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The self-similarity of complex networks is typically investigated through computational algorithms
the primary task of which is to cover the structure with a minimal number of boxes. Here we

introduce a box-covering algorithm that outperforms previous ones in most cases.

For the two

benchmark cases tested, namely, the E. Coli and the WWW networks, our results show that the
improvement can be rather substantial, reaching up to 15% in the case of the WWW network.

I. INTRODUCTION

The topological and dynamical aspects of complex net-
works have been the focus of intensive research during
the last years [1-15]. An open and unsolved problem in
network and computer science is the following question:
how to cover a network with the fewest possible number
of boxes of a given size [16-21]7 In a complex network,
a box size can be defined in terms of the chemical dis-
tance, Ip, which corresponds to the number of edges on
the shortest path between two nodes. This means that
every node is less than g edges away from another node
in the same box. Here we use the burning approach for
the box covering problem [22], thus the boxes are defined
for a central node or edge. Instead of calculating the
distance between every pair of nodes in a box, the max-
imal distance to the central node or edge rp is given.
While a solution for a given rp is through the relation
rg = (Ip — 1)/2 for a central node and rg = lg/2 for a
central edge automatically a solution for a given (g, the
solution for a given [p is not necessarily a solution for its
corresponding 7. Therefore, the criterion of the distance
between any two nodes is weaker and could result in a
smaller number of boxes. Additionally, the usage of the
distance [ g leads usually to disconnected boxes, while the
boxes are always compact for 7. The maximal chemical
distance within a box of a given size rpg is 2rg for a cen-
tral node and 2rp — 1 for a central edge. Although this
problem can be simply stated, its solution is known to be
NP-hard [23]. It can be also mapped to a graph color-
ing problem in computer science [19] and has important
applications, e.g., the calculation of fractal dimensions of
complex networks [24-29]. Here we introduce an efficient
algorithm for fractal networks which is capable to deter-
mine the minimum number of boxes for the box covering
problem using the definition of a central node or edge
for any given parameter rg. Moreover, we compare it for
two benchmark networks with a standard algorithm used
to approximately obtain the minimal number of boxes.
In principle, the optimal solution should be identified
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by testing exhaustively all possible solutions. Never-
theless, for practical purposes, this approach is unfea-
sible, since the solution space with its 2V solutions is too
large. Present algorithms like maximum-excluded-mass-
burning [22] and merging algorithms [30] are based on
the sequential addition of the box with the highest score,
e.g., the score is proportional to the number of covered
nodes, and the boxes with the highest score are sequen-
tially included. Other algorithms are based on simulated
annealing [31], but without the guarantee of finding the
optimal solution. Even greedy algorithms end up with
a similar number of boxes as the algorithms mentioned
before [20]. The greedy algorithm sequentially includes a
node to a present box, if all other nodes in this box are
within the chemical distance I and if there is no such
box, a new box with the new node is created. It is there-
fore believed that the results are close to the optimal
result, although the real optimal solution is unknown.
This paper is organized as follows. In Section II, we intro-
duce the algorithm and then explain the main difference
between the present state of the art algorithm and our al-
gorithm for a given distance rg. In Section III, results for
two benchmark networks are presented and the improve-
ment in performance of our algorithm is quantitatively
shown. Finally, in Section IV, we present conclusions
and perspectives for future work.

II. THE ALGORITHM

We use two slightly different algorithms for the
calculation of the box covering solution, one for odd
values of [ and another for even values . To get the
results for an odd value, the following rules are applied:

1. Create all possible boxes: For every node i create a
box B; containing all nodes that are at most rp =
(Ip — 1)/2 edges away. Node i is called center of
the box. An example is shown in Fig. la.

2. Remove unnecessary boxes: Search and remove all
boxes B; which are fully contained in another box
B; (See Fig. 1b).



3. Remove unnecessary nodes: For every node ¢, check
all the boxes containing i: B;,,..., B;,. If another
node j # i is contained in all of these boxes, remove
it from all boxes (see Fig. lc).

4. Remove pairs of unnecessary twin boxes: Find two
nodes 4,j which are both in exactly two boxes of
size two: Bil = {i,kl}, Big = {i,k‘g} and le =
{j,ll}, sz = {j, lg} If ]{31 = ll and kQ = lQ, then
B;, and Bj, can be removed. If k; = Iy and kg = 1,
then B;, and Bj, can be removed. An example for
this rule is shown in Fig. 2. Note that such twin
boxes also appear for [ > 2 due to the removal of
unnecessary nodes.

5. Search for boxes that must be contained in the so-
lution: Add all boxes B; to the solution, which have
a node ¢ only present in this box. Remove all nodes
j # i covered by B; from other boxes.

6. Iterate A: Repeat 2-5 until there is no node which
is covered by a single box and is not part of the
solution.

7. System split: Identify if the remaining network can
be divided into subnetworks, such that all boxes
in a subnetwork contain only nodes of this subnet-
work. Then these subnetworks can be processed
independent from each other.

8. System split: Find the node which is in the small-
est number of boxes Npoxes, €ach of these boxes
covers another set of nodes B;. If there is more
than one node fulfilling this criterion, choose the
node which is covered by the largest boxes. Then
the algorithm is divided into Ny oxes Sub-algorithms,
which can be independently calculated in parallel.
By removing from each of the Npoxes sub-algorithm
another set of nodes B;, all possible solutions are
considered. An example for the splitting is shown
in Fig. 3. Since we want to identify only the best
solution, we do not need to calculate the results
of all sub-algorithms. As soon as one of the sub-
algorithms identifies the best possible solution, the
number of included boxes in the solution of the sub-
algorithm is not larger than the rounded up number
of uncovered nodes divided by the number of nodes
in the largest box, we can skip the calculation of
the others. Furthermore, the calculation of a sub-
algorithm can be skipped, if the minimal number
of required additional boxes reaches the number of
the, so far, best solution of a parallel sub-algorithm.

9. Iterate B: Repeat 2-8 until no nodes are uncovered.

10. Identify the best solution: Choose the solution with
the lowest number of boxes. This is the best solu-
tion for a given rp.

To get the results for an even value of g the first step
is slightly different:

FIG. 1. (Color online) The box covering algorithm on a small
example network for the box size Ip = 3 (rp = 1 with a
central node). Upper panel: a) Step 1: Calculation of all
possible boxes. The color of the boxes corresponds to the node
in its center. b) Step 2: All boxes that are fully contained in
another box are removed. In this example the boxes Bi, Ba,
Bs, and By are removed. ¢) Step 3: All nodes which are in all
boxes of another node are removed. In this example, nodes
2,3,4 are in the same box with node 1 as well as nodes 4,5,6
are in the same box with node 7. d) The final solution is
shown on the right side.

Lower panel: The three possible solutions for the greedy box
covering algorithm, based on the largest box sizes. In this
case, the boxes are included to the solution according to the
number of new covered nodes. Since three boxes Bs, By and
Bg have the same number of nodes, the algorithm finds three
different solutions e) (Bs,Bg), ) (Bg,B3), and g) (B4,B1,B7),
where the last one is not optimal.

@ 2
o® &G
ARG
0 0

FIG. 2. (Color online) Step 4: In this example two nodes are
in the same box, if they are connected with an edge. The two
boxes between nodes 1 and 5 and between nodes 2 and 3 are
removed according to rule 4.

FIG. 3. (Color online) Step 8: Node 4 is covered by 2 circles
(the minimal number of boxes) and the algorithm splits. The
first sub-algorithm continues with box Bs (middle), while the
second one continues with box Bs(right).



1. Create all possible boxes: For every edge i create a
box B; containing all nodes that are at most rp =
lB/2 nodes away. Edge i is called center of the box.

All other steps are the same as for the odd case. Note
that the number of starting boxes for odd values scales
with the number of nodes of the network N and with
the number of edges M for even values. Due to the fact
that the problem is NP-hard, the required computational
time depends strongly on the network itself. For example,
the box-covering for tree-networks could be performed in
O(N?), while for regular networks it requires O(2V).

III. RESULTS FOR TWO BENCHMARK
NETWORKS

In the following, we will argue why the algorithm leads
to a nearly optimal solution.
Instead of sequentially including boxes, the idea of our
algorithm is to remove all undesired boxes from the so-
lution space ending up with a final, best solution. To re-
duce the huge solution space, our box covering algorithm
uses two basic ingredients: 1) Unnecessary boxes from
the solution space are discarded and the boxes which
definitively belong to the solution are kept. 2) Unnec-
essary nodes from the network are discarded. These two
steps reduce the solution space of a wide range of network
types significantly, specially if they are applied in alter-
nation as the removal of a box can lead to the removal of
nodes and other boxes and vice-versa. Nevertheless these
two steps do not necessarily lead to the optimal solution,
thus the solution space has to be split into several pos-
sible sub-solution spaces. In each of these sub-solutions
the first two steps are repeated. Note that the splitting
does not reduce the number of possible solutions, thus
only the first two steps reduce the solution space and in
the worst case, the algorithm must calculate the entire
solution space. In any case, for many complex networks
iterating these three steps significantly reduces the solu-
tion space to a few solutions from which the best box
covering can be obtained.
The remaining question is how to judge whether a box or
node is necessary or unnecessary. On the one hand a box
is unnecessary if all nodes of a box are also part of an-
other box. This box can be removed, because the other
box covers at least the same nodes and often additional
nodes. On the other hand a box is necessary if a node is
exclusively covered by this single box. This box has to
belong to the solution, since only if the box is part of the
solution, the node is covered.
In contrast, nodes can easily be identified as unnecessary.
For example all nodes of a box, which is part of the solu-
tion, can be removed from all other boxes, since they are
already covered. Additionally, if a node shares all boxes
with another node, the other node can be removed, since
the second node is always covered, if the first node is
covered. These few rules are in principle sufficient to get
the best solution, since our algorithm starts with all 2V

FIG. 4. (Color online) Comparison of the minimal number of
boxes N(lg) for a given distance Ip for the E. Coli network
using the greedy graph coloring algorithm and our algorithm.
While the decay for both box covering methods is similar in
the logarithmic plot, the minimal number of boxes is different.
Although the difference AN = Ngreedy — Nbox seems to be
small, the relative improvement AN/Ngreedy, which is shown
in the inset, is significant for small distances Ip < 7. Note
that the larger the box size the simpler the network can be
covered with the adequate number of boxes. The straight line
shows a power-law behavior, where the best fit for the fractal
dimension is dp = 3.47 £ 0.11 for the greedy graph coloring
and dp = 3.45 £ 0.10 for our algorithm, respectively. Within
the error bars both box-covering algorithms yield the same
fractal dimension.

or 2M (for central edges) possible solutions and discards
unnecessary and includes necessary boxes. Without any
approximation for the classification of boxes, the algo-
rithm ends up with the best number of boxes for any
given radius 7.

Although we only calculate results for undirected, un-
weighted networks, the algorithm can easily be extended
to directed and weighted networks. In both cases only
the initial step, the creation of boxes, is different. For di-
rected networks, the box around a central node contains
all nodes which are reachable with respect to the direc-
tion, while for weighted networks, the distance is the sum
of the edge weights between the nodes.

Next we show that our algorithm can also identify so-
lutions for large networks. Therefore, we have applied
it to two different benchmark networks, namely the FE.
Coli network [32], with 2859 proteins and 6890 interac-
tions between them, and the WWW network [2]. We
compare the results for the minimal box number N(Ip)
of our algorithm for different values of box sizes I with
the results of the greedy graph coloring algorithm [22],
as displayed in Fig. 4. In contrast to our algorithm the
greedy algorithm is based on the distance between any
pair of nodes within a box. While the absolute improve-
ment is rather small, the relative improvement is up to
6% for Ip < 7. If the network is fractal, it should obey
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FIG. 5. (Color online) The minimal number of boxes N(Ip)
as a function of the distance I for the WWW network cal-
culated through the greedy graph coloring algorithm and our
algorithm. While the fractal dimension for both box covering
methods agrees within the error bars, the minimal number of
boxes is different. The difference AN = Ngreedy — Nbox as
well as the relative improvement AN/Ngreedy, which is shown
in the inset, are significant for [p < 16. For this network a
maximal relative improvement of about 15% can be obtained.

the relation,
N(ls) ~ 15, (1)

where dp is the fractal dimension. Interestingly, it seems
that the fractal dimension dg = 3.47 £+ 0.11 from the
greedy algorithm and dp = 3.45 4+ 0.10 from our algo-
rithm of the network is within the errors unaffected by
the choice of the algorithm and the definition of box cov-
ering problem. Note that for [ = 11, due to the fact
that the boxes are calculated based on different box def-
initions, we have one more box. The simplest case where
such difference occurs is in a chain of four connecting
nodes (1-2, 2-3, 3-4, 4-1). All nodes have the chemical
distances of two to each other (I = 3), however it is not
possible to draw a box around a node with radius one
(rg = 1), which contains all nodes.

The second example is the WWW network, containing
325729 nodes and 1090108 edges. As in the previous case,
our algorithm outperforms the state of the art algorithm,
but yields similar fractal behavior, as shown in Fig. 5.
For intermediate box sizes g < 16, we have a large im-
provement since up to 15% and up to 611 fewer boxes
are needed. For [ = 16,17,18 we have two boxes more,
like in the E. Coli network case due to the two definitions
of the box covering problem, while for larger [ both al-
gorithms give similar results. Interestingly, it seems that
the improvement for even distances [ (for central edges)
is significantly larger than for odd distances lp (for cen-
tral nodes).

In Fig. 6 we show the influence of the sequence of
adding nodes to the boxes on the results of the greedy
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FIG. 6. The distribution of minimal number of boxes p(N) for
the WWW network for [g = 5 calculated through the greedy
graph coloring algorithm for 1500 different random node se-
quences. We have normalized the results by the solution ob-
tained from our algorithm. The distribution follows a normal
distribution p(z) ~ exp(—(x—pu)?/(20?)) with u = 1.0740.01
and o = 0.003 & 0.001, thus approximately 10'2° realizations
are necessary to find the solution with the greedy algorithm.

algorithm. While the results of Fig. 5 are the min-
imal values obtained from 50 independent starting se-
quences, we calculated 1500 realizations for a single box
size g = 5. The difference between the improvement
is with Ngreedy/Nbox = 6.3% and Ngreedy/Nbox = 6.1%
rather small. The gap between our solution and the
greedy algorithm is too large, thus for practical purposes,
the greedy algorithm will never find our solution for this
box size.

The results for these two benchmark networks demon-
strate that our algorithm is more effective than the state
of the art algorithms. Nevertheless, due to the rapid de-
cay of the number of boxes for larger box sizes, the fractal
dimension of the two benchmark networks are the same
within the standard errors when using our box-covering
algorithm and other algorithms.

IV. CONCLUSIONS

In closing, we have presented a box-covering algorithm,
which identifies the least number of boxes for a box with
a central node or edge. We have also compared our al-
gorithm with the state of the art method for different
benchmark networks and detected substantial improve-
ments, although our method uses a stronger definition
for boxes. The obtained solutions are nearly optimal as
a consequence of the algorithm design, if the box size is
defined as the maximal distance rg to the central node or
edge. Moreover, we believe that our algorithm can iden-
tify one optimal solution for this definition and it would



be an interesting challenge for the future to try to prove
or disprove this hypothesis.

Our approach can be useful for designing efficient com-
mercial distribution networks, where the shops are the
nodes, the storage facilities the box centers and the radius
is related to the boundary conditions, like transportation
cost or time.
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