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The photoacoustic effect for a one-dimensional structure whose sound speed varies sinu-

soidally in space is shown to be governed by an inhomogeneous Mathieu equation with the

forcing term dependent on the spatial and temporal properties of the exciting optical radi-

ation. New orthogonality relations, traveling wave Mathieu functions, and solutions to the

inhomogeneous Mathieu equation are found which are used to determine the character of

photoacoustic waves in infinite and finite length phononic structures. Floquet solutions to

the Mathieu equation give the positions of the band gaps, the damping of the acoustic waves

within the band gaps, and the dispersion relation for photoacoustic waves. The solutions to

the Mathieu equation give the photoacoustic response of the structure, show the space equiv-

alent of subharmonic generation, and acoustic confinement when waves are excited within

band gaps.

PACS numbers: 43.35.Sx, 43.35.Ud

I INTRODUCTION

Since the photoacoustic effect is generated by the absorption of electromagnetic radiation, the

character of the sound produced depends on both the temporal characteristics of the exciting ra-

diation and its distribution in space. Waves generated by the photoacoustic effect have been

shown to possess information on the geometry and acoustic properties of optically thin bodies[1],

to produce acoustic radiation patterns dependent on the positions of objects in turbid media mak-

ing possible photoacoustic medical imaging[2], and to generate radiation patterns with unique

directionalities[3–6]. For a given spatial and temporal profile of the exciting radiation, additional

factors that determine properties of photoacoustic waves are the space dependence of the opti-

cal absorption and the acoustic properties of the irradiated body, examples including structures

designed with periodic absorption[7] in space to produce directional ultrasound, or surfaces with

periodically varying acoustic properties resulting in the generation of surface acoustic waves[8–11],

the latter showing the existence of band gaps.

For periodic structures, the same kinds of band gaps and dispersion relations[12–15] must obtain

for photoacoustic waves as are found in phononic structures[16–18]. Virtually any structure
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whose properties vary periodically in space can be expected to have several properties in common

with those derived for a periodic square well potential, which forms the basis for the Kronig-

Penny model for electron wave propagation in crystals. Even simpler than a periodic square well

potential is a structure whose properties vary sinusoidally in space, which would appear to represent

mathematically the most straightforward case of a structure that gives rise to band phenomena,

but which appears not to have been treated in the published literature. Here we investigate the

problem of wave propagation in one-dimensional, sinusoidally modulated structures using Mathieu

functions and their Flouquet representations to describe all properties of the solution to a wave

equation. The simplicity of the solutions is evidenced in that all properties of the waves, their

dispersion relation, and character of the band gaps are given in closed form. Furthermore we

determine the properties of the photoacoustic effect in such a structure. What is perhaps unique

about the photoacoustic effect in periodically modulated structures is that since the launching

of photoacoustic waves is determined by the characteristics of the optical source, they can, in

principle, be excited at any frequency, even within band gaps, showing interference effects not

commonly seen in other forms of wave motion in periodic structures.

In this paper, all properties of the sinusoidally modulated structure, including band gaps, dis-

persion relations, damping within forbidden regions, and the character of the photoacoustic waves

generated by several different kinds of sources are found in terms of properties of Mathieu functions.

The space equivalent of sub-harmonic generation characteristic of Mathieu equations solutions is

identified. The paper gives a derivation of an inhomogeneous Mathieu equation from the wave

equation for pressure in Section II. Methods for solving the inhomogeneous Mathieu equation as

well as new identities for Mathieu functions given in the Appendix are used in Sections III and IV

to obtain solutions to the photoacoustic effect in an infinite structure and a structure with a finite

length. Section V introduces new traveling wave Mathieu functions and gives solutions for an infi-

nite structure where the optical excitation is confined in space. Floquet solutions to the Mathieu

equation that describe the traveling wave solutions are given. The Appendix gives expressions

for the Mathieu characteristic values lying along a straight line in the stability plot, orthogonality

relations for the integer and fractional order Mathieu functions, and a completeness relation, all

involving a new factor dependent on the modulation that have not been previously published. As

well, a Green’s function for a finite length structure whose properties are sinusoidally modulated

is derived. The focus of the mathematical derivations is development of methods for solving the

inhomogeneous Mathieu equation.
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II WAVE EQUATION FOR THE PHOTOACOUSTIC EFFECT

The wave equation[1, 5, 19, 20] for the photoacoustic pressure p for an inviscid fluid were the

effects of heat diffusion can be ignored[1, 5, 19] is described by the wave equation

(∇2 − 1

c2
∂2

∂t2
)p = − β

CP

∂H

∂t
, (1)

where p is the pressure, c is the sound speed, β is the thermal expansion coefficient, CP is the

specific heat capacity, H is the energy per unit volume and time added by absorption of light, and

t is the time. Consider a 1-dimensional structure where the sound speed is modulated sinusoidally

in space according to

1

c2
=

1

c20
[1− n̂ cos(

2πx

ā
)], (2)

where the parameter n̂ describes the modulation depth of the sound speed in the x direction, ā is

the lattice spacing, and c0 is the unmodulated sound speed. Since 1/c0 =
√
ρκs, where ρ is the

density and κs is the compressibility, the structure could be modulated either in its density or in

its compressibility to give the space dependence specified by Eq. 2. Substitution of Eq. 2 into Eq.

1 and transformation of the resulting expression into the frequency domain through use of

H = ᾱI(x)e−iωt and p(x, t) = p(x)e−iωt, (3)

where ω is the modulation frequency, ᾱ is the optical absorption, and I(x) is the intensity of the

optical radiation gives

d2

dz2
p(z) + [a− 2q cos(2z)]p(z) = f(z), (4)

where the following dimensionless quantities have been defined,

z = π
āx, a = ( ωā

πc0
)2, ω̂ = ( ωā

πc0
), γ = n̂/2

q = 1
2(

ωā
πc0

)2n̂, and f(z) = i ω̂ ᾱ β ā c0
πCP

I(z).

Equation 4 without the forcing term, i.e. the homogeneous differential equation, is known as

the Mathieu equation[12, 21, 22]. It is known that solutions to the Mathieu equation can be

periodic, aperiodic, or unbounded, the last of these, which are found in unstable regions of the a

versus q plot gives rise to forbidden bands. Figure 1 shows the stability plot for Mathieu functions

from which the character of the Mathieu function for any point (q, a) can be determined.
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III PHOTOACOUSTIC EFFECT IN AN INFINITE STRUCTURE

Variation of parameters solution

For periodic excitation along an infinite structure, the solution to Eq. 4 for the photoacoustic

pressure can be written as the sum of Eq. A9 for the inhomogeneous differential equation, plus

solutions to the homogeneous Mathieu equation so that

p(z) = −ce(a, γa, z)

W

z
∫

0

se(q, γa, z′) f(z′)dz′ − se(a, γa, z)

W

2π
∫

z

ce(a, γa, z′) f(z′)dz′

+Ace(a, γa, z) +B se(a, γa, z), (5)

where W{ce, se} = ce(a, γa, z)se′(a, γq, z) − se(a, γa, z)ce′(a, γa, z), and A and B are constants.

Since the acoustic properties of the structure are periodic, both the acoustic pressure and its

first derivative must be repetitive in space and obey the boundary conditions p(0) = p(2π) and

p′(0) = p′(2π), respectively. Imposition of these conditions on p(z) gives the constants as

A = ∆s se′(0)−s(0)∆s′

∆c∆s′−∆s∆c′

2π
∫

0

ce(z′)
W (z′)f(z

′)dz′ + ce(2π)∆s′−ce′(2π)∆s
∆c∆s′−∆s∆c′

2π
∫

0

se(z′)
W (z′)f(z

′)dz′

B = se(0)∆c′−se′(0)∆c
∆c∆s′−∆s∆c′

2π
∫

0

ce(z′)
W (z′)f(z

′)dz′ + ce′(2π)∆c−ce(2π)∆c′

∆c∆s′−∆s∆c′

2π
∫

0

se(z′)
W (z′)f(z

′)dz′,

where the following have been defined

∆c = ce(a, q, 2π) − ce(a, q, 0) ∆s = se(a, q, 2π) − se(a, q, 0)

∆c′ = ce′(a, q, 2π) − ce′(a, q, 0) ∆s′ = se′(a, q, 2π) − se′(a, q, 0),

and where the abbreviations se(z) = se(a, γa, z) and ce(z) = ce(a, γa, z) have been used.

Expansion in integer order Mathieu functions

Since the photoacoustic pressure in an infinite periodic structure must be periodic, the solution

to Eq. 4 can be written as expansions in cem(z, q
(c)
m ) and sem(z, q

(s)
m ) as

p(z) =
∞
∑

m=0

Am cem(z, q(c)m ) +
∞
∑

m=1

Bm sem(z, q(s)m ), (6)

where the Am and Bm’s are constants. Values of q
(c)
m , q

(s)
m , π̄

(c)
m , and π̄

(s)
m are used in the expansion

so that the condition a = q/γ is automatically satisfied. Values for q
(c)
m , q

(s)
m as well as a straight
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line along which the expansion is carried out can be seen in Fig. 1 for γ = 0.35. After substitution

of Eq. 6 for p into Eq. 4 and use of the orthogonality relations given in Eqs. A4, the spatial

component of the photoacoustic pressure is found to be

p(z) =

∞
∑

m=0

cem(z,q
(c)
m )

π̄
(c)
m [a−am(q

(c)
m )]

2π
∫

0

cem(z′, q
(c)
m ) f(z′)dz′

+

∞
∑

m=1

sem(z,q
(s)
m )

π̄
(s)
m [a−bm(q

(s)
m )]

2π
∫

0

sem(z′, q
(s)
m ) f(z′)dz′.

(7)

In practice, Eq. 7 is evaluated by limiting the summation to N terms: first, N solutions to Eqs.

A3 and A4 for q
(c)
m , q

(s)
m , π̄

(s)
m , and π̄

(s)
m , are found, the indicated integrals carried out, the series

summed, p(z, t) determined from Eq. 3, and its real part taken. For the determination of the

acoustic pressure at a different frequencies it is necessary to change only a in Eq. 7 as the other

quantities in this expression are frequency independent. It follows from Eq. 7 that photoacoustic

resonances are found at ω̂ = [am(q
(c)
m )]1/2 and ω̂ = [bm(q

(s)
m )]1/2 for all allowed values of m. Values

of the resonance frequencies for γ = 0.35, as determined by am and bm, can be found from Fig. 1

For delta function heating of the structure periodically at points located distances z0 from the

beginning of each cell, Eq. 7 is evaluated with f(z) of the form f(z) = f̄D δ(z − z0), which gives

p(z) = f̄D

∞
∑

m=0

cem(z,q
(c)
m )

π̄
(c)
m [a−am(q

(c)
m )]

cem(z0, q
(c)
m )

+ f̄D

∞
∑

m=1

sem(z,q
(s)
m )

π̄
(s)
m [a−bm(q

(s)
m )]

sem(z0, q
(s)
m ).

(8)

A plot of the amplitude of the photoacoustic pressure versus frequency from Eq. 8 is shown in Fig.

2 for delta function excitation.

If the intensity of the radiation in space is uniform along the entire structure so that f(z) is a

constant f̄C then Eq. 7 reduces to

p(z) = f̄C

∞
∑

m=0

cem(z, q
(c)
m )

π̄
(c)
m [a− am(q

(c)
m )]

∫ 2π

0
cem(z′, q(c)m )dz′ (9)

In Fig. 3 a plot of the amplitude of the photoacoustic effect versus coordinate is shown for uniform

irradiation of the structure. For small values of γ the resonances appear at nearly integer values

of the dimensionless frequency. For larger values of γ, the average sound speed in the structure

increases so that the peaks are shifted to higher frequencies.

A second approach to determining the photoacoustic pressure is to expand p(z) along a vertical

line in the stability plot at a constant value of q as shown in Fig. 1 so that cem(z, q) and sem(z, q)
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replace cem(z, q
(c)
m ) and sem(z, q

(s)
m ) in Eqs. 6. Using the usual[21] orthogonality relations noted

above in Eq. A6, the photoacoustic pressure becomes

p(z) =

∞
∑

m=0

cem(z,q)
π[a−am(q)]

2π
∫

0

cem(z′, q)f(z′)dz′

+
∞
∑

m=1

sem(z,q)
π[a−bm(q)]

2π
∫

0

sem(z′, q)f(z′)dz′.

(10)

For each different frequency, all parameters in this expression must be calculated.

IV FINITE LENGTH STRUCTURES

Expansion in fractional order Mathieu functions

Consider a one-dimensional structure that extends along the x axis from 0 to L, where L is

an integer number of ā. Since the fractional Mathieu functions sem+p/s(z, q) have the property

that for integer values of s and p they are zero for z = 0 and sπ, it is possible to expand the

photoacoustic pressure in the form

p(z) =

∞,s−1
∑

m=0, p=0

Km+p/s sem+p/s(z, q
(s)
m+p/s), (11)

where the Km+p/s are constants, s = L/ā and it is understood here and in the following that the

summation is restricted to where m and p cannot be zero at the same time. The fractional order

Mathieu functions sem+p/s along the line a = q/γ obey

d2

dz2
sem+p/s(z, q

(s)
m+p/s) = −bm+p/s(q

(s)
m+p/s)[1 − 2γ cos(2z)]sem+p/s(z, q

(s)
m+p/s),

where the bm+p/s(q
(s)
m+p/s) are characteristic values that satisfy q

(s)
m+p/s = γbm+p/s(q

(s)
m+p/s). The

fractional Mathieu functions sem+p/s obey (in addition to the orthogonality relations noted follow-

ing Eq. A4) the orthogonality relation

sπ
∫

0

[1− 2γ cos(2z)]seµ(z, q
(s)
µ ) seν(z, q

(s)
ν )dz =

s

2
π̄(s)
µ δµ,ν , (12)

where µ and ν are of the formm+p/s. Substitution of Eq. 11 into Eq. 4 followed by multiplication

by sem′+p′/s and integration over the range from 0 to sπ yields

p(z) = 2

∞, s−1
∑

m=0, p=0

sem+p/s(z, q
(s)
m+p/s)

sπ̄
(s)
m+p/s[a− bm+p/s(q

(s)
m+p/s)]

sπ
∫

0

sem+p/s(q
(s)
m+p/s, z

′) f(z′)dz′ (13)



7

A stability plot for Mathieu functions showing the expansion of the solution along the line a = q/γ

indicated in Eq. 13 is shown in Fig. 4. Plots of the solution at a fixed time for two values of ω̂ are

shown in Fig. 5. Note that the properties of fractional Mathieu functions guarantee that solutions

at the origin and at z = sπ are zero. A plot of the photoacoustic amplitude versus frequency for

a structure with s = 2 is given in Fig. 5. It is of note that in the limit when γ approaches zero

the sine elliptical function becomes a sine function, and the double summation in Eq. 13 reduces

to a single summation, giving

p(z) =
2π2L

ā2

∞
∑

n=1

sin(nπxL )

(ωL/c0)2 − n2π2

∫ L

0
sin(

nπx′

L
)f(x′)dx′, (14)

which is the same result obtained as an eigenfunction expansion solution to the wave equation for

pressure for a structure of length L without sound speed variations.

Green’s function solution

Using the Green’s function for a finite length structure given by Eq. A10 it is straightforward

to obtain p(z) as

p(z) = −se(a, γa, z − sπ)

WG

z
∫

0

se(a, γa, z′)f(z′)dz′ − se(a, γa, z)

WG

sπ
∫

z

se(a, qa, z′ − sπ)f(z′)dz′, (15)

The Wronskian WG, although dependent on frequency, is independent of the coordinate, and has

been removed from the integral.

V CONFINED EXCITATION

As a result of either manipulation of the absorbance of the structure or by appropriate direction

of the optical beam, it is possible to deposit heat in a confined region of an infinite structure as

opposed to its entirety. Consider the case where photoacoustic waves in an infinite periodic

structure are excited in a region of space extending from −L to L along the x axis. The acoustic

waves within the region of excitation for amplitude modulated continuous heat deposition will

be standing waves, but those outside of the excitation region must be traveling waves. For the

waves outside the excitation region, two linearly independent traveling waves he(1)(a, q, z) and

he(2)(a, q, z) can be defined according to

he(1)(a, q, z) = ce(a, q, z) + i se(a, q, z)

he(2)(a, q, z) = ce(a, q, z) − i se(a, q, z),
(16)
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which satisfy the Mathieu equation and which have the appropriate form for large z. These two

solutions, as they are linear combinations of ce and se can describe standing waves in the region

with optical absorption, as well. Solution to the inhomogeneous wave equation, Eq. 4, can be

found from the method of variation of parameters solution given above by Eq. A9 to yield

p(z) = −he(1)(z)
W̄

∫ z
−L̂ he(2)(z′) f(z′)dz′

− he(2)(z)
W̄

∫ L̂
z he(1)(z′) f(z′)dz′

(17)

where L̂ = L/ā and the Wronskian W̄ is related to the Wronskian W for Mathieu functions through

W̄{he(1), he(2)} = −2iW{ce, se}. Depending on whether the solution to the right or the left of the

origin is bounded, the sign of L̂ is reversed in Eq. 17 to give bounded solutions.

Solutions in Floquet form

In general, the solutions to the homogeneous Mathieu equation, se(a, q, z) and ce(a, q, z), can

be expressed in Floquet form[21, 22] as

p(z) = Aeµzφ(z) +Be−µzφ(−z), (18)

where φ is a periodic function, A and B are arbitrary constants, and µ is the Mathieu characteristic

exponent. The characteristic exponent is a function of q and a, and is written, in general, as

µ = α + iβ where α and β are real numbers. Whenever α = 0, the dispersion relation for

photoacoustic waves[23] can be found for a given value of γ as the imaginary component of the

characteristic exponent β as a function of ω̂. The band gaps are determined by those values of ω̂

that give µ with a nonzero real component.

In the case of confined excitation, solutions to the Mathieu equation can be written in the form

of either Eq. 18 or 16. The general form for he(1) must be he(1)(a, q, z) = Aeµzφ(z)+Be−µzφ(−z);

as well, ce and se, which are even and odd functions respectively, can be written as

ce(a, q, z) = eµzφc(z) + e−µzφc(−z) (19)

se(a, q, z) = eµzφs(z)− e−µzφs(−z).

If these two expressions are substituted into the first of Eqs. 16 then the pair of equations

Aφ(z) = φc(z) + iφs(z) (20)

Bφ(z) = φc(z)− iφs(z),
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is found, from which it follows that

φc(z)

φs(z)
= i

A+B

A−B
= C, (21)

where C must be a purely imaginary number. Since
∫

period ce ce
∗dz =

∫

period se se
∗dz, it can be

shown that φc(z) = Cφs(z) and φ∗

c(z) = −Cφ∗

s(z), from which it follows that |C|2 = 1. From

examination of Eq. 21 either A or B must equal 0. The same arguments are valid for he(2) as well.

The Floquet form of the functions he are thus given by

he(1)(a, q, z) = Aeµzφ(z)

he(2)(a, q, z) = Ae−µzφ(−z),
(22)

where φ is a periodic function, and the signs of α are chosen according to whether the solution is

taken along the positive or negative z axis.

Photoacoustic waves can be excited within or outside of any band gap, since, according to

Eq. 4, the frequency of the acoustic wave is determined by forcing term. Waves excited by a

source limited to a fixed region of the structure at frequencies within the band gaps are damped in

space depending on the magnitude of α. For a structure that does not possess acoustic damping,

as considered here, when ω̂ approaches the edge of the band gap the photoacoustic amplitude

increases without limit and the wave extends farther in space. Waves within the band gaps thus

exhibit a confinement effect where the stored acoustic energy increases as the modulation frequency

approaches the edges of the band gaps.

Outside of the band gaps, the acoustic waves fill the entire space: they are neither damped

in space nor do they diverge. The Mathieu characteristic exponent as indicated by Eq. 23 does

not have a real component and the Floquet form of the solutions to the Mathieu equation can be

written

he(1)(a, q, z) = eiβzφ(z)

he(2)(a, q, z) = e−iβzφ(−z).
(23)

It is known from the theory of Mathieu functions[21], that if β can be expressed as a quotient of

two integers, then the solutions of the Mathieu equation are periodic. The functions he(1) and

he(2) will thus be combinations of either integer or fractional order Mathieu functions. If, on the

other hand, β is an irrational number, the solutions ce and se are not periodic with the result

that he(1) and he(2) also will not be periodic. As can be seen from Eqs. 23, when β is a rational

number, he(1) and he(2)are products of two periodic functions, exp (±iβz) and φ(±z), so that the

photoacoustic pressure outside the band gaps appears as amplitude modulated carrier waves that

fill the entire space.
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VI DISCUSSION

Although the series expansion in integer Mathieu functions solution Eq. 7 requires programming

to evaluate the normalization constants and characteristic values, its numerical evaluation is faster

than that for the variation of parameters solution given by Eq. 5. As well, the the series expansion

in fractional Mathieu functions Eq. 13 is more easily evaluated than the Green’s function solution,

Eq. 15. In both cases, the relative ease of computation depends on the number of integrations

that must be carried out. Of further note is that the solution for the pressure for an expansion

in integer Mathieu functions along the line a = q/γ, given by Eq. 7, requires a smaller number of

terms than that along the line of constant q from Eq. 10 to obtain the same accuracy.

The Floquet solution given by Eq. 18 has a useful feature in that the important properties of

wave propagation can be found from the characteristic exponent which is available from contempo-

rary computer programs such as Mathematica. Thus, the dispersion relation, the positions of band

gaps, and the damping within a band gap can be found without resort to numerical integration.

The same computer programs can give the frequencies of the resonances indicated in Eqs. 7 or 13

through use of Eqs. A3 as well the solutions for the acoustic pressure both inside and outside the

band gaps.

As noted in Ref. [23] for the periodically excited infinite structure, the frequencies at which

the resonances are found change dependent on the magnitude of γ. For small γ, the positions

of the resonances, such as those shown in Fig. 2, are found lie at nearly integer values of ω̂. If

the resonances for small γ are considered to lie roughly at nω̂ for nonzero integer values of n,

then the acoustic wavelength for the lowest frequency resonance is not at the expected value of ā

but rather at 2ā, which is a characteristic of solutions to the Mathieu equation, and which can be

considered to the space domain equivalent of what is referred to in the time domain as subharmonic

resonance[21].

An effect not reported previously for photoacoustic effect is that acoustic waves can be excited

by uniform illumination of a structure, which follows from evaluation of Eq. 7 with constant f ,

as shown by Eq. 9. Since the integral over cem(z, q
(c)
m ) does not vanish, sound whose wavelength

is dependent on ā is generated, showing that variations in acoustic impedance make possible the

production of sound when optical heat deposition is uniform. A property of the photoacoustic

effect at low frequencies, as can be seen in the contrasting behavior of the pressure in the plots

given in Figs. 2 and 6, is that in the fixed length structure, the pressure amplitude approaches zero

whereas in the infinite structure the pressure tends to infinity. The contrasting behavior comes



11

as a result of the boundary conditions, where, in the former, the structure expands with optical

energy deposition, whereas in the latter, the structure cannot undergo a net expansion along its

entirety.

In so far as application of the results given here are concerned, it is of note that photoacoustic

radiators similar to those discussed in Section IV constructed to have optically thin, periodic

absorptions have been shown to exhibit strong photoacoustic interference effects[7], with both the

strength and frequency selectivity of the resonances increasing with the number of periods. The

directional properties of this source were found to increase, as well, with the length of the device.

Given the availability of high repetition rate pulsed lasers, such as mode locked lasers, it appears

straightforward to construct directional photoacoustic sources that operate at frequencies up to

one hundred MHz by irradiation of simple, modulated structures. Even higher frequencies are

possible through use of fs lasers, in which case, the upper frequency limit would be contingent more

on the capability of fabrication of the structure rather than on the characteristics of the laser.

Solutions to other one-dimensional problems can be found in Brillouin’s review, Wave Propaga-

tion in Periodic Structures[12]. It is of note that the results given here for the dispersion relation

for a sinusoidally modulated structure are qualitatively similar to those derived for Cauchy, Baden-

Powell, and Kelvin models for point masses attached with Hooke’s Law forces[12]. The dispersion

relation for the acoustical branch of a one-dimensional lattice also shows behavior strongly similar

to that derived for the infinite structure treated here. The solution for the photoacoustic effect in

a finite length structure can be shown to be related to the problem of an oscillating string with a

periodic density along its length, as treated in Ref. [21] In addition, Brillouin shows that electrical

LC circuits can be constructed with stop bands and dispersion relations similar to those derived

from the Floquet solution to the Mathieu equation given here. Further work on sound propagation

in waveguides with sinusoidal variations in their geometries that bear some similarity to the present

one-dimensional problem can be found in Refs. [24] and [25]. Such structures exhibit band gaps

that arises from the character of the interfaces rather than from impedance variations, and do not

admit to simple Floquet solutions.

Perhaps the unique characteristic of photoacoustic excitation of a periodic structure is that

waves can be generated within band gaps. For structures where excitation is restricted in space,

plots of acoustic amplitude versus frequency obtained from Eq. 17 (see Ref. [23]) show that at the

centers of the band gaps the damping is greatest, and that as the modulation frequency of the radi-

ation approaches the edges of the band gaps, the amplitude of the photoacoustic pressure becomes

arbitrarily large. At the interior edges of the gaps, the acoustic waves show a confinement with
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the acoustic amplitude decaying in space away from the region of excitation, whereas immediately

outside of the band gaps, in the allowed regions, the acoustic amplitude, which becomes large as

well, is distributed throughout the structure. Such effects are general, and must be present for

waves other than photoacoustic waves in sinusoidally modulated structures–the clarity with which

these effects are seen in the case of the photoacoustic effect comes from its description by an inho-

mogeneous wave equation, the forcing term in which allows for wide variation both the temporal

and spatial character of wave excitation.

Appendix: Methods of solution

Expansions in Mathieu functions with q=γa

The Sturm-Liouville equation [26] can be written as

d2y(z)

dz2
− q̄(z)y(z) + λρ̄(z)y(z) = 0. (A1)

If q̄(z) is taken to be zero and the weighting function ρ̄(z) to be [1 − 2γ cos(2z)], then the linear

operator L in the Sturm-Liouville equation is given by L = d2/dz2. Thus, with the imposition

of the requirement a = q/γ, the integer order cosine elliptic cem(z, q) and sine elliptic sem(z, q)

Mathieu functions obey

d2

dz2
cem(z, q(c)m ) = −am(q(c)m )[1 − 2γ cos(2z)]cem(z, q(c)m ), (A2)

d2

dz2
sem(z, q(s)m ) = −bm(q(s)m )[1 − 2γ cos(2z)]sem(z, q(s)m ),

where m is a positive integer that ranges from 0 to ∞ for cem and 1 to ∞ for sem. As the Mathieu

characteristic values am and bm are found along the line a = q/γ they must obey the implicit

equations

q(c)m = γam(q(c)m ) or q(s)m = γbm(q(s)m ), (A3)

where the superscripts (c) and (s) refer to the cosine and sine elliptic functions respectively. The

following orthogonality relations also follow from the Sturm-Liouville equation

2π
∫

0

[1− 2γ cos(2z)]cem(z, q
(c)
m ) cen(z, q

(c)
n )dz = π̄

(c)
m δm,n

2π
∫

0

[1− 2γ cos(2z)]sem(z, q
(s)
m ) sen(z, q

(s)
n )dz = π̄

(s)
m δm,n

2π
∫

0

[1− 2γ cos(2z)]cem(z, q
(c)
m ) sen(z, q

(s)
n )dz = 0,

(A4)
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where π̄
(c)
m and π̄

(c)
m are constants. As well, the completeness relations for cem and sem are of the

form

δ(z − z′) = [1− 2γ cos(2z)]
∑

m

cem(z, q(c)m ) cem(z′, q(c)m ). (A5)

The Sturm-Liouville equation also applies to fractional Mathieu functions; thus, in Eq. A4

and A5 the integer order Mathieu functions cem and sem can be replaced by the corresponding

fractional order Mathieu functions by substituting indices m + p/s for m and m′ + p′/s for n,

changing the range of integration from 0 to 2πs, where s is an integer, and replacing π̄
(c)
m and π̄

(s)
m

by sπ̄
(c)
m+p/s and sπ̄

(s)
m+p/s. For the present problem, repetitive solutions are required, thus p and s

must be integers so that p/s is a rational number.

Expansions in Mathieu functions with q constant

There is a second choice of ρ̄ and q̄ in the Sturm-Liouville equation, that is, where q̄(z) =

2q cos 2z, and ρ̄(z) = 1 are taken. The Sturm-Liouville operator then becomes L = d2/dz2 −
2q cos 2z . This identification leads to the usual orthogonality relations found in the literature for

Mathieu functions[21] for cem and sem of the form

2π
∫

0

cem(z, q) cen(z, q)dz = πδm,n, (A6)

and orthogonality between sem and cem as well. Two completeness relations follow from the choice

of q̄ and ρ̄, the first being δ(z−z′) =
∑

m cem(z, q) cem(z′, q), and the second the same identity but

with sem substituted for cem. In these relations, q is a frequency dependent quantity determined

by the choice of ω̂ and n̂ and is not governed by Eqs. A3. The orthogonality relations of the

form of Eq. A4 also are valid for fractional Mathieu functions[21] with m and n replaced as in the

preceding section, but with the range of integration extending from 0 to 2πs and the constants π̄
(c)
m

and π̄
(c)
m replaced by sπ.

Variation of parameters solution

The inhomogeneous Mathieu equation can be solved by using the variation of parameters

method[27] where two independent solutions to the homogeneous Mathieu equation, y1 and y2
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are combined with two arbitrary functions u1 and u2 to form a solution p according to

y = u1(z)y1(z) + u2(z)y2(z). (A7)

The procedure is to substitute the solution given by Eq. A7 into Eq. 4. Since the function u1 and

u2 are as yet unspecified, it is possible to impose the condition u′1(z)y1(z) + u′2(z)y2(z) = 0, which

then yields expressions for the derivatives,

u′1 = −y2(z) f(z)

W (z)
and u′2 =

y1(z) f(z)

W (z)
, (A8)

where W (z) = y1y
′

2 − y′1y2 is a Wronskian. Upon integration of the expressions in Eq. A8, the

particular integral of the Mathieu equation becomes,

y(z) = −y1(z)

z
∫

α

y2(z
′)

W (z′)
f(z′)dz′ + y2(z)

z
∫

β

y1(z
′)

W (z′)
f(z′)dz′, (A9)

where α and β are constants to be determined by the boundary conditions.

Green’s function

Consider a structure that extends along the x axis from 0 to L, which corresponds to z ranging

from 0 to sπ, where s = L/ā. Two independent solutions for y1 and y2 are se(a, γa, z) and

se(a, γa, z − sπ), which, since se is zero at z = 0, satisfy both the boundary condition of zero

pressure at the two ends of the structure and obey the relation a = q/γ. A Green’s function

G(z, z′) can be constructed for Eq. 4 of the form

G(z, z′) =

{

Ase(a, q, z) z < z′

B se(a, q, z − sπ) z > z′
,

where A and B are constants. Using standard methods[26], G(z, z′) is found to be

G(z, z′) =

{

se(a,q,z) se(a,q,z′−sπ)
WG

z < z′

se(a,q,z−sπ) se(a,q,z′)
WG

z > z′
, (A10)

where WG{se(z − sπ, q), se(z, q)} = se(a, q, z − sπ)se′(a, q, z) − se′(a, q, z − sπ)se(a, q, z)
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FIGURE CAPTIONS

Fig. 1 Stability plot, a versus q, for Mathieu functions. Solutions in the regions in white give

either aperiodic, or periodic fractional Mathieu functions. In the gray regions the solutions are

unbounded. Integer value Mathieu functions are found at the borders between the shaded and

white regions. The straight line a = q/γ is plotted for a value of γ = 0.35. Several Mathieu

characteristic values am and bm are shown along this line that are solutions to Eq. A3 used for

evaluation of Eq. 7. The intersections of the vertical line q = 9 at the boundaries between the

stable and unstable regions give values of am and bm used in the solution given by Eq. 10.

Fig. 2 Magnitude of the photoacoustic pressure amplitude p in arbitrary units versus dimen-

sionless frequency ω̂ for an infinite structure with γ = 0.3 for delta function heat deposition along

the entire structure for z0 = π/14.

Fig. 3 Photoacoustic pressure p in arbitrary units versus dimensionless coordinate z for (top

plot) ω̂ = 1, and (bottom plot) ω̂ = 7 for an infinite structure with uniform irradiation and

γ = 0.35.

Fig. 4 Stability plot of a versus q for the homogeneous Mathieu equation. The straight line

is a plot of a = q/γ for a value of γ = 0.35. The points marked with subscripts are characteristic

values for fractional Mathieu functions from solution of Eq. A3 with s = 2. The unmarked points

show solutions to Eq. A3 for integer order Mathieu functions.

Fig. 5 Photoacoustic pressure p in arbitrary units versus dimensionless coordinate z for (top

plot) ω̂ = 1, and (bottom plot) ω̂ = 7 for a finite structure with γ = 0.35 and s = 2.

Fig. 6 Magnitude of the photoacoustic pressure amplitude p in arbitrary units versus dimen-

sionless frequency ω̂ for a finite structure with γ = 0.35 and s = 2 for delta function heat deposition

at z0 = π/14.
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