shells.

We have shown that anisotropy in the elastic constants
induces changes in the defect configuration that are very
different from the changes when the shell inhomogene-
ity is changed. By changing the ratio of bend to splay
elastic constants, the position of the defects changes in a
asymmetric way, whereas by changing the inhomogeneity
of the shells, the all four defects reposition roughly sym-
metrically. Interestingly, the nematic elasticity always
prefers the non-homogenic configuration of the shells,
which permits repositioning of the defects in different
ways. Combining both effects provides a route for con-
trolling distinct defect trajectories that could lead ei-
ther to same or different topological stable or metastable
states. Such writing onto a shell by controlling defect tra-
jectories opens a new functionality of liquid crystal shells.
Finally, the intercalation of tunable elastic anisotropy,
variable shell homogeneity, and buoyancy could eventu-
ally be exploited to fabricate particles with new binding
directionalities.
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[9] G. Skačej and C. Zannoni, Phys. Rev. Lett. 100, 197802

(2008).
[10] H. Shin et al, Phys. Rev. Lett. 101, 037802 (2008).

[11] M. A. Bates, J. Chem. Phys. 128, 104707 (2008).
[12] H.-L. Liang et al, Phys. Rev. Lett. 106, 247801 (2011).
[13] T. Lopez-Leon et al, Phys. Rev. Lett. 106, 247802 (2011).
[14] N. V. Madhusudana and R. Pratibha, Mol. Cryst. Liq.

Cryst. 89, 249 (1982).
[15] P. G. de Gennes and J. Prost, The Physics of Liquid

Crystals, 2nd Ed. (Oxford, 1993).
[16] M. K. McCamley et al, Appl. Phys. Lett. 91, 141916

(2007).
[17] K. Schiele and S. Trimper, Pyhs. Stat. Sol. B 118, 267

(1983).
[18] J.-B. Fournier and P. Galatola, Europhys. Lett. 72, 403

(2005).
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