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Abstract 

 

A generic history-penalized metabasin escape algorithm that contains no predetermined 

parameters is presented in this work.  The spatial location and volume of imposed penalty 

functions in the configurational space are determined in self-learning processes as the 3N-

dimensional potential energy surface is sampled. The computational efficiency is 

demonstrated using a binary Lennard-Jones liquid supercooled below the glass transition 

temperature, which shows an O(103) reduction in the quadratic scaling coefficient of the 

overall computational cost as compared to the previous algorithm implementation.  

Furthermore, the metabasin sizes of supercooled liquids are obtained as a natural 

consequence of determining the self-learned penalty function width distributions.  In the 

case of a bulk binary Lennard-Jones liquid at a fixed density of 1.2, typical metabasins 

are found to contain about 148 particles while having a correlation length of 3.09 when 

the system temperature drops below the glass transition temperature. 
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I. Introduction 

 

Despite the tremendous amount of scientific research effort in the last three decades, the 

glass transition has remained one of the major unresolved problems in condensed matter 

theory1,2,3.  This is mainly because critical dynamical properties, in particular the shear 

viscosity η of supercooled liquids which increases more than 17 orders of magnitude 

upon the glass transition4, are not directly accessible by most glass transition theories.  

For example, the random first-order transition theory (RFOT)5,6 expresses the free energy 

of a supercooled liquid F as a functional of its inhomogeneous density field ρ(r) and 

seeks  the nontrivial solutions to ఋிሾఘሺܚሻሿఋఘሺܚሻ ൌ 0.  Using a simple hard-sphere liquid model 

and an approximated density functional7, Singh et al. was able to identify a metastable 

inhomogeneous glassy state when the system density is higher than a threshold value8.  

Kirkpatrick and Wolynes 5 argued that such a metastable inhomogeneous state 

corresponds to the non-decaying plateau of the density correlation function lim௧՜ஶߩߜۃሺܚ, ,ᇱܚሺߩߜሻݐ 0ሻۄ ് 0 predicted by the mode coupling theory (MCT)9,10. More 

explicitly, Kirkpatrick and Thirumalai proved that the governing equations for the spin 

fluctuation in the mean-field p-spin (p> 2) models11 are identical to the MCT equations 10, 

such that the non-decaying correlation function plateau value in MCT acts as an order 

parameter, the so-called Edwards-Anderson parameter12, signaling the onset of 

metastable glassy states when the temperature drops below TMCT 3,13.  Within the mean-

field scope of these theories, however, the lifetime of the predicted metastable states is 

infinite and therefore the corresponding relaxation time diverges at TMCT.  Such a 

divergence is unphysical since the structural relaxation time τ ൌ η/ܩ∞ measured by both 
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experiments and computations only increases for 4 orders of magnitude at TMCT 3, where ܩ∞ is the instantaneous shear modulus 14. 

 

To go beyond the mean-field approximation, and more importantly to address the 

connection between thermodynamic properties and viscosity, one often assumes the 

existence of an ideal glass transition at finite temperature, called the Kauzmann 

temperature TK 15, at which the configurational entropy of metastable glassy states 

vanishes.  Using phenomenological arguments that a supercooled liquid is composed of 

independent droplets of linear size ξ 16, one is able to make a qualitative estimation of the 

free energy and configurational entropy of these droplets as a function of ξ and argue that 

the thermodynamic temperature TK is the same as the dynamical Vogel-Fucker-Tamman 

(VFT) temperature T0 at which the extrapolated structural relaxation time diverges 3,6.  

Since the static structural factor and dynamical density correlation functions are 

insufficient to describe supercooled liquids beyond the mean-field approximation, higher-

order density correlation functions, such as the four-point and three-point correlation 

functions 12,17, were introduced to address the so-called dynamical heterogeneity 3,18. 

Incorporating these complicated higher-order correlation functions into the glass 

transition theory implies that the density may not be an efficient, although systematic, 

probe for the structural relaxation events in supercooled liquids.  It seems much more 

desirable to avoid these higher-order density correlation functions by directly expressing 

viscosity, the most critical dynamical property of supercooled liquids, as the stress tensor 

correlation function time integral 19. 
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Evaluating such a time integral near the glass transition temperature is impossible without 

efficient potential energy surface (PES) exploration algorithms.  Since typical structural 

relaxation timescales are far beyond the timescales that are accessible in molecular 

dynamics (MD) simulations, one often resorts to the transition state theory to estimate the 

rates of these rare events 2,20.  Existing methods are able to follow a specific transition 

from a given initial state to a final state which is either given or unknown 21,22.  For 

example, the blue moon method 23 and meta-dynamics 24 require a pre-determined 

subspace of order parameters; the string method 25, including the nudged elastic band 

method 26, requires a priori knowledge of both the initial and final states; both the hyper-

dynamics 21 and dimer methods, when coupled to the kinetic Monte Carlo method 27,  

spend most of their time re-crossing small barriers in a hierarchy of sequential 

cooperative events.  Therefore, none of these methods have been successfully applied to 

study the complex potential energy landscapes in a vitrified fluid which is known to 

exhibit heterogeneous structures of metastable energy basins 2. 

 

Kushima et al. 28 have recently developed a metadynamics-based 24 approach, called 

autonomous basin climbing (ABC), to explore the 3N-Dimensional (3N-D) PES of 

supercooled liquids and fed the obtained trajectories to a closed form of the Green-Kubo 

viscosity time integral 28,29.  Using the ABC algorithm, Kushima et al. were able to 

compute the entire viscosity spectrum over thirty decades 28,29 and provided the first 

topological connectivity of the 3N-D energy basins with clear distinctions between fragile 

behaviors and strong ones 30,31.  Their results further suggested that supercooled liquids 
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should not be categorized as strong or fragile liquids; instead, all liquids have 

characteristic fragile-to-strong crossover temperatures 30,31. 

 

II. Self-learning Metabasin Escape Algorithm 

 

The essential idea of the original ABC algorithm is to avoid sampling along the 3N-D 

PES as in MD simulations, but rather to utilize the extra dimension in energy so that 

metabasin escaping events can be identified and compared in the (3N+1)-D space.  Their 

basic algorithm can be summarized as follows.  For a given N-particle system with 

potential energy E(r) where r specifies its 3N-D atomic configuration, exploration of the 

PES is first guided by the force rF ∂−∂= /E .  However, if the system follows only the 

force, it ends up at a local minimum and gets trapped.  Therefore, penalty functions are 

imposed to assist the system in escaping from the local energy basin in a similar manner 

as metadynamics 24.  Explicitly, they first located a local minimum at s1 via the steepest 

decent quench 32 and then added a Gaussian penalty function ( ) ( )
⎥
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around s1 in the (3N+1)-D space where h is the 1D penalty height and w is the 3N-D 

penalty half-width.  After each penalty function addition, an energy minimum search was 

performed on the augmented energy surface ∑
=
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p
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i
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)()()( rrr φ , which is the sum of 

the original potential energy and all the previously imposed penalty potentials.  Using this 

approach, one does not need to specify the softest eigenmode searching direction as in the 

hyperdynamics 21 or dimer methods 27, or to restrict the searching subspace as in 

metadynamics 24.  By repeating the alternating sequence of penalty function addition and 
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augmented energy relaxation, the system was activated to fill up the local minimum basin 

and escaped through the lowest saddle point.  By keeping all the penalty functions 

imposed during the simulation, they eliminated frequent re-crossing of small barriers, 

which is a significant advantage of such history-penalized methods 24,33.     

 

In spite of the demonstrated successes in supercooled liquids 28-31 and also in a few other 

extremely slow dynamical processes such as creep 34 and void nucleation and growth 35, 

the original ABC algorithm developed by Kushima et al. 28 has two notable shortcomings.  

First, since the ABC method, like classical MD simulations, requires only calculations of 

the energy and forces, its computational expense should in principle be comparable to 

MD so that large atomistic systems containing 105 particles or more can be routinely 

modeled.  Unfortunately, the current ABC algorithm suffers greatly from the increasing 

number of imposed penalty functions and therefore the extra computational load over a 

regular MD simulation increases dramatically as the simulation progresses.  This has 

been limiting typical ABC trajectories implemented in various applications28-31,34,35 to a 

few thousand local minima and saddle points for a system containing a few hundred 

atoms in 3D.  Although small binary Lennard-Jones (b-LJ) systems containing as few as 

150 particles36 are sufficiently enough to obtain the inherent structures and diffusivity 

above Tg, the ABC trajectories of these small systems starting from deeply supercooled 

configurations do not fully relax to similar initial energies28,29 . This is because the 

activated particles in a typical metabasin, which contains a few hundred b_LJ particles 

(see below), are inevitably overlapped with their periodic boundary condition (PBC) 

images.  As to be demonstrated below, such overlapping-metabasin trajectories near and 
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below Tg can be symmetrically reduced to independent activation processes as the system 

size increases so that the correlation length distributions of an individual metabasin can 

be measured.   

 

The second inevitable problem of the ABC implementation concerns the subtle choice of 

the penalty function parameters{ }w,h .  In the glass transition case, Kushima et al. 28 

followed the Lindemann criterion 2 to choose a constant Gaussian penalty half-width

447.02 =w  for the supercooled binary Lennard Jones (b-LJ) liquid 37.  However, for 

arbitrarily given materials systems, it is unclear whether such constant parameter values 

would still be relevant, or even exist.  Moreover, since complex systems that exhibit slow 

dynamics naturally have a hierarchical distribution of metabasins with different sizes and 

energy depths, it is unlikely that the relaxation events can all be faithfully captured using 

the same constant parameters.   

 

This work intends to address these two seemingly different problems, i.e. the bottleneck 

in the computational efficiency and the subtle issue of choosing the constant parameter 

values, under a unified scheme.  The essential idea is to allow the system to learn by itself 

how the penalty functions should be applied as the trajectory evolves without any pre-

specified conditions.  Moreover, as a natural consequence of these self-learning strategies, 

the metabasin correlation lengths of supercooled liquids will be identified.   Explicitly: 

1) We start from a given initial configuration, find the corresponding local minimum 

on the PES at s1, and then apply the first penalty function with a small random 

half-width and height since there is no history yet.  Or, one may follow a short 
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MD trajectory to generate the penalty function as in metadynamics 24, which is 

equivalent to small random penalty functions since atoms in supercooled liquids 

are essentially immobile within the accessible MD timescale. We refer to this as 

the random rule.  The other rule, to be specified below, is the self-learning rule 

after new local PES minima being identified.  The random rule is set to be the 

current rule. 

2) We check whether the current penalty function overlaps with any of the previous 

ones according to the criterion specified below in Eq. (1).  Namely, for any two 

penalty functions ( )maxmax,| hhw iii <<− wsrφ  and ( )maxmax ,| hhw jjj <<− wsrφ , if 

the 3N-D distance between their centers is smaller than the sum of their half-

widths, 

,2 jiji wwss +≤−     (1) 

these two closely positioned penalty functions will be replaced by a combined 

penalty function ( )nnn ,| hwsr −φ  with  

ji hhh +=n        (2) 

and 
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while the center of the new penalty function will be shifted to  
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and ij ρρ −= 1 .  One may refer to Figs. 1(a-c) for three illustrative examples and 

detailed discussions below.  We then label the combined penalty function as the 

current penalty function and the total number of penalty functions is reduced by 

one.  Step 2) is repeated until the current penalty function does not overlap with 

any of the previous ones. 

3) We then minimize the augmented potential energy ∑
=

+=
p

i
i

p EΨ
1

)()()( rrr φ  to locate 

the next local minimum at sp+1 on this augmented energy surface.   

4) We check whether sp+1 is a true local minimum on the original PES, which 

satisfies the following two criteria: vanishing force and non-zero distance away 

from all the previous true local minima.   

a. If yes, we backtrack along the last minimization path to locate the saddle 

point configuration ssad. We then update the current penalty function 

selection rule using the displacement and the energy difference between 

the new local minimum and the corresponding saddle point as  

1sad1 3
2

++ −= pp ssw     (6) 

and 

( ) ( ).1sad1 ++ −= pp EEh ss     (7) 

One may refer to Figs. 1(d-f) for the illustrative examples and detailed 

discussions below.    

b. If no, we keep the current penalty function selection rule.   

In either case, we apply a new penalty function ( )111 ,| +++− ppp hwsrφ  using the 

current rule and the total number of penalty functions is increased by one.   
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5) Repeat Steps 2) to 4) until a sufficiently large configurational space has been 

sampled. 

 

Compared to the original ABC approach 28, the new algorithm outlined above introduces 

two designed self-learning strategies.  First, the new algorithm constantly searches for 

redundant penalty functions and replaces them with more effective ones.  Such a 

combination strategy is crucial to maintain a minimum amount of penalty functions while 

effectively occupying the penalized configurational subspace.  A few scenarios occur 

frequently in the metabasin filling processes, which we now discuss in detail.   

 

One special case illustrated in Figure 1(a) concerns two sequential local minima ps  and 

1+ps  on the augmented energy surfaces )( p
pΨ sr −  and )( 1

1
+

+ − p
pΨ sr  respectively are 

extremely close to each other.  This often occurs right after a true local minimum on the 

PES is identified but the magnitude of the local curvature of the applied penalty function 

)(" pp sr −φ  (green curve) is smaller than )(" pE sr − .  In this case, the computational 

efficiency critically depends on the local curvature of the augmented energy surface at ps . 

When two virtually identical penalty functions (green and blue curves) are caught in 

sequence, the rules specified in Eqs. (2) and (3) delete both of them and create a new 

penalty function (red curve) with a doubled height and the same half-width so that the 

local curvature of the penalty function doubles.  This combination process repeats until 

the augmented energy surface curves downwards, pushing the system away from the 

trapped configuration.   
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Figure 1(b) illustrates the case of maximal separation between two penalty functions with 

identical half-widths.  As specified in Eq. (1), combination occurs only when the center 

of one penalty function (blue curve) lies within a half-width distance away from the other 

center (green curve).  After combination, the new penalty function (red curve) is centered 

halfway between the two original centers as specified in Eqs. (4-5) with a doubled height 

and 3/2-times half-width as specified in Eqs. (2-3).  Such a 3/2 pre-factor justifies Eq. (6), 

which will be discussed in detail below.   

 

The third case concerns the combination of one large penalty function and one small one.  

As shown in Figure 1(c), the small penalty function is essentially absorbed by the large 

one.  Finally, we note that in our simulations the half-width upper limit maxw is set to be 

half of the simulation box and the penalty height maximum maxh  is set to be one order of 

magnitude higher than the highest energy barrier.  There are no combinations allowed for 

penalty functions that are larger than these limits to avoid unphysical basin filling 

processes.   

 

The second self-learning strategy concerns the initialization of new penalty function 

parameters after a true local minimum on the original PES is identified, by measuring the 

displacement and energy difference between the true local minimum and the 

corresponding saddle point.  Figure 1(d) plots the self-learned penalty function )(1 r+pφ  

with a half-width of 1sad1 ++ −= pp ssw  
and a height of ( ) ( )1sad1 ++ −= pp EEh ss  on top of the 

original PES )(rE .  The augmented energy surface pΨ  is plotted in Figure 1(e), showing 

a small undesirable dip at 1+ps .  To enforce fast relaxations away from 1+ps , one needs to 
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lower the local curvature at 1+ps .  This can be done by either increasing the height or 

decreasing the half-width of the applied penalty function, where the latter is preferred for 

better accuracy.  If one assumes deep energy basins of a supercooled liquid follow the 

same sinusoid shape in the vicinity of a local minimum as in crystalline materials 38, it is 

straightforward to prove that the augmented energy surface will curve down with a 

critical width 1sad1 9.0 ++ −= pp ssw  using the quartic penalty function to be discussed 

below.  Eq. (6) takes a smaller pre-factor of 1sad1 3
2

++ −= pp ssw  
to further decrease the 

local curvature of ( )1
1

+
+ −Ψ p

p sr  as plotted in Figure 1(f), and also to match the 

combination rule of Eq. (4) such that penalty functions with the targeted half-width 

1sad1 ++ −= pp ssw  
may be restored after combination.   

 

III. Results and Discussions  

 

To test the performance of the self-learning energy basin filling algorithm, a standard 

supercooled b-LJ liquid at a constant reduced density of 1.2 and a 4:1 ratio for the A:B 

particles was used 37. The b-LJ model used the LJ potential 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

612

4
rr

r αβαβ
αβαβ

σσ
εV   with εAA= 1.0, σAA= 1.0, εAB =1.5, σAB= 0.8, εBB= 0.5, 

and σBB= 0.88, truncated and shifted at cutoff distances of 2.5σαβ 37.  All the former and 

subsequent potential related parameters and values are given in the reduced LJ units.  

Supercooled liquids were prepared via slow annealing from T= 2.0 to 10-5 at five 

different constant cooling rates 1×10-4, 8×10-5, 1×10-5, 4×10-6, and 4×10-7 39. Independent 
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supercooled configurations were collected, among which the highest and lowest energies 

are -7.632 and -7.716 per particle, respectively.  Since the average energy per particle -

7.653 (±0.017) corresponds to 1.09TMCT based on the monotonic temperature to averaged 

local minimum energy ( )TET →  mapping 28,39, these independent supercooled 

configurations effectively cover the temperature region from TMCT and above to Tg and 

below.  Here the mode coupling temperature TMCT = 0.435 37 and Tg ≈ 0.37 28, since the 

latter used slightly different b-LJ potential radius cutoffs 28.   

 

Quartic penalty functions 
22

1),|(
⎥
⎥
⎦

⎤

⎢
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⎜
⎝
⎛ −−=−

w
srwsr hhφ  were used in this study to 

replace the Gaussian functions used in the original ABC algorithm 24,28, because the 

former have naturally vanishing energy and forces at wsr =−  so that the radial 

truncations are no longer required.  

 

The overall computational efficiency of the self-learning algorithm is summarized in Fig. 

2, with direct comparisons to the original ABC results.  Fig. 2(a) shows the total 

computational time cost t as a function of the number of local minima identified Ns for a 

b-LJ liquid with N= 256 particles.  In 50 hours on a single CPU, the self-learning 

algorithm found an average of 758 (±49) new local minima, as compared to an average of 

13 (±4) using the original ABC method.  Since independent penalty functions were all 

kept throughout the entire simulation to avoid barrier re-crossing events, the 

computational time spent in finding the next local minimum should scale proportionally 

with the total number of penalty functions applied. This implies that the total 
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computational time cost t should scale quadratically with the total number of local 

minima Ns.  A quadratic fit to the 16 independent trajectories (grey symbols, 6 for ABC 

and 10 for self-learning) shown in Fig. 2(a) gave 2
sN

t = 9.6×10-2 and 8.5×10-5 hours for 

the original ABC and new self-learning algorithms, respectively. Such an O(103) 

reduction in the quadratic scaling coefficient of the overall computational cost found for 

the N= 256 case was consistent for smaller and larger system sizes, as shown in Fig. 2(b).  

In particular, for the b-LJ liquid with N= 103 particles, only one or two local minimum 

were found in 50 hours using the original ABC algorithm such that a meaningful 

quadratic fit similar to Fig. 2(a) could not be performed.    

 

In addition to the significantly larger number of local minima that can be identified (Fig. 

2), the computational efficiency enhancement should also give insight into the 

configurational subspace that has been visited.  This is particularly necessary for 

supercooled liquids, because finding a large number of local minima within a small 

configurational subspace does not necessarily lead to any metabasin escaping events.  

Therefore, we plot in Fig. 3 the topological connectivity trees of all the local minima and 

saddle points constructed from two representative (out of sixteen in total) basin-filling 

trajectories shown in Fig. 2(a), with their energy values scaled against the supercooling 

trajectories shown in Fig. 3(a). Specifically, Fig. 3(b) is for ABC and Fig. 3(c) is for self-

learning, where both started from the same supercooled configuration with an energy of -

7.716 per particle, obtained from a slow annealing at a constant cooling rate of 4×10-7 as 

shown in Fig. 3a.  Within 50 hours using one CPU, the original ABC trajectory visited a 

PES subspace covering the maximal saddle point energy of -7.702 per particle and the 
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maximal mean square displacement of 0.006 per particle.  In contrast, the self-learning 

algorithm reached much further, finding the maximal saddle point energy of -7.435 per 

particle, which is 20 times higher in the energy per particle, and the maximal mean 

square displacement of 6.135 per particle, which is 1021 times larger in distance per 

particle.  Therefore, through the self-learning strategies outlined above, the new 

algorithm not only avoids using pre-determined constant ABC parameters, but also 

explored a significantly larger subspace of the PES than the original ABC algorithm by 

climbing over much higher saddle points (Fig. 3) and reaching out to many more local 

minima (Fig. 2).   

 

With such a dramatically enhanced computational efficiency, we can probe a few critical 

structural relaxation processes occurring in supercooled liquids, in particular the 

metabasin correlation length distribution when a bulk supercooled liquid approaches the 

glass transition temperature.  While results obtained via using the original ABC method 

did quantitatively predict the structural relaxation time scales over 30 orders of 

magnitude28,30, it is unclear how the dynamic correlation lengths would vary as 

supercooled liquids approach their glass transition temperatures.  Using a generalized 

point-to-set correlation method, Kob et al. was able to obtain the dynamic correlation 

length for a quasi-hard sphere system down to the mode coupling temperature TMCT 
40,  

but not significantly below due to the timescale limitation in MD simulations.   

 

Fig. 4(b) shows the penalty function half-width distributions (red symbols) obtained from 

the same 10 independent self-learning trajectories of Fig. 2(a) for the N= 256 case.  
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Consistent agreement is found among these converged distribution functions obtained 

from completely independent trajectories.  We recall that a metabasin can be thought of 

as a subspace of the PES in which a supercooled liquid will reside for a long time, but 

will likely not revisit it after escape events.  Within the context of the self-learning 

algorithm, when the same configurational subspace is visited over and over again, it 

triggers the self-learned combination condition as specified by Eq. (1) so that the widths 

of the penalty functions continue to grow.  However, these self-learned combination 

processes will cease as soon as the system escapes from the current metabasin, leaving 

behind the penalty functions whose widths represent the actual size of the metabasin.   In 

other words, the self-learned penalty function width distributions shown in Fig. 4(b) 

should directly correspond to the size distributions of metabasins.  

 

As discussed above, the metabasin activation processes in small systems such as N= 256 

or less are strongly coupled to their PBC images.  Consequently, the activated particles 

during the metabasin escape processes do not automatically relax to deeply supercooled 

states, so that these self-learning trajectories consist of many states of high energy.  These 

undesirable overlapping activation processes can be systematically reduced by increasing 

the system size N, as shown by the connectivity trees in Fig. 4(b) for N= 500 and in Fig. 

4(c) for N= 1000.  In particular, the self-learning trajectories for the N= 1000 case explore 

deeply supercooled states with occasional activation processes associated with individual 

metabasin escape events.      
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The gradual decoupling of overlapped metabasins can also been seen in Fig. 4(d), where 

the penalty function half-width distribution obtained from the N= 500 (yellow symbols) 

and 103 cases (green symbols) is shifted towards larger values as compared to the N= 256 

case (green symbols).  In particular, the peak of the penalty function half-width 

distribution profile, namely the most probable metabasin size ξ, is increased from 1.88 (± 

0.17) for N= 256, 2.20 (± 0.14) for N= 500, to 2.35 (±0.13) for N= 1000.  Fig. 4(e) 

summarizes the most probable metabasin correlation length, the peak of the penalty 

function width distribution profile of Fig. 4(d), as a function of N.   

 

To obtain the scaling rule for the metabasin correlation length shown in Fig. 4(e), it is 

important to note a few characteristic features of supercooled liquids revealed by using 

our history-penalized basin filling approach that are fundamentally different from the 

RFOT results 6.  First, the fragility of the b-LJ liquids is a natural consequence of the fact 

that after being trapped in a deeper energy basin, the system requires a higher activation 

energy to escape.  Namely, there are no small activation energy events available in the 

connectivity tree structures of Figs. 4(a-c) that can connect a deep energy basin to another 

deep energy basin of similar depth.  In contrast, the connectivity tree structures of SiO2, 

which is known to be a “strong” liquid 4, are replete with escape mechanisms that have 

similarly small activation energies 30.  Such a direct energy landscape origin of fragility 

does not require the configurational entropy cost assumption as in the Adam-Gibbs 

theory 41 and in the RFOT 42, so that the configurational entropy crisis at the Kauzmann 

temperature TK does not have to be the ultimate destiny for supercooled liquids.   
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Second, from any supercooled liquid basin, no matter how deep it is, the activation 

energy required to cross the bottleneck barrier to the rest of the PES is a finite value.  

From the perspective of the transition state theory for rare events, a finite activation 

energy corresponds to a finite relaxation time, with the only exception being the 

crystalline state where there are no other symmetry-distinct states that are degenerate in 

energy.  Therefore, divergence in the structural relaxation time of supercooled liquids 

cannot occur at non-zero thermodynamic Kauzmann temperature TK or non-zero dynamic 

VFT temperature T0.  Namely, the ideal glass transition should not exist at a finite 

temperature. Instead the diverging VFT extrapolation of the structural relaxation time, the 

so-called fragile behavior, is avoided by a natural crossover to the strong behavior of 

constant activation energy, since all energy basins have finite depths.  In other words, the 

apparent configurational entropy crisis only exists within the metabasin, but not after 

metabasin escape events.  From such an energy landscape perspective, the fragile-to-

strong crossover is inevitable for all supercooled liquids.   

 

Third, a finite relaxation time corresponds to a finite correlation length, so that the 

collective motion during any metabasin relaxation process must be a truly localized event.  

Namely, a metastable basin possesses an exponentially decaying tail in real space.   

 

When the metabasin correlation length shown in Fig. 4(e) is fitted using an exponentially 

decaying function (solid line), an asymptotic correlation length of 09.3=ξ is found.  

Therefore, in a macroscopic sample of the b-LJ liquid, the collective motion of particles 

in a typical metabasin relaxation event has a finite correlation length of 3.09, which 
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corresponds to a volume of 148 b-LJ particles.  Using the ( )TET →  mapping28,39 of Fig. 

3(a), we conclude that a typical metabasin relaxation event consists of the collective 

motion of 148 particles when the bulk b-LJ liquid reaches below the glass transition 

temperature Tg. Such a metabasin correlation length is of the same order as the 

phenomenoglical 5.4≈ξ 42 or 5.8 6 by the RFOT, the assumed value of about 100 

particles for 31 different types of metallic glasses 43, the computed value of about 140 

particles in a MD simulation using an embedded atom method force field 44, and the 

measured 3±1 nm for poly(vinyl acetate) at 10 K above Tg by nuclear magnetic resonance 

45.  We note that although our computed metabasin correlation length is the same order of 

magnitude as the value phenomenoglically predicted by the RFOT, the former is a finite 

number and the latter diverges at a non-zero Kauzmann temperature TK.    

 

IV. Summary 

 

In summary, a generic self-learning algorithm is presented in this work that is capable of 

capturing escape events from metabasins in supercooled liquids.  The computational cost 

of the original ABC algorithm is significantly reduced via the new self-learning strategies 

developed in this work for the following two reasons.  First, the computational load 

decreases because the total number of penalty functions is reduced through penalty 

function combinations. Second, self-learned combinations create flexibility in the penalty 

function widths, which then naturally self-adapt to the underlying metabasin energy 

landscape.  The resulting variation in the penalty function widths represents the actual 

size distribution of metabasins in supercooled liquids.  As a generic approach involving 
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only energy and force calculations, this self-learning algorithm may offer a new efficient 

computational tool for attacking many phenomena of long-standing scientific interest 

involving extremely slow dynamics in condensed matters.   
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Figures 

 

 

Figure 1: (Color online) Self-learning strategies on the (a-c) combination and (d-e) initial 

choice of penalty functions.  (a) Two sequential fully overlapped penalty functions (green 

dotted and blue dashed) give a strong indication of inefficient sampling.  The combined 

penalty function (red solid) doubles the local curvature to assist the system in moving 

away from the stuck configuration.  (b) Combination of two penalty functions (green 

dotted and blue dashed) at the maximal separation. The new penalty function (red solid) 

has a half-width that is 3/2 times of the original values. (c) Combination between two 

penalty functions of different sizes.  (d) The original energy E and the penalty function φ 

with self-learned half-width ssw −= sad  
and height ( ) ( )ss EEh −= sad . (e) Their 
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augmented energy Ψ  still has a dip at the original local minimum. (f) The augmented 

energyΨ using a smaller half-width ssw −= sad3
2 curves downwards, which is desirable 

for fast relaxations.    
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Figure 2: (Color online) Computational cost reduction via using the new self-learning 

algorithm, as compared to using the original ABC approach. (a) For a b-LJ liquid 

containing N= 256 particles, the total computational time cost t is plotted against the total 

number of local minima for each approach. Grey symbols are raw data, shown as circles 

for 6 independent ABC runs and triangles for 10 independent self-learning runs.  Both 

sets of raw data were separately fitted by quadratic functions, red dashed line for the ABC 

and green solid line for the self-learning algorithms.  (b) The quadratic scaling 

coefficients 2
sN

t  are plotted as a function of the system size for N= 108, 256, 500, and 

1000 particles.  Note that for N= 1000, the original ABC algorithm fails to generate 

enough data for meaningful quadratic fits.  All computations in this work are performed 

on one dual-core AMD Opteron processor at 2.2 GHz.         
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Figure 3: (Color online) (a) Average quench energy per particle ( )TE  as a function of 

temperature T obtained from slow annealing at a constant quenching rate of 4×10-7.  This 

defines the ( )TET →  mapping 28,39 at the given quenching rate, essentially identical for 

N= 256 (red circles) and N= 1000 (green triangles). Topological connectivity tree 

structures consisting of the PES local minima and saddle points for an N= 256 b-LJ liquid, 

obtained from two basin filling trajectories starting from the same initial deeply trapped 

potential energy state (blue circles), one using (b) the original ABC algorithm and the 

other using (c) the new self-learning algorithm.  The lower end point of each vertical line, 

or a leaf, represents an independent local minimum.  The connecting point between any 

two local minima represents the saddle point of the minimum activation energy between 

them.  
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Figure 4: (Color online) Topological connectivity tree structures (a-c) and distribution of 

the self-learned penalty function half-widths |w| (d) for supercooled b-LJ liquids with N= 

256, 500, and 1000 particles.  There are 8287, 2107, and 627 local minima, respectively.  

As N gets larger, metabasins are decoupled more from their PBC images, and eventually 

self-learning trajectories probe purely independent metabasin escape events.  (e) The 

most probable metabasin sizes, measured by the peaks of the half-width distribution 

profiles shown in (d), as a function of the system size N.  The solid line is an 



29 
 

exponentially decaying function of ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎠

⎞
⎜⎜
⎝

⎛
−−×= 3

1

147.0exp109.3 NNξ . The asymptotic 

metabasin size ( ) 09.3=∞→Nξ  corresponds to a volume of 148 b-LJ particles. 


