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Abstract

We present a novel method that enables for the first time the direct simulation of Donnan

equilibria. The method is based on a grand canonical Monte Carlo scheme that properly accounts

for the unequal partitioning of small ions on the two sides of a semipermeable membrane, and can

be used to determine the Donnan electrochemical potential, osmotic pressure, and other system

properties. Positive and negative ions are considered separately in the grand-canonical moves. This

violates instantaneous charge neutrality, which is usually considered a prerequisite for simulations

using the Ewald sum to compute the long-range charge-charge interactions. In this work, we show

that if the system is neutral only in an average sense, it is still possible to get reliable results in grand

canonical simulations of electrolytes performed with Ewald summation of electrostatic interactions.

We compare our Donnan method with a theory that accounts for differential partitioning of the

salt, and find excellent agreement for the electrochemical potential, the osmotic pressure, and

the salt concentrations on the two sides. We also compare our method with experimental results

for a system of charged colloids confined by a semipermeable membrane and to a constant-NV T

simulation method which does not account for salt partitioning. Our results for the Donnan

potential are much closer to the experimental results than the constant-NV T method, highlighting

the important effect of salt partitioning on the Donnan potential.
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I. INTRODUCTION

Donnan equilibria are established in systems with partitions that selectively permit pas-

sage of some ionic species. For example, we can consider a system of charged colloidal

particles separated from a salt solution by a semipermeable membrane with pores smaller

than the colloidal diameter, but larger that the size of small ions or water. This leads to

an unequal distribution of the small, permeable ions across the membrane which induces a

macroscopic electric potential across the membrane called the Donnan potential [1].

Donnan equilibria are important for a variety of technological and biophysical applica-

tions, including water purification [2, 3], understanding DNA and polyelectrolyte brushes [4],

and energy storage in batteries. It is also commonly encountered in biological systems where

ion concentration gradients are maintained across semipermeable membranes. Because of

this, the Donnan effect has been the subject of numerous theoretical [5–8] and simulation [9–

14] studies aimed at predicting properties such as the electrochemical potential and osmotic

pressure across the membrane.

Despite its importance, no existing simulation method properly accounts for the small

ions partitioning unequally between the two sides of the membrane in an open system. In

order to account for the selectivities of the different ions on either side of the membrane, they

must be considered independently when performing grand-canonical moves. This violates

charge neutrality, which is a requirement for the electrostatic energy to converge when using

the Ewald sum [15]. Despite this, reliable results have been obtained in the past for systems

that are charge neutral only in an average sense, as has been shown in Gibbs ensemble Monte

Carlo studies of phase equilibria in ionic systems [16]. In confined systems, convergence is

not a problem and the Donnan effect has been investigated in systems of small pores for

which different concentrations of salt on either side of the membrane were observed [9–12].

We believe properly accounting for the unequal distribution of salt is vital for determining

the correct Donnan potential, colloidal interactions, and other thermodynamic properties of

the system.

A simulation-based approach for Donnan equilibria is highly desirable, as solution non-

idealities and specific ion effects can then be fully taken into account. To this end, we outline

a simulation method to study a system of charged particles confined by a semipermeable

membrane which treats the salt ions grand-canonically. We compare our results to a theo-
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retical approach which also takes the grand-canonical nature of the problem into account.

We also compare our method to experimental results for the Donnan potential in a system

of charged colloidal particles, and in addition, compare this to a simulation method which

does not treat the salt grand-canonically in order to highlight the importance of taking this

into account.

II. SIMULATION METHOD

Our goal is to model a system with a semipermeable membrane which has large colloidal

particles which cannot pass through, and small ions which can pass through. A schematic of

this is shown in Fig. 1. For simplicity, we use the primitive model, where colloids and ions

are treated as charged hard spheres with diameter σ, in general different for each species,

and charge q.

FIG. 1. (Color online) Schematic illustration of Donnan equilibrium. The large particles, each

carrying a charge of −2, are not able pass through the membrane. The small ions, with charges

−1 and +1 respectively, can pass freely between the two sides. A potential difference is established

across the membrane.

The Coulomb interaction between two particles with charge qi and qj , respectively, that

are separated by a distance rij = |ri − rj| is given by

βV (rij) =
λBqiqj
rij

, (1)

where λB = e2/4πε0εrkBT is the Bjerrum length, e is the elementary charge, ε0 is the

permittivity of free space, εr is the relative dielectric constant, kB is Boltzmann’s constant,
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T is the absolute temperature, and β = 1/kBT . These interactions are calculated using the

particle-particle–particle-mesh Ewald method of Hockney and Eastwood [17].

To account for the small ions passing through the membrane, we use a grand canonical

Monte Carlo (GCMC) scheme where the small ions are inserted or deleted independently of

each other, however the colloidal particles are only moved locally, never inserted or deleted.

By decoupling the positive and negative salt species, electroneutrality will be instantaneously

violated during the simulation. However, as long as the system is on average charge neutral,

the effect of this is negligible. We demonstrate this by simulating a two-component system

and either insert and delete neutral groups or treat both particle types independently. In

these simulations, the negative ion has a charge valence of q− = −1 and hard sphere diameter

of σ− = 1.0 nm. For the positive ion q+ = 2 and σ+ = 3.0, and we set the Bjerrum length

to λB = 2.0 nm. We compare the concentration of each ion for different chemical potentials

of the positive and negative ions, µ+ and µ− respectively, in Table I. When the ions are

treated independently, a number of simulations are performed to determine the values of

µ+ and µ− which result in an electroneutral system at a target concentration. Histogram

reweighting [18, 19] is used to accelerate this process. We then use these chemical potentials

for the simulations of neutral groups, where we we adopt the approach of Valleau and

Cohen [20] to combine the values of µ+ and µ− accordingly. The excellent agreement between

the two simulation methods shows that electroneutrality does not need to be maintained

for every configuration to get reliable results using Ewald-based methods. We note that

we do not include the charged system term of the Ewald sum commonly used to study

one-component plasmas [21],

Ucharged = −
1

8ε0V α2

∣

∣

∣

∣

∣

N
∑

i=1

qi

∣

∣

∣

∣

∣

2

(2)

where V is the system volume and α controls the splitting of the energy between real space

and Fourier space. This is the energy of the charged particles with a uniform neutralizing

background charge. If this term were included, a grand-canonical move would compare

the energies between two different systems, each with a different value for the uniform

background charge. By excluding this term, the physical system does not change, however,

the energy of non-neutral configurations diverges for periodic systems. Since the Ewald

sum is truncated in both real and in Fourier space, we do not end up with infinite energies

and the resulting error is negligible, as is evidenced by our results in Table I. It would be
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necessary to perform such tests to ensure this holds for future system of interest. We believe

this method, while not ideal, is nonetheless better than alternative methods for electrostatic

interaction such as reaction-field [22], using the minimum image convention [23], or simple

truncation or the Coulomb potential. Another, more practical, consideration is that Ucharged

favors a system with a net charge and including it results in an unstable simulation. Once a

system obtains a net charge, Monte Carlo moves which increase that net charge are favored

and this leads to the system being filled with only positive or only negative particles.

TABLE I. Chemical potentials, µ+ and µ− and the corresponding particles numbers N+ and N−

for simulations where the ions are inserted or deleted either independently or as neutral groups.

Neutral groups Independent ions

βµ+ βµ− N+ N− N+ N−

-7.139 -5.744 50.03(3) 100.1(1) 50.10(7) 100.2(1)

-6.398 -4.972 100.1(1) 200.3(1) 100.1(1) 200.3(2)

-5.240 -4.062 199.5(2) 399.1(3) 199.4(2) 399.1(4)

-2.453 -2.795 400.4(3) 800.9(7) 401.0(5) 801.3(8)

With this now established, we can proceed to devise a method to accurately determine

properties of the Donnan system. We first perform a simulation with only salt ions, repre-

senting the reservoir salt concentration. Histogram reweighting [18, 19] is used to determine

the values of µbulk,+ and µbulk,− which result in a system that is on average electroneutral and

has the target salt concentration. A second simulation is then performed which contains the

colloidal particles at a fixed concentration. In general, using µbulk,+ and µbulk,− will result

in a system with a net charge. In order to satisfy the global electroneutrality condition, the

chemical potentials must be shifted by a value βqUDonnan, where UDonnan is Donnan potential,

such that µ+ = µbulk,++βq+UDonnan and µ− = µbulk,−+βq−UDonnan. In general, a number of

simulations must be performed to find the value of UDonnan which results in a neutral system

and to accelerate this process we use histogram reweighting techniques [18, 19]. In this way

we have a simple, robust method to determine the Donnan potential using GCMC simula-

tions of two separate systems, one with only salt at the target reservoir concentration, and

one with the target colloid concentration. Because moving colloids in a system with much

smaller particles is difficult, causing the colloids decorrelate slowly, we use the geometric
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cluster algorithm for charged systems. However, it has been shown that for these systems

the colloid degrees of freedom have little impact on the Donnan potential [5].

III. RESULTS

The Donnan equilibrium method outlined in Section II allows us to perform simulations

that overcome an important limitation of prior simulation studies of Donnan equilibria in

open systems, namely the ability of the salt to partition unequally between both sides of the

membrane. Our simulation method does correctly take this into account. In this section, we

compare results from this approach to a theory which also treats the salt grand-canonically,

and indeed predicts unequal salt partitioning [8].

In the system we use to compare our results with the theory, the colloidal particles have

a hard-sphere diameter of 43.8 nm and charge of Z = 50, the reservoir salt concentration is

10−5 mol/l and λB = 2.37 nm, which corresponds to a solvent of ethanol at room tempera-

ture. We use monovalent salt; in the theory, the size of the ions is not taken into account.

In the simulations however, we choose a hard-sphere diameter of 0.4 nm. To demonstrate

the effect of salt partitioning, we determine both the total number of ions in the system and

the amount of added salt. Following the convention in Ref. [8], the total ion concentration

is ρ+ + ρ− while the amount of added salt is ρ+ + ρ− − Zn = 2ρ−, where n is the colloid

concentration. In this way, the amount of added salt does not count the counterions com-

ing from colloidal particles. The results for these quantities as the colloid concentration is

increased are given in Fig. 2. Our results for the total ion concentration match very well

with the theory, while the results for added salt show only a small quantitative difference at

high η which is likely due to the finite size of the ions in the simulations. We also compare

our results for the Donnan potential and osmotic pressure, Π, and find excellent agreement

as shown in Figs. 3 and 4.

The Donnan potential calculations can also be directly compared to experimental results

for a colloidal system with added salt [24]. Here λB as well as the charges and sizes of the

colloids and ions are the same as before, however the semipermeable membrane separates

one compartment with a colloid volume fraction of η = 1.2×10−3 and one compartment with

a volume fraction of η = 1.3× 10−2 and the reservoir salt concentration is 30× 10−6 mol/l.

To determine the Donnan equilibrium for this system, where there are colloids in both
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FIG. 2. (Color online) Total ion concentration (a) and added salt (b) as a function of colloid

concentration. The red line is computed using Eqs. (25) and (27) of Ref. [8]. The error bars for

the simulation results are smaller than the symbol size.

compartments, three systems need to be simulated. A system with no colloids is simulated to

determine the values of µbulk,+ and µbulk,− which yield the correct reservoir salt concentration.

In addition, both colloid concentrations need to be simulated to find the corresponding

values of UDonnan which yield a neutral system. The Donnan potential between the two

compartments is then the difference between UDonnan for the two systems. The chemical

potentials and particle numbers for these three systems are given in Table II. The Donnan

potential determined from our simulations is −9.22±0.01 mV, while the experimental result

is −12.9±0.5 mV [24]. This likely due to a limitation of the model as the theory of Zoetekouw
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FIG. 3. (Color online) Donnan potential as a function of colloid concentration. The line is computed

using the theory described in Ref. [8]. The error bars for the simulation results are smaller than

the symbol size.
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FIG. 4. (Color online) Osmotic pressure, Π, as a function of colloid concentration. The line is

computed using the theory described in Ref. [8]. The error bars for the simulation results are

smaller than the symbol size.

and Roij [8] predicts a value of −9 mV for the same system.

We demonstrate the importance of considering the salt grand-canonically by comparing

our results to those obtained assuming that the salt concentration is identical on both sides

of the semipermeable membrane as done in the work of Vlachy and Prausnitz [5]. Using
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TABLE II. Chemical potentials, µ+ and µ− and the corresponding particle numbers N+ and

N− for our method using GCMC and for constant-NV T simulations using the Widom insertion

method [25] to determine the chemical potentials assuming the same salt concentration in each

compartment.

GCMC Vlachy and Prausnitz [5]

βµ+ βµ− N+ N− βµ+ βµ− N+ N−

Reservoir -10.992 -10.992 662.8(8) 662.9(8)

η = 1.2 × 10−3 -10.951 -11.032 695.2(9) 644.9(9) -10.926(4) -11.005(1) 712 662

η = 1.3 × 10−2 -10.592 -11.392 1033.9(9) 484.3(8) -10.404(4) -11.122(4) 1212 662

the method of Ref. [5], one simply performs a constant-NV T simulation for the two colloid

concentrations and determines the chemical potentials for the positive and negative ions

in each system using the Widom insertion method [25]. As before, the counterions which

neutralize the colloidal particles are not included in the salt concentration hence different

values for N+ while N− remains constant in Table II. We do this for the experimental

system described above and find a Donnan potential of −3.00 ± 0.01 mV which is much

lower than either our method or the experiments. The chemical potentials from the two

methods are given in Table II and we can see that the ion concentrations are also quite

different when they are treated grand-canonically. When the salt concentration in each

compartment is assumed to be the same, there is no guarantee that the systems will be in

electrochemical equilibrium with each other. Using our proposed grand canonical scheme

solves this problem. Interestingly, in the experimental system, when salt bridges were used

to maintain an equal amount of salt on both sides of the membrane, a Donnan potential of

−3.00 mV was measured [24].

IV. CONCLUSIONS

In this work, we have presented a simulation approach to study a system of charged

particles confined by a semipermeable membrane. A key aspect of this method is using single

ion instead of neutral ion groups for the grand-canonical moves. This decouples the positive

and negative ions and allows for different ionic concentrations on either side of the membrane.

The method was validated by comparing the results to theoretical calculations that take
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into account the different ionic concentrations on either side of the membrane. Donnan

potentials from experimental measurements were also found to be in excellent agreement

with the simulation results.

While we have focussed on colloidal systems to demonstrate this method, it can be easily

applied to a variety of other systems, including polymers and biological systems, for example

proteins confined by a semipermeable membrane. These systems generally include specific

interaction with the salt ions or ion correlations close to the impermeable particle which

are difficult to account for using theoretical approaches. These effects are usually easy to

include in simulations, however. One potential drawback of our method is that grand-

canonical moves pose a great challenge if the solvent is included explicitly. However, for

many systems of interest, the solvent need not be modeled explicitly to get reliable results.
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