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In this paper, based on the regular KdV system, we study negative order KdV (NKdV) equa-
tions about their Hamiltonian structures, Lax pairs, infinitely many conservation laws, and explicit
multi-soliton and multi-kink wave solutions thorough bilinear Bäcklund transformations. The NKdV
equations studied in our paper are differential and actually derived from the first member in the
negative order KdV hierarchy. The NKdV equations are not only gauge-equivalent to the Camassa-
Holm equation through reciprocal transformations, but also closely related to the Ermakov-Pinney
systems, and the Kupershmidt deformation. The bi-Hamiltonian structures and a Darboux trans-
formation of the NKdV equations are constructed with the aid of trace identity and their Lax pairs,
respectively. The single and double kink wave and bell soliton solutions are given in an explicit for-
mula through the Darboux transformation. The 1-kink wave solution is expressed in the form of tanh
while the 1-bell soliton is in the form of sech, and both forms are very standard. The collisions of
2-kink-wave and 2-bell-soliton solutions, are analyzed in details, and this singular interaction is a big
difference from the regular KdV equation. Multi-dimensional binary Bell polynomials are employed
to find bilinear formulation and Bäcklund transformations, which produce N-soliton solutions. A
direct and unifying scheme is proposed for explicitly building up quasi-periodic wave solutions of
the NKdV equations. Furthermore, the relations between quasi-periodic wave solutions and soliton
solutions are clearly described. Finally, we show the quasi-periodic wave solution convergent to the
soliton solution under some limit conditions.

PACS numbers: 05.45.Yv, 02.30.Ik, 02.30.Gp

I. INTRODUCTION

The Korteweg-de Vries (KdV) equation

ut + 6uux + uxxx = 0

was proposed by Korteweg and de Vries in fluid dy-
namics [1], starting from the observation and subsequent
experiments by Russell [2]. There are many excellent
sources for the highly interesting background and histor-
ical development of the KdV equation, which bring it to
the forefront of modern mathematical physics. In 1967,
Gardner, Greener, Kruskal and Miura found the inverse
scattering transformation method to solve the Cauchy
problem of the KdV equation with sufficiently rapidly
decaying initial data [3]. Soon thereafter, Lax explained
the magical isospectral property of the time dependent
family of Schrödinger operators by what is now called,
the Lax pair, and introduced the KdV hierarchy through
a recursive procedure [4]. In the same year a sequence
of infinitely many polynomial conservation laws was ob-
tained with the help of Miura transformation [5, 6].

There are some tools to view the KdV equation as a
completely integrable system by Gardner, and Zakharov
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and Faddeev [7, 8]. The bilinear derivative method was
developed by Hirota to find N -soliton solutions of the
KdV equation [9]. The KdV hierarchy was constructed
by Lax [10] through a recursive approach, and further
studied by Gel’fand and Dikii [11]. The extension of the
inverse scattering method to periodic initial data, based
on both the inverse spectral theory and algebro-geometric
methods, was developed by Novikov, Dubrovin, Lax, Its,
Matveev et al [12–15]. For more recent reviews on the
KdV equation one may refer, for instance, to literature
[16–25].
All the work done in the above mentioned publica-

tions dealt with the positive order KdV hierarchy, which
includes the KdV equation as a special member. How-
ever, there was only little work on the NKdV hierarchy.
Verosky [26] studied symmetries and negative powers of
recursion operator and gave the following negative order
KdV equation (called the NKdV equation thereafter)

vt = wx,

wxxx + 4vwx + 2vxw = 0.
(1.1)

and Lou [27] presented additional symmetries based on
the invertible recursion operator of the KdV system
and particularly provided the following NKdV equation
(called the NKdV-1 equation thereafter)

vt = 2uux, uxx+vu = 0,⇐⇒
(uxx
u

)

t
+2uux = 0, (1.2)
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which can be reduced from the NKdV equation (1.1) un-
der the following transformation

w = u2, v = −uxx
u
. (1.3)

Moreover, the second part of NKdV-1 equation (1.2) is a
linear Schrödinger equation or Hill equation

uxx + vu = 0.

Fuchssteiner [28] pointed out the gauge-equivalent rela-
tion between the NKdV equation (1.1) and the Camassa-
Holm (CH) equation [29]

mt +mxu+ 2mux = 0, m = u− uxx

through some hodograph transformation, and later on
Hone proposed the associate CH equation, which is ac-
tually equivalent to the NKdV equation (1.1), and gave
soliton solutions through the KdV system [30]. Zhou
generalized the Kupershmidt deformation and proposed
a kind of the mixed KdV hierarchy, which contains the
NKdV equation (1.1) as a special case [31].
Very recently, Qiao and Li [32] gave a unifying formu-

lation of the Lax representations for both negative and
positive order KdV hierarchies, and furthermore studied
all possible traveling wave solutions, including soliton,
kink wave, and periodic wave solutions, of the integrable
NKdV-1 equation (1.2), which possesses the following
Lax pair

Lψ ≡ ψxx + vψ = λψ,

ψt =
1
2u

2λ−1ψx − 1
2uuxλ

−1ψ.
(1.4)

The most interesting is: the NKdV-1 equation has both
soliton and kink solutions, which is the first integrable
example, within our knowledge, having such a property
in soliton theory.
Studying negative order integrable hierarchies plays an

important role in the theory of peaked soliton (peakon)
and cusp soliton (cuspon). For instance, the well-known
CH peakon equation is actually produced through its neg-
ative order hierarchy while its positive order hierarchy
includes the remarkable Harry-Dym type equation [33].
The Degasperis-Procesi (DP) peakon equation [34] can
also be generated through its negative order hierarchy
[35]. Both the CH equation and the DP equation are typ-
ical integrable peakon and cupson systems with nonlinear
quadratic terms [29, 33, 36–38]. Recently, some nonlinear
cubic integrable equations have also been found to have
peakon and cupson solutions [39–42].
In this paper, we study the NKdV hierarchy, in partic-

ular, focus on the NKdV equation (1.1) and the NKdV-1
equation (1.2). Actually, as papers [27, 43], the NKdV
equation (1.1) can embrace other possible differential-
integro forms according to the kernel of operator K =
1
4∂

3
x +

1
2 (v∂x + ∂xv). Here we just list the NKdV-1 equa-

tion (1.2) as it is differential and we find that the first

negative order KdV equation also equivalent to a nonlin-
ear quartic integrable system:

uuxxt − uxxut − 2u3ux = 0.

with both classic soliton and kink wave solutions.
The purpose of this paper is to investigate integrable

properties, N -soliton and N -kink solutions of the NKdV
equation (1.1) and NKdV-1 equation (1.2). In section
2, the trace identity technique is employed to construct
the bi-Hamiltonian structures of the NKdV hierarchy. In
section 3, we show that the NKdV equation (1.1) is re-
lated to the Kupershmidt deformation and the Ermakov-
Pinney systems, and is also able to reduced to the NKdV-
1 equation (1.2) under a transformation. The relation
between solution of NKdV equation (1.1) and that of
NKdV-1 equation (1.2) is given. In section 4, a Dar-
boux transformation of the NKdV equation (1.1) is pro-
vided with the help of its Lax pairs. In section 5, as
a direct application of the Darboux transformation, the
kink-wave and bell soliton solutions are explicitly given,
and the collision of two soliton solutions is analyzed in
detail through two-solitons. In section 6, an extra auxil-
iary variable is introduced to bilinearize the NKdV equa-
tion (1.1) through binary Bell polynomials. In section 7,
the bilinear Bäcklund transformations are obtained and
Lax pairs are also recovered. In section 8, we will give
a kind of Darboux covariant Lax pair, and in section 9,
infinitely many conservation laws of the NKdV equation
(1.1) are presented through its Lax equation and a gener-
alized Miura transformation. All conserved densities and
fluxes are recursively given in an explicit formula. In
sections 10, a direct and unifying scheme is proposed for
building up quasi-periodic wave solutions of the NKdV
equation (1.1) in an explicit formula. Furthermore, the
relations between quasi-periodic wave solutions and soli-
ton solutions are clearly described. Finally, we show the
quasi-periodic wave solution convergent to the soliton so-
lution under the assumption of small amplitude.

II. HAMILTONIAN STRUCTURES OF THE
NKDV HIERARCHY

To find the Hamiltonian structures of the NKdV hi-
erarchy, let us re-derive the NKdV hierarchy in matrix
form.

A. The NKdV hierarchy

Consider the Schrödinger-KdV spectral problem

ψxx + vψ = λψ, (2.1)

where λ is an eigenvalue, ψ is the eigenfunction corre-
sponding to the eigenvalue λ, and v is a potential func-
tion.
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Let ϕ1 = ψ, ϕ2 = ψx, then the spectral problem (2.1)
becomes

ϕx = Uϕ =

(

0 1
λ− v 0

)

ϕ, (2.2)

where ϕ = (ϕ1, ϕ2)
T is a two-dimensional vector of eigen-

functions.
The Gateaux derivative of spectral operator U in di-

rection ξ at point v is

U ′[ξ] =
d

dε
U(v + εξ)|ε=0 =

(

0 0
−ξ 0

)

, (2.3)

which is injective and linear with respect to the variable
ξ.
The Lenard recursive sequence {Gm} of the spectral

problem (2.1) is defined by

G−1 ∈ KerK = {G|KG = 0},
G0 ∈ KerJ = {G|JG = 0}
KGm−1 = JGm, m = 0,−1,−2 . . . ,

(2.4)

which directly produces the NKdV hierarchy:

vt = KGm−1 = JGm, m = 0,−1,−2 . . . (2.5)

where

K =
1

4
∂3x +

1

2
(v∂x + ∂xv), J = ∂x, (2.6)

and K is exactly a recursion operator of the well-known
KdV hierarchy

vt = Knvx, n = 0, 1, 2, . . . .

The first equation (m = 0) in the NKdV hierarchy
(2.5) is trivial equation

vt = JG0 = 0, JG0 = KG−1 = 0.

The second equation (m = −1) in the NKdV hierarchy
(2.5) takes

vt = G−1,x, KG−1 = 0,

which is exactly the NKdV equation (1.1) by replacing
G−1 = w.
In a similar way to the paper [32], we construct zero

curvature representation for NKdV hierarchy.
Proposition 1. Let U be the spectral matrix defined

in (2.2), then for an arbitrarily smooth function G ∈
C∞(R), the following operator equation

Vx − [U, V ] = U ′[KG]− λU ′[JG] (2.7)

admits a matrix solution

V = V (G) =









−1

4
Gx

1

2
G

−1

4
Gxx −

1

2
vG+

1

2
λG

1

4
Gx









λ−1,

which is a linear function with respect to G, and Gateaux
derivative is defined by (2.3).
Theorem 1. Suppose that {Gj, j = −1,−2, . . .}

is the first Lenard sequence defined by (2.4), and Vj =
V (Gj) is a corresponding solution to the operator equa-
tion (2.7) for G = Gj . With Vj being its coefficients, a
mth matrix polynomial in λ is constructed as follows

Wm =

m
∑

j=1

Vjλ
−m+j .

Then we conclude that the NKdV hierarchy (2.5) admits
zero curvature representation

Ut −Wm,x + [U,Wm] = 0,

which is equivalent to

ϕx = Uϕ =

(

0 1
λ− v 0

)

ϕ,

ϕt =Wmϕ =
m
∑

j=1





− 1
4Gj,x

1
2Gj

− 1
4Gj,xx − 1

2vGj +
1
2λGj

1
4Gj,x



λ−m+j−1ϕ.

(2.8)

This theorem actually provides an unified formula of the
Lax pairs for the whole NKdV hierarchy (2.5).

According to theorem 1, the NKdV equation (1.1) ad-

mits Lax pair with parameter λ

Lψ ≡ ψxx + vψ = λψ,

ψt =
1
2wλ

−1ψx − 1
4wxλ

−1ψ,
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or equivalently,

Lψ = (∂2x + v)ψ = λψ,

Mψ = (4∂2x∂t + 4v∂t + 2w∂x + 3wx)ψ = 0.
(2.9)

The NKdV equation (1.1) also possesses Lax pair with-
out parameter

Lψ = (∂2x + v)ψ = 0,

Mψ = (4∂2x∂t + 4v∂t + 2w∂x + 3wx)ψ = 0.
(2.10)

Especially, taking the constraint v = −uxx/u and w =
u2 ∈ KerK, we then further get the NKdV equation
(1.2) and its Lax pair (1.4).

B. Hamiltonian structures

Proposition 2. [24] For the spectral problem (2.2),
assume that V is a solution to the following station-
ary zero curvature equation with the given homogeneous
rank

Vx = [U, V ] ≡ UV − V U. (2.11)

Then there exists a constant β, such that

δ

δv

〈

V,
∂U

∂λ

〉

=

(

λ−β
∂

∂λ
λβ
)〈

V,
∂U

∂v

〉

, (2.12)

holds, where 〈·, ·〉 stands for the trace of the product of
two matrices.
Let {Gm, m = −1,−2 . . .} be the negative order

Lenard sequence recursively given through (2.4) and

Gλ =

−1
∑

m=−∞

Gmλ
−m, (2.13)

be a series with respect to λ. Assume that Vλ = V (Gλ)
is the matrix solution for the operator equation (2.9) cor-
responding to G = Gλ. So, Vλ can be written as

Vλ =

−1
∑

m=−∞

Vmλ
−m.

Then, we have the following proposition.
Proposition 3. Vλ satisfies the following Lax form

Vλ,x = [U, Vλ].

Proof. By (2.4), we have

(K − λJ)Gλ =

−1
∑

m=−∞

KGmλ
−m −

−1
∑

m=−∞

JGmλ
−m+1

= KG−1λ
−1 +

−1
∑

m=−∞

(KGm−1 − JGm)λ−m = 0.

Therefore, Proposition 1 implies

Vλ,x − [U, Vλ] = U ′[KGλ]− λU ′[JGλ]

= U ′[KGλ − λJGλ] = 0.

�

Next, we discuss the Hamiltonian structures of the hi-
erarchy (2.5). It is crucial to find infinitely many con-
served densities.
Theorem 2.

1. The hierarchy (2.5) possesses the bi-Hamiltonian
structures

vt = K
δHm−1

δv
= J

δHm

δv
, m = −1,−2 . . . , (2.14)

where the Hamiltonian functions Hm are implicitly
given through the following formulas

H−1 = G−1 ∈ KerK, Hm =
Gm
m

,

m = −1,−2 . . . .
(2.15)

2. The hierarchy (2.5) is integrable in the Liouville
sense.

3. The Hamiltonian functions {Hm} are conserved
densities of the whole hierarchy (2.5) and there-
fore they are in involution in pairs for the Poisson
bracket

{Hn, Hm} =

(

δHn

δv
, J
δHm

δv

)

=

∫

δHn

δv
J
δHm

δv
dx,

where (·, ·) stands for inner product of two func-
tions.

Proof. A direction calculation leads to
〈

Vλ,
∂U

∂λ

〉

=
1

2
Gλ,

〈

Vλ,
∂U

∂v

〉

= −1

2
Gλ.

By using the trace identity (2.12) and the expansion
(2.13), we obtain

δ

δv

(

−1
∑

m=−∞

Gmλ
−m

)

=

−1
∑

m=−∞

(m− 1− β)Gm−1λ
−m

+ (−1− β)G−1, m = −1,−2 . . . .
(2.16)

If taking G−1 6= 0, form (2.16) we find β = −1 and

δHm

δv
= Gm−1, m = −1,−2 . . . , (2.17)

where Hm are given by (2.15). Substituting (2.17) into
(2.5) yields the bi-Hamiltonian structures (2.14).
Next, we consider infinitely many conserved densities

to guarantee integrability of the hierarchy (2.16). Since
J and K are skew-symmetric operators, we infer that

L∗J = (J−1K)∗J = −K∗ = K = JL,
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which implies

{Hn, Hm} =

(

δHn

δv
, J
δHm

δv

)

= (LnG−1, JLmG−1)

= (LnG−1,L∗JLm−1G−1) = (Ln+1G−1, JLm−1G0)
= {Hn+1, Hm−1}, m, n ≤ −1.

Repeating the above argument gives

{Hn, Hm} = {Hm, Hn} = {Hm+n, H−1}. (2.18)

On the other hand, we find

{Hm, Hn} = (LmG−1, JLnG−1)
= (J∗LmG−1,LnG−1) = −{Hn, Hm}. (2.19)

Then combining (2.18) with (2.19) leads to

{Hm, Hn} = 0,

which implies that {Hm} are in involution, and therefore
the hierarchy (2.14) are integrable in Liouville sense.
Especially, under the constraint (1.3), we obtain bi-

Hamilton structures of the NKdV equation (1.2)

vt = K
δH−1

δv
= J

δH0

δu
,

where two Hamiltonian functions are given by

H0 =
1

3
u3, H−1 = −u2,

which can also be written in a conserved density form in
the sense of equivalence class

H0 ∼ −1

3

∫

u3dx, H−1 ∼ −
∫

u2dx.

III. RELATIONS TO OTHER REMARKABLE
SYSTEMS

In this section, we discuss relations of the NKdV hier-
archy (2.5) with Kupershmidt deformation, soliton equa-
tions with self-consistent sources and Ermakov-Pinney
systems.
Recently a class of new integrable systems, known as

the Kupershmidt deformation of soliton equations, have
attracted much attention. This topic starts from Kuper-
shmidt, Karasu-Kalkani’ work [44–46]. A Kupershmidt
nonholonomic deformation of the NKdV hierarchy (2.5)
takes

vt = JGm + Jw, m = 0,−1,−2, . . . ,

Kw = 0,
(3.1)

where two operators K and J are given by (1.4). Then
the first flow (m = 0) of the hierarchy (3.1) is exactly the
NKdV equation (1.1)

vt = wx,

wxxx + 4vwx + 2vxw = 0,

which may be regarded as a Kupershmidt nonholonomic
deformation of the trivial equation for the NKdV hierar-
chy (2.5).
Soliton equations with self-consistent sources have im-

portant physical applications, for example, the KdV
equation with self-consistent source describes the inter-
action of long and short capillary-gravity waves [47–50].
For N distinct λj of the spectral problem (2.1), the

functional gradient of λ with respect to v is

δλj
δv

= ψ2
j ,

then we define NKdV hierarchy with self-consistent
sources by

vt = JGm + αJ
δλ

δv
= JGm + αJ

N
∑

j=1

ψ2
j ,

ψj,xx + (v + λj)ψj = 0,

m = 0,−1,−2, . . . ; j = 1, . . . , N.

(3.2)

Taking m = −1, the hierarchy (3.4) gives the NKdV
equation with self-consistent sources

vt = wx + α∂x

N
∑

j=1

ψ2
j ,

wxxx + 4vwx + 2vxw = 0,

ψj,xx + (v + λj)ψj = 0, j = 1, . . . , N.

Obviously, taking N = 1, m = 0, α = 1, v → v + λ1
in the hierarchy (3.4), we then get NKdV equation (1.2)

vt = (ψ2
1)x, ψ1,xx + vψ1 = 0.

The Ermakov-Pinney equation is a quite famous ex-
ample of a nonlinear ordinary differential equation. Such
a system has been shown to be relevant to a number of
physical contexts including quantum cosmology, quan-
tum field theory, nonlinear elasticity and nonlinear optics
[51–58].
Theorem 3. (u, v) is a solution of NKdV-1 equation

(1.2) if and only if (w, v) with w = u2 is a solution of
NKdV equation (1.1) under the transformation

uxx + vu = 0,

which is actually a linear Schrödinger equation or Hill
equation.
Theorem 4. (u, v) is a solution of the NKdV-1

equation (1.2) if and only if (w, v) is a solution of the
NKdV equation (1.1) as φ is a solution of the Riccati
equation

φx + φ2 + v = 0,

while u is the Baker-Akhiezer function

u = exp

(∫ x

0

φdx

)

, w = u2.
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Proposition 4. Suppose that (w, v) is a solution of
the NKdV equation (1.1). Let w = pt = ψ2, v = px,
then ψ satisfies a Ermakov-Pinney equation

ψxx + vψ =
µ

ψ3
, (3.3)

where µ is an integration constant. Especially, if (u, v)
is the solution of the NKdV-1 equation (1.2), let u =
ψ exp

(

i
∫

µψ−2dx
)

, then ψ also satisfies the Ermakov-
Pinney equation (3.3).
Using the Muira transformation [26]

v = −ϕxx − ϕ2
x,

the NKdV eqation (1.2) can be transformed to sind-
Gordon equation

ϕxt = sinhϕ.

IV. DARBOUX TRANSFORMATION OF NKDV
EQUATIONS

In this section, we shall construct a Darboux transfor-
mation for general NKdV equation (1.1), and then reduce
it to the NKdV-1 equation (1.2).

A. Darboux transformation

A Darboux transformation is actually a special gauge
transformation

ψ̃ = Tψ (4.1)

of solutions of the Lax pair (2.9), here T is a differential
operator (For the Lax pair (2.10), the Darboux transfor-

mation with λ = 0 can be obtained). It requires that ψ̃

also satisfies the same Lax pair (2.9) with some L̃ and

M̃ , i. e.

L̃ψ̃ = λψ̃, L̃ = TLT−1,

M̃ ψ̃ = 0, M̃ = TMT−1
(4.2)

Apparently, we have

[L̃, M̃ ] = T [L,M ]T−1,

which implies that L̃ and M̃ are required to have the
same forms as L and M , respectively, in order to make
system (2.9) invariant under the gauge transformation
(3.4). At the same time the old potentials u and v in L,

M will be mapped into new potentials ũ and ṽ in L̃, M̃ .
This process can be done continually and usually it may
yield a series of multi-soliton solutions.
Let us now set up a Darboux transformation for the

system (2.9). Let ψ0 = ψ0(x, t) be a basic solution of Lax

pair (2.9) for λ0, and use it to define the following gauge
transformation

ψ̃ = Tψ, (4.3)

where

T = ∂x − σ, σ = ∂x lnψ0. (4.4)

From (2.9) and (4.4), one can see that σ satisfies

σx + σ2 + v − λ = 0 (4.5)

4σxxt+12σxσt+4vσt+2wσx+6σσxt+3wxx = 0. (4.6)

Proposition 5. The operator L̃ determined by (4.2)
has the same form as L, that is,

L̃ = ∂2x + ṽ,

where the transformation between v and ṽ is given by

ṽ = v + 2σx. (4.7)

The transformation: (ψ, v) → (ψ̃, ṽ) is called a Darboux
transformation of the first spectral problem of Lax pair
(2.9).
Proof. According to (4.2), we just prove

L̃T = TL,

that is,

(∂2x + ṽ)(∂x − σ) = (∂x − σ)(∂2x + v),

which is true through (4.5) and (4.7).
Proposition 6. Under the transformation (4.3), the

operator M̃ determined by (4.2) has the same form as
M , that is,

M̃ = 4∂2x∂t + 4ṽ∂t − 2w̃∂x − 3w̃x, (4.8)

where the transformations between w, v and w̃, ṽ are
given by

w̃ = w + 2σt, ṽ = v + 2σx. (4.9)

The transformation: (ψ,w, v) → (ψ̃, w̃, ṽ) is Darboux
transformation of the second spectral problem of Lax pair
(2.9).

Proof. To see that M̃ has the form (4.8) same as M ,
we just prove

M̃T = TM, (4.10)

where

M̃ = 4∂2x∂t + f∂t + g∂x + h, (4.11)

with three functions f, g, and h to be determined. Sub-
stituting M̃, M, L into (4.10) and comparing the coeffi-
cients of all distinct operators lead to:
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coefficient of operator ∂x∂t

f = 4v + 8σx = 4ṽ,

which holds by using (4.9).
coefficient of operator ∂2x

g = 2w + 4σt = 2w̃,

which implies from (4.9).
coefficient of operator ∂x

h = 8σxt + 5wx − 2σw + gσ = 6σxt + 3wx + 2(σx + σ2 + v)t

= 6σxt + 3wx = 3w̃x,

here we have used equation (4.5) and (4.9).
coefficient of operator ∂t

−4σxx − fσ = 4vx − 4vσ,

that is,

σxx + 2σσx + vx = 0.

which holds by using (4.5).
coefficient of non-operator:

4σxxt + fσt + gσx + σh+ 3wxx − 3σwx = 0,

that is,

4σxxt + 12σxσt + 4vσt + 2wσx + 6σσxt + 3wxx = 0,

which is the equation (4.6). We complete the proof. �
Propositions 4 and 5 tell us that the transformations

(4.3) and (4.9) send the Lax pair (2.9) to another Lax
pair (4.2) in the same type. Therefore, both of the Lax
pairs lead to the same NKdV equation (1.1). So, we

call the transformation (ψ,w, v) → (ψ̃, w̃, ṽ) a Darboux
transformation of the NKdV equation (1.1). In summary,
we arrive at the following theorem.
Theorem 5. A solution w, v of the NKdV equation

(1.1) is mapped into its new solution w̃, ṽ under the
Darboux transformations (4.3) and (4.9).

B. Reduction of Darboux transformation

To get Darboux transformation for NKdV-1 equation
(1.2), we consider two reduction of Darboux transforma-
tion (4.3) and (4.9).
Corollary 1. Let λ = k2 > 0, then under the con-

straints w = u2, v = −uxx/u, the Darboux transforma-
tion (4.3) and (4.9) can be reduced to Darboux trans-
formation of the NKdV-1 equation (1.2): (ψ, v, u) →
(ψ̃, ṽ, ũ), where

ψ̃ = Tψ, ṽ = v + 2σx, ũ = k−1(ux − σu) = k−1Tu.
(4.13)

Proof. For λ > 0, suppose that (v, u) is a solution
of NKdV-1 equation and ψ is eigenfunction of Lax pair
(1.4), then we have

λ−1(uψx − uxψ) = ∂−1
x (uψ).

Therefore, the Lax pair (1.4) can be written as

ψxx + vψ = λψ,

ψt =
1

2
uλ−1(uψx − uxψ) =

1

2
u∂−1

x (uψ) = N(u, λ)ψ,

(4.12)
where N = N(u, λ) = 1

2u∂
−1
x u.

According to Proposition 6, the first spectral problem
of Lax pair (4.12) is covariant under the transformation
(4.13), that is

ψ̃xx + ṽψ̃ = λψ̃.

So we only need to prove that

ψ̃t = N(ũ, λ)ψ̃ (4.14)

Substituting (4.13) into the left hand of (4.14) gives

ψ̃t = (ψt)x − (σψ)t = (Nψ)x − σNψ − (ψ−1
0 Nψ0)xψ,

=
1

2
[(ux − σu)∂−1

x (uψ)− ψ−1
0 ψ(ux − σu)∂−1

x (uψ0)]

=
1

2
kũ[∂−1

x (uψ) + k−2(ux − σu)ψ]

(4.15)
In the same way, substituting (4.13) into the right hand
of (4.14) gives

N(ũ, λ)ψ̃ =
1

2
ũ∂−1

x [k−1(ux − σu)(ψx − σψ)]

=
1

2
k−1ũ[uxψ − ∂−1

x (uxxψ)− σuψ + ∂−1
x (ψ−1

0 ψ0,xxuψ)]

=
1

2
k−1ũ[k2∂−1

x (uψ) + (ux − σu)ψ]

(4.16)
Combining (4.15) and (4.16) implies that (4.14) holds. �
Corollary 2. Let λ = 0, then under the constraints

w = u2, v = −uxx/u, the Darboux transformation (4.3)
and (4.9) can be reduced to Darboux transformation

of the NKdV-1 equation (1.2): (ψ, v, u) → (ψ̃, ṽ, ũ), in
which

ṽ = v + 2σx, ψ̃ = ψ − ψ−1
0 σ∂−1

x (ψ0ψ),

ũ =







ψ−1
0 σ, u = 0,

u− ψ−1
0 σ∂−1

x (ψ0u), u 6= 0.

(4.17)

with σ = ∂x ln(1 + ∂−1
x ψ2

0).

V. APPLICATIONS OF THE DARBOUX
TRANSFORMATION

In this section, we shall apply the Darboux transfor-
mations (4.3) and (4.9) to obtain kink-type and bell-type
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of explicit solutions for the NKdV equation (1.1).

A. The kink-wave solutions

For the case of λ = k2 > 0, we substitute v = 0, w = 1
into the Lax pair (2.9) and choose the following basic
solution

ψ = eξ + e−ξ = 2 cosh ξ, ξ = kx− 1

2k
t+ γ, (5.1)

where γ and k are two arbitrary constants.
Taking λ = k21 , then (4.4) and (5.1) lead to

σ1 = ∂x lnψ = k1 tanh ξ1, ξ1 = k1x− 1

2k1
t+ γ1.

The Darboux transformation (4.9) gives bell-type solu-
tion for the NKdV equation (1.1)

ṽI = 2σ1,x = 2k21sech
2ξ1,

w̃I = 1− 2σ1,t = tanh2 ξ1.
(5.2)

By using Darboux transformation (4.13), we get a kink-
type wave solution for the NKdV equation (1.2)

ũI = k−1
1 (ux − σu) = − tanh ξ1,

ξ1 = k1x− 1

2k1
t+ γ1.

(5.3)

Remark 1. There is much difference between travel-
ing waves of the NKdV equation (1.2) and of the clas-
sical KdV equation. For the NKdV equation (1.2), its
one-wave solution is a negative-moving (i.e. from right
to left) kink-wave with velocity −1/2k21, amplitude ±1
and width 1/k1. Its amplitude is independent of velocity,
and width is directly proportional to the velocity. For
the KdV equation

ut + 6uux + uxxx = 0, (5.4)

one-soliton solution is

u =
k2

2
sech2

k(x− k2t)

2
, (5.5)

which is a bell-type positive-moving wave with velocity
k2, amplitude k2/2 and width 1/k, respectively. Its am-
plitude is directly proportional to velocity, and width is
inversely proportional to the velocity.
Let us now construct two-kink solutions to see the in-

teraction of two kink solutions. According to (4.4),

ψ̃ = Tψ = (∂x − σ1)(e
ξ + e−ξ) (5.6)

is also an eigenfunction of Lax pair (2.9). Taking λ = k22 ,
we have

σ2 = −k1 tanh ξ1 +
k21 − k22

k1 tanh ξ1 − k2 tanh ξ2
. (5.7)
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FIG. 1: (Color online) The two-kink wave solution u(x, t)
with parameters: k1 = 1, k2 = 0.6. (a) Perspective view
of the wave. (b) Overhead view of the wave, with contour
plot shown. The bright lines are crests and the dark lines are
troughs.

Repeating the Darboux transformation (4.9) one more
time, we get two soliton solution for the NKdV equation
(1.1)

ṽII = ṽI + 2σ2,x =
(k21 − k22)(k

2
2sech

2ξ2 − k21sech
2ξ1)

(k1 tanh ξ1 − k2 tanh ξ2)2
,

w̃II = w̃I − 2σ2,t =

(

k1 tanh ξ2 − k2 tanh ξ1
k1 tanh ξ1 − k2 tanh ξ2

)2

.

Therefore, we obtain a two-kink wave solution of the
NKdV equation (1.2)

˜̃u =
k2 tanh ξ1 − k1 tanh ξ2
k1 tanh ξ1 − k2 tanh ξ2

. (5.8)

Let us use the two-kink wave solution (5.8) to analyze
interaction of the two one-soliton solutions. Without loss
of generality, we suppose k1 > k2 > 0, then we have

ξ2 =
k2
k1

[

ξ1 −
k1
2
(
1

k22
− 1

k21
)t

]

.

Therefore, on the fixed line ξ1 =constant, we get

tanh ξ2 ∼ −1, t→ +∞,

and it follows (5.8) that

˜̃u ∼ k2 tanh ξ1 + k1
k1 tanh ξ1 + k2

= coth

(

ξ1 −
1

2
ln
k1 − k2
k1 + k2

)

, t→ +∞.

(5.9)
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FIG. 2: (Color online) Interaction between singular soliton
cothξ1 and smooth soliton tanhξ2 with parameters: (a) t =
−3, (b) t = −0.05, (c) t = 0, (d) t = 0.05, (e) t = 3.

In a similar way, one can get

tanh ξ2 ∼ 1 as t→ −∞,

which are main parts compared with terms 1 and e2ξ1 ,
and it follows (3.19) that

˜̃u ∼ k2e
2ξ1 − k1

k1e2ξ1 − k2
= coth

(

ξ1 +
1

2
ln
k1 − k2
k1 + k2

)

, t→ −∞.

(5.10)

In a similar way, on the line ξ2 =constant, we will

arrive at

˜̃u ∼ tanh

(

ξ2 +
1

2
ln
k1 − k2
k1 + k2

)

, as t→ +∞, (5.11)

˜̃u ∼ tanh

(

ξ2 −
1

2
ln
k1 − k2
k1 + k2

)

, as t→ −∞. (5.12)

Remark 2. From expressions (5.9)-(5.12), we see that
the two-kink wave solution (5.8) is a singular solution,
which is able to be decomposed into a singular kink-
type solution and a smooth kink wave solutions. The
expressions (5.10) and (5.12) show that the wave tanh ξ2
is on the left of the wave coth ξ1 before their interaction,
while the expressions (5.9) and (5.11) show that the wave
coth ξ1 is on the left of the wave tanh ξ2 after their in-
teraction. The shapes of the two kink waves coth ξ1 and
tanh ξ2 don’t change except their phases. Their phases
of the two waves coth ξ1 and tanh ξ2 are ln k1−k2

k1+k2
> 0 and

− ln k1−k2
k1+k2

< 0, respectively as the wave is negatively go-
ing along the x−axis. Very interesting case is particular
at t = 0: collision of such two kink waves forms a smooth
bell-type soliton and its singularity disappears (See Fig-
ure 2).
After their interaction, it can be seen that the two kink

waves resume their original shapes. At the right moment
of interaction, the two kink waves are fused into a smooth
bell-type soliton. The two-kink wave interactions pos-
sess the regular elastic-collision features and pass through
each other, and their shapes keep unchanged with a phase
shift after the interaction. Here, we also demonstrate a
fact that the large-amplitude kink wave with faster ve-
locity overtakes the small-amplitude one, after collision,
the smaller one is left behind.

B. The bell-type soliton solutions

(i) For the case of λ = 0 (i.e. without parameter λ),
we substitute v = −k2, w = 0 into the Lax pair (2.10),
and choose the following basic solution as

ψ = eξ + e−ξ, ξ = kx+
1

2k
t,

where k is an arbitrary constant.
Taking k = k1, (4.4) gives

σ = σ1 = ∂x lnψ = k1 tanh ξ1, ξ1 = k1x+
1

2k1
t. (5.13)

Using the Darboux transformation (4.9), we have one-
soliton solution for the NKdV equation (1.1)

ṽ = v + 2σ1,x = 2k21sech
2ξ1 − k21 ,

w̃ = −2σ1,t = sech2ξ1.
(5.14)

So, we get a one-soliton solution for the NKdV-1 equa-
tion (1.2) by using Darboux transformation (4.17)

ũ = sechξ1, ξ1 = k1x+
1

2k1
t. (5.15)
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Remark 3. For the negative order KdV equation
(1.2), its one-soiton solution (5.15) is a smooth bell-
type negative-moving wave, whose velocity, amplitude
and width are 1/2k21, ±1 and 1/k1, respectively. Its am-
plitude is independent of velocity, and width is directly
proportional to the velocity.
(ii) For the case of λ = −k2, we take a seed solution

of v = −2k2, w = 1 in the Lax pair (2.9), and choose the
following basic solution as

ψ = eξ + e−ξ, ξ = kx− 1

2k
t+ γ,

where k is an arbitrary constant.
Taking k = k1 sends (3.7) to

σ = σ1 = ∂x lnψ = k1 tanh ξ1, ξ1 = k1x− 1

2k1
t+ γ1.

(5.13)
Using the Darboux transformation (3.12), we then get
one-soliton solution

ṽI = v + 2σ1,x = −2k21tanh
2ξ1 + γ1,

w̃I = 1− 2σ1,t = 1 + sech2ξ1,
(5.14)

which cannot satisfies the constraint (3.3), so
√
w̃I is not

soliton for the NKdV equation (1.2).
Remark 4. For the NKdV equation (1.1), its one-

soiton solution (5.14) is a smooth bell-type positive-
moving wave, whose velocity, amplitude and width are
1/2k21, ±1 and 1/k1, respectively. Its amplitude is inde-
pendent of velocity, and width is directly proportional to
the velocity.
Let us construct a two-soliton solution of the NKdV

equation (1.1). According to the gauge transformation
(4.4),

ψ̃ = Tψ = (∂x − σ1)(e
ξ + e−ξ)

is also an eigenfunction of Lax (2.9). We have

σ2 = −k1 tanh ξ1 +
k21 − k22

k1 tanh ξ1 − k2 tanh ξ2
.

Repeating the Darboux transformation (4.9) one more
time, we obtain

ṽII = ṽI + 2σ2,x =
(k21 − k22)(k

2
2sech

2ξ2 − k21sech
2ξ1)

(k1 tanh ξ1 − k2 tanh ξ2)2
,

w̃II = w̃I − 2σ2,t =

(

k1 tanh ξ2 − k2 tanh ξ1
k1 tanh ξ1 − k2 tanh ξ2

)2

,

which is the same for NKdV-1 equation (1.2). So we get
two-soliton solution with (5.8)

˜̃u = ±k1 tanh ξ2 − k2 tanh ξ1
k1 tanh ξ1 − k2 tanh ξ2

,

but here ξj = kjx− 1
2kj

t, j = 1, 2.

VI. BILINEARIZATION OF THE NKDV
EQUATION

The bilinear derivative method, developed by Hirota
[9], has become a powerful approach to construct exact
solutions of nonlinear equations. Once a nonlinear equa-
tion is written in a bilinear form by using some trans-
formation, then multi-solitary wave solutions or quasi-
periodic wave solutions can usually be obtained [59–63].
However, unfortunately, this method is not as direct as
many people might wish because the original equation
is reduced to two or more bilinear equations under new
variables called Hirota variables. Since no a general
rule to select Hirota variables, there is no rule to choose
some essential formulas (such as exchange formulas), ei-
ther. Especially the construction of bilinear Bäcklund
transformation relies on a particular skill and appropri-
ate exchange formulas. On the other hand, in recent
years Lambert and his co-workers have found a kind of
the generalized Bell polynomials playing important role
in seeking the characterization of bilinearized equations.
Based on the Bell polynomials, they presented an alter-
native procedure to obtain parameter families of a bilin-
ear Bäcklund transformation and Lax pairs for soliton
equations in a quick and short way [64–66].

A. Multi-dimensional binary Bell polynomials

The main tool we use here is a class of generalized
multi-dimensional binary Bell polynomials.

Definition 1. Let nk ≥ 0, k = 1, . . . , ℓ denote arbi-
trary integers, f = f(x1, . . . , xℓ) be a C∞ multi-variable
function, then

Yn1x1,...,nℓxℓ
(f) ≡ exp(−f)∂n1

x1
. . . ∂nℓ

xℓ
exp(f) (6.1)

is a polynomial in the partial derivatives of f with respect
to x1, . . . , xℓ, which we call a multi-dimensional Bell poly-
nomial (a generalized Bell polynomial or Y -polynomial).

For the two dimensional case, let f = f(x, t), then the
associated Bell polynomials through (6.1) can produce
the following representatives:

Yx(f) = fx, Y2x(f) = f2x + f2
x ,

Y3x(f) = f3x + 3fxf2x + f3
x ,

Yx,t(f) = fx,t + fxft,

Y2x,t(f) = f2x,t + f2xft + 2fx,tfx + f2
xft,

. . . . . . .

Definition 2. Based on the use of above Bell poly-
nomials (6.1), the multi-dimensional binary Bell polyno-
mials ( Y-polynomials) are defined as follows
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Yn1x1,...,nℓxℓ
(g, h) = Yn1x1,...,nℓxℓ

(f) |
fr1x1,...,rℓxℓ

=















gr1x1,...,rℓxℓ
, r1 + · · ·+ rℓ is odd,

hr1x1,...,rℓxℓ
, r1 + · · ·+ rℓ is even,

which is a multi-variable polynomial with respect to all
partial derivatives gr1x1,...,rℓxℓ

(r1 + · · ·+ rℓ is odd) and
hr1x1,...,rℓxℓ

(r1 + · · · + rℓ is even), rk = 0, . . . , nk, k =
0, . . . , ℓ.
The binary Bell polynomials also inherit the easily rec-

ognizable partial structures. The first few lower order
binary Bell Polynomials are

Yx(g) = gx, Y2x(g, h) = h2x + g2x,

Yx,t(g, h) = hxt + gxgt.

Y3x(g, h) = g3x + 3gxh2x + g3x, . . . .

(6.2)

Proposition 7. The link between binary Bell polyno-
mials Yn1x1,...,nℓxℓ

(g, h) and the standard Hirota bilinear
expression Dn1

x1
. . . Dnℓ

xℓ
FG can be given by an identity

Yn1x1,...,nℓxℓ
(g = lnF/G, h = lnFG)

= (FG)−1Dn1

x1
. . . Dnℓ

xℓ
FG,

(6.3)

in which n1+n2+· · ·+nℓ ≥ 1, and operatorsDx1
, . . . , Dxℓ

are classical Hirota bilinear operators defined by

Dn1

x1
. . . Dnℓ

xℓ
FG = (∂x1

− ∂x′

1
)n1 . . . (∂xℓ

− ∂x′

ℓ
)nℓF (x1, . . . , xℓ)G(x

′
1, . . . , x

′
ℓ)|x′

1
=x1,...,x′

ℓ
=xℓ

.

In the special case of F = G, the formula (6.4) becomes

F−2Dn1

x1
. . . Dnℓ

xℓ
GG = Yn1x1,...,nℓxℓ

(0, q = 2 lnG) =







0, n1 + · · ·+ nℓ is odd,

Pn1x1,...,nℓxℓ
(q), n1 + · · ·+ nℓ is even.

(6.4)

The first few P -polynomial are

P2x(q) = q2x, Px,t(q) = qxt, P4x(q) = q4x + 3q22x,

P6x(q) = q6x + 15q2xq4x + 15q32x, . . . .
(6.5)

The formulas (6.4) and (6.5) will prove particularly useful
in connecting nonlinear equations to their corresponding

bilinear forms. This means that if a nonlinear equation
is expressible by a linear combination of P -polynomials,
then the nonlinear equation can be transformed into a
linear equation.

Proposition 8. The binary Bell polynomials
Yn1x1,...,nℓxℓ

(v, w) can be separated into P -polynomials
and Y -polynomials

(FG)−1Dn1

x1
Dnℓ
xℓ
F ·G = Yn1x1,...,nℓxℓ

(g, h)|g=lnF/G,h=lnFG = Yn1x1,...,nℓxℓ
(g, g + q, )|g=lnF/G,q=2 lnG

=
∑

n1+···+nℓ=even

n1
∑

r1=0

· · ·
nℓ
∑

rℓ=0

ℓ
∏

i=1

(

ni
ri

)

Pr1x1,...,rℓxℓ
(q)Y(n1−r1)x1,...,(nℓ−rℓ)xℓ

(v).
(6.6)

The key property of the multi-dimensional Bell polyno-
mials

Yn1x1,...,nℓxℓ
(g)|g=lnψ = ψn1x1,...,nℓxℓ

/ψ, (6.7)

implies that the binary Bell polynomials
Yn1x1,...,nℓxℓ

(g, h) can still be linearized by means
of the Hopf-Cole transformation g = lnψ, that is,

ψ = F/G. The formulas (6.6) and (6.7) will then
provide the shortest way to the associated Lax system
of nonlinear equations.
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B. Bilinearization

Theorem 6. Under the transformation

v = v0 + 2(lnG)2x, w = w0 + 2(lnG)xt,

the NKdV equation (1.1) can be bilinearized into

(D4
x + 12v0D

2
x −DxDy)GG = 0,

(2DtD
3
x + 6w0D

2
x +DtDy)GG = 0.

(6.8)

where y ia an auxiliary variable, and u0, v0 are two con-
stant solutions of the NKdV equation (1.1).
Proof. The invariance of the NKdV equation (1.1) un-

der the scale transformation

x→ λx, t→ λαt, v → λ−2v, w → λ−α−1w

shows that the dimensions of the fields v and w are −2
and −(α + 1), respectively. So we may introduce a di-
mensionless potential field q by setting

v = v0 + q2x, w = w0 − qxt. (6.9)

Substituting the transformation (6.9) into the equation
(1.1), we can write the resulting equation in the following
form

q4x,t + 4q2xq2x,t + 2q3xqxt + 4v0q2x,t + 2w0q3x = 0,

which is regrouped as follows

2

3
q4x,t + 2(q2xq2x,t + qxtq3x) +

1

3
q4x,t

+ 2q2xq2x,t + 4v0q2x,t + 2w0q3x = 0,
(6.10)

where we will see that Such an expression is necessary to
get a bilinear form of the equation (1.1). Further inte-
grating the equation (6.10) with respect to x yields

E(q) ≡ 2

3
(q3x,t + 3q2xqxt + 3w0q2x)

+
1

3
∂−1
x ∂t(q4x + 3q22x + 12v0q2x) = 0.

(6.11)

In order to write the equation (6.11) in a local bilinear
form, let us first get rid of the integral operator ∂−1

x . To
do so, we introduce an auxiliary variable y and impose a
subsidiary constraint condition

q4x + 3q22x + 12v0q2x − qxy = 0. (6.12)

Then, the equation (6.10) becomes

2(q3x,t + 3q2xqxt + 3w0q2x) + qyt = 0. (6.13)

According to the formula (6.5), the equations (6.12)
and (6.13) are then cast into a pair of equations in the
form of P -polynomials

P4x(q) + 12v0P2x(q)− Pxy(q) = 0,

2P3x,t(q) + 6w0P2x(q) + Pyt(q) + 3γ = 0.

Finally, by the property (6.4), making the following
variable

q = 2 lnG ⇐⇒ v = v0+2(lnG)2x, w = w0+2(lnG)xt,

change above system to the following bilinear forms of
the NKdV equation (1.1) as follows

(D4
x + 12v0D

2
x −DxDy)GG = 0,

(2DtD
3
x + 6w0D

2
x +DtDy)GG = 0,

(6.14)

which is also simultaneously bilinear system in y. This
system is easily solved with multi-soliton solutions by
using the Hirota bilinear method. �
Finally, we show that the NKdV-1 equation (1.1) can

be directly bilinearized through a transformation, not
Bell polynomials. Making dependent variable transfor-
mation

v = v0 + 2(lnF )xx, u = G/F, (6.15)

we can change the equation (1.2) into

2(Fxt − FxFt) = G2,

FxxG− 2FxGx +GxxF + v0FG = 0,

which is equivalent to the bilinear form

DxDtFF = G2, (D2
x + v0)FG = 0. (6.16)

It is obvious that the bilinear form of the NKdV-1 (6.16)
is more simple than the bilinear form of NKdV (6.15).

C. N-soliton solutions

In the same procedure as the normal perturbation
method, let us expand G in the power series of a small
parameter ε as follows

G = 1 + εg(1) + ε2g(2) + ε3g(3) + . . .

Substituting the above equation into (6.7) and arranging
each order of ε, we have

ε : (D4
x + 12v0D

2
x −DxDy)g11 = 0,

(2DtD
3
x + 6w0D

2
x +DtDy)g

(1)1 = 0,
(6.16)

ε2 : (D4
x + 12v0D

2
x −DxDy)(2g

(2)1 + g(1)g(1)) = 0,

(2DtD
3
x + 6w0D

2
x +DtDy)(2g

(2)1 + g(1)g(1)) = 0,
(6.17)

ε3 : (D4
x + 12v0D

2
x −DxDy)(g

(3)1 + g(1)g(2)) = 0,

(2DtD
3
x + 6w0D

2
x +DtDy)(g

(3)1 + g(1)g(2)) = 0,

. . . . . .
(6.18)
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By employing formulae mentioned above, the system
(6.16) is equivalent to the following linear system

g(1)xxxx + 12v0g
(1)
xx − g(1)xy = 0,

2g
(1)
xxxt + 6w0g

(1)
xx + g

(1)
yt = 0,

which has solution

g(1) = eξ, ξ = kx− 2kw0

k2 + 4v0
t+(k3+12v0k)y+σ, (6.19)

where k and σ are two arbitrary parameters.
Substituting (6.12) into (6.10) and (6.11) and choosing

g(2) = g(3) = · · · = 0, then the G expansion is truncated
with a finite sum as

G = 1 + eξ,

which gives regular one-soliton solution of the NKdV
equation (1.1)

v = v0 + 2∂2x ln(1 + eξ) = v0 +
k2

2
sech2ξ/2,

w = w0 + 2∂t∂x ln(1 + eξ)

= w0 +
k2w0

k2 + 4v0
sech2ξ/2,

ξ = kx− 2kw0

k2 + 4v0
t+ γ,

(6.20)

where γ = (k3+12v0k)y+σ, and k, v0, w0 are constants.
Let w0 = 1, v0 = 0, then the solution (6.20) reads as

a kink-type solution of the NKdV-I equation (1.2)

u = ± tanh ξ/2, ξ = kx− 2

k
t+ γ.

In a similar way, taking

g(1) = eξ1 + eξ2 , ξj = kjx− 2kjw0

k2j + 4v0
t+ γj , j = 1, 2,

we get a two-soliton wave solution

v = v0 + 2∂2x ln(1 + eξ1 + eξ2 + eξ1+ξ2+A12)

w = w0 − 2∂t∂x ln(1 + eξ1 + eξ2 + eξ1+ξ2+A12),

A12 = ln

(

k1 − k2
k1 + k2

)2

.

(6.21)

In general, we can get a N-soliton solution of the NKdV
equation (1.1)

v = v0 + 2∂2x ln





∑

µj=0,1

exp(

N
∑

j=1

µjξj +

N
∑

1≤j≤N

µjµlAjl



 ,

w = w0 − ∂t∂x ln





∑

µj=0,1

exp(
N
∑

j=1

µjξj +
N
∑

1≤j≤N

µjµlAjl



 ,

Ajl = ln

(

kj − kl
kj + kl

)2

.

where the notation
∑

µj=0,1 represents all possible com-

binations µj = 0, 1, and ξj = kjx − 2kjw0

k2
j
+4v0

t + γj , j =

1, 2, . . . , N.
In the following, we discuss the soliton solutions for

NKdV-1 equation by using bilinear equation (6.16). Let
us expand F and G in the power series of a small param-
eter ε as follows

F = 1 + f (2)ε2 + f (4)ε4 + f (6)ε6 + . . .

G = g(1)ε+ g(3)ε3 + g(5)ε5 + . . .

Substituting the above equation into (6.16) and arrang-
ing each order of ε, we have

g(1)xx + v0g
(1) = 0,

g(3)xx + v0g
(3) = −(D2

x + v0)f
(2)g(1),

g(5)xx + v0g
(5) = −(D2

x + v0)(f
(2)g(3) + f (4)g(1)),

. . . . . .

(6.23)

2f
(2)
xt = (g(1))2,

2f
(4)
xt = 2g(1)g(3) −DxDtf

(2)f (2),

2f
(6)
xt = 2g(1)g(5) + 2(g(3))2 − 2DxDtf

(3)f (3),

. . . . . .

(6.24)

Let v0 = −k2, it follows from the first equation of (6.23)
and (6.24) that

g(1) = eξ, f (2) =
1

4
e2ξ, ξ = kx+

1

2k
t+ γ. (6.25)

Substituting (6.25) into the second equation of (6.23)
leads to

g(3)xx − k2g(3) = 0,

from which we may take g(3) = 0, further choose g(5) =
· · · = 0, f (4) = · · · = 0. So F and G are truncated with
a finite sum as

F = 1 +
1

4
e2ξ, G = eξ.

Finally, the formula (6.14) gives one-soliton solution of
the NKdV-1 equation (1.2)

v = 2k2sech2ξ − k2, u = sechξ.

VII. BILINEAR BÄCKLUND
TRANSFORMATION

In this section, we search for the bilinear Bäcklund
transformation and Lax pair of the NKdV equation (1.1).
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A. Bilinear Bäcklund transformation

Theorem 7. Suppose that F is a solution of the bi-
linear equation (6.8), and if G satisfying

(D2
x − λ)FG = 0,

[DtD
2
x + 2w0Dx + (4v0 + 3λ)Dt]FG = 0,

(7.1)

then G is another solution of the equation (6.8).
Proof. Let

q = 2 lnG, q̃ = 2 lnF

be two different solutions of the equation (6.10). Intro-
ducing two new variables

h = (q̃ + q)/2 = ln(FG), g = (q̃ − q)/2 = ln(F/G),

makes the function E invariant under the two fields q̃ and
q:

E(q̃)− E(q) = E(h+ g)− E(h− g)

= 8v0gxt + 4w0g2x + 2g3x,t + 4h2xgx,t

+ 4hx,tg2x + 4∂−1
x (h2xg2x,t + h2x,tg2x)

= 2∂x(Y2x,t(g, h) + 4v0Yt(g)− 2w0Yx(g))
+R(g, h) = 0,

(7.2)

where

R(g, h) = −2∂x[(h2x + g2x)gt] + 4h2xgxt − 4h2x,tgx

+ 4∂−1
x (h2xg2x,t + h2x,tg2x).

This two-field invariant condition can be regarded as a
natural ansatz for a bilinear Bäcklund transformation
and may produce some required transformations under
additional appropriate constraints.
In order to decouple the two-field condition (7.2),let us

impose a constraint so as to express R(g, h) in the form
of x-derivative of Y-polynomials. The simple possible
choice of the constraint may be

Y2x(g, h) = h2x + g2x = λ, (7.3)

which directly leads to

R(g, h) = 2λgxt + 4h2xgxt − 4h2x,tgx − 4g2xgxt = 6λgxt,
(7.4)

where h2x,t = −2gxgxt and h2x = λ− g2x are used.
Using the relations (7.2)-(7.4), we derived a coupled

system of Y-polynomials

Y2x(g, h)− λ = 0,

Y2x,t(g, h) + (4v0 + 3λ)Yt(g) + 2w0Yx(g) = 0,
(7.5)

where we prefer the second equation to be expressed in
the form of conserved quantity without integration with
respect to x. This is very useful to construct conserva-
tion laws. Apparently, the identity (6.2) directly sends

the system (7.5) to the following bilinear Bäcklund trans-
formation

(D2
x − λ)FG = 0,

[DtD
2
x + 2w0Dx + (4v0 + 3λ)Dt]FG = 0,

(7.6)

where we have integrated the second equation in the sys-
tem (7.5) with respect to x, and w0 is the corresponding
integration constant. �

B. Inverse scattering formulation

Theorem 8. The NKdV equation (1.1) admits a Lax
pair

ψ2x + vψ = λψ,

4ψ2x,t + 4vψt − 2wψx − 3wxψ = 0.
(7.7)

Proof. By the transformation v = lnψ, it follows from
the formulas (6.5) and (6.6) that

Yt(g) = ψt/ψ, Yx(g) = ψx/ψ, Y2x(g, h) = q2x + ψ2x/ψ,

Y2x,t(g, h) = 2qxtψx/ψ + q2xψt/ψ + ψ2x,t/ψ,

which make the system (7.5) linearized into a Lax pair
with parameter λ

Lψ ≡ (∂2x + q2x)ψ = λψ, (7.8)

Mψ ≡ [∂t∂
2
x + (4v0 + q2x)∂t + 2(qxt + w0)∂x + 3λ∂t]ψ,

(7.9)
or equivalently,

ψ2x + vψ = λψ,

4ψ2x,t + 4vψt − 2wψx − 3wxψ = 0,

where the equation (7.8) is used to get the second equa-
tion. One can easily verify from equations (7.8) and (7.9)
that the integrability condition

[L,M ] = q4x,t + 4(v0 + q2x)q2x,t + 2q3x(qxt + w0) = 0

exactly gives the NKdV equation (1.1) through replacing
v0 + q2x and w0 + qxt by v and w, respectively. �

VIII. DARBOUX COVARIANT LAX PAIR

In this section, we will give a kind of Darboux covari-
ant Lax pair, whose form is invariant under the gauge
transformation (4.3).
Theorem 9. The NKdV equation (1.1) possesses the

following Darboux covariant Lax pair

Lψ = λψ,

Mcovψ = 0, Mcov =M + 3∂xL,
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under the gauge transformation ψ̃ = Tψ. This is actually
equivalent to the Lax pair (2.9).
Proof. In section 4, we have shown that the gauge

transformation (4.1) maps the operator L(q) onto a sim-
ilar operator

L̃(q̃) = TL(q)T−1,

which satisfies the following covariance condition

L̃(q̃) = L(q +∆q), q̃ = q +∆q, with ∆q = 2 lnφ.

Next, we want to find a third order operator Mcov(q)
with appropriate coefficients, such that Mcov(q) is
mapped by gauge transformation (8.1) onto a similar op-

erator M̃cov(q̃), which satisfies the covariance condition

M̃cov(q̃) =Mcov(q +∆q), q̃ = q +∆q.

Suppose that φ is a solution of the following Lax pair

Lψ = λψ,

Mcovψ = 0, Mcov = 4∂t∂
2
x + b1∂x + b2∂t + b3,

(8.2)

where b1, b2 and b3 are functions to be determined. It
suffice that we require that the transformation T is re-
quired to map the operator Mcov to the similar one

TMcovT
−1 = M̃cov,

L̃2,cov = 4∂t∂
2
x + b̃1∂x + b̃2∂t + b̃3,

(8.3)

where b̃1, b̃2 and b̃3 satisfy the covariant condition

b̃j = bj(q) + ∆bj = bj(q +∆q), j = 1, 2, 3. (8.4)

It follows from (8.2) and (5.3) that

∆b1 = b̃1 − b1 = 4σt, ∆b2 = b̃2 − b2 = 8σx, (8.5)

∆b3 = b̃3 − b3 = σ∆b1 + 8σxt + b1,x, (8.6)

and σ satisfy

4σ2x,t + b̃1σx + b̃2σt + σ∆b3 + b3,x = 0. (8.7)

According to the relation (8.4), it remains to determine
b1, b2 and b3 in the form of polynomial expressions in
terms of q derivatives

bj = Fj(q, qx, qy, qxy, q2x, q2y, q2x,y, . . . ), j = 1, 2, 3

such that

∆Fj = Fj(q +∆q, qx +∆qx, qt +∆qt, . . . )

− Fj(q, qx, qt, . . . ) = ∆bj ,
(8.8)

with ∆qkx,lt = 2(lnφ)kx,lt, k, l = 1, 2, . . . , and ∆bj being
given through the relations (8.5)-(8.7).

Expanding the left hand of the equation (8.8), we ob-
tain

∆b1 = ∆F1 = F1,q∆q + F1,qx∆qx + F1,qy∆qy

+ F1,qxy
∆qxt + · · · = 4σt = 2∆qxt,

which implies that we can determine b1 up to a arbitrary
constant c1, namely,

b1 = F1(qxt) = 2qxt + c1, (8.9)

where c1 is an arbitrary constant. Proceeding in the same
way deduce the function b2 as follows

b2 = F2(q2x) = 4q2x + c2, (8.10)

where c2 is an arbitrary constant.
We see from the relation (8.6) that ∆b3 contains the

term b1,x = q2x,t, which should be eliminated such that
∆b3 admits the form (8.8). By the Lax pair (8.2), we
have the following relation

q2x,t = −σxt − 2σσt. (8.11)

Substituting (8.9) and (8.11) into (8.6) yields

∆b3 = 4σσt + 8σxt + 2q2x,t = 6σxt = 3∆q2x,t.

If choosing

b3 = F3(q2x,t) = 3q2x,t + c3, (8.12)

the third condition

∆F3 = F3,q∆q + F3,qx∆qx + F3,qt∆qt · · · = ∆b3

can be satisfied, where c3 is an arbitrary constant.
Letting c1 = −2v0, c2 = 0, c3 = w0 in (8.9), (8.10)

and (8.12), then it follows from (8.2) that we have the
following Darboux covariant evolution equation

Mcovψ = 0, Mcov = 4∂t∂
2
x + 2qxt∂x + 4q2x∂t + 3q2x,t,

which coincides with the equation (8.7). Moreover, the
relation between two operators L2,cov and L2 are related
through

Mcov =M + 3∂xL.

The compatibility condition of the Darboux covariant
Lax pair (8.2) exactly gives the NKdV equation(1.1) in
Lax representation

[Mcov, L] = q4x,t + 4(v0 + q2x)q2x,t + q3x(qxt + w0)

= vxxx + 4vwx + 2vxw = 0.

�

In the above repeated procedure, we are able to obtain
higher order operators, which are also Darboux covariant
with respect to T , to produce higher order members of
the negative order KdV hierarchy.
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IX. CONSERVATION LAWS OF NKDV
EQUATIONS

In this section, we will derive the conservation laws
in a local form for the NKdV equation (1.1) based on a
generalized Miura transformation.
Theorem 10. The NKdV equation (1.1) possesses the

following infinitely many conservation laws

Fn,t +Gn,x = 0, n = 1, 2, . . . . (9.1)

where the conversed densities Fn are recursively given by
recursion formulas explicitly

F0 = vxx − v2, F1 = −vxxx + 2vvx,

Fn = In,xx −
n
∑

k=0

IkIn−k +

n−2
∑

k=0

IkIn−2−k,x,

n = 2, 3, . . . .

(9.2)

and the fluxes Gn are

G0 = 2wI0 = 2wv, G1 = 2wI1 = −2wvx,

Gn = 2wIn, n = 2, 3, . . . .
(9.3)

Proof. For the simplicity, let us select v0 = w0 = 0 in
the transformation (6.9). We introduce a new potential
function

q2x = η + εηx + ε2η2, (9.4)

where ε is a constant parameter. Substituting (9.4) into
the Lax equation (7.10) leads to

0 = [L,M ] = (1 + ε∂x + 2ε2η)[−4(η + ε2η2)ηt

− 2(qx − εη)tηx + η2x,t],

which implies that v = q2x, w = −qxt given by (6.9) are
a solution of the NKdV equation (1.1) if η satisfies the
following equation

−4(η + ε2η2)ηt − 2(qx − εη)tηx + η2x,t − 4ηt = 0. (9.5)

On the other hand, it follows from (9.4) that

[(qx − εη)t]x = −(η + ε2η2)t.

Therefore, the equation (9.5) can be rewritten as

(η2x − η2)t + [2η(ε2η − qx)t]x = 0,

or a divergent-type form

(η2x + 2ε2ηηx − η2)t + (2ηw)x = 0 (9.6)

by replacing −qxt = w.
To proceed, inserting the expansion

η =

∞
∑

n=0

In(q, qx, qt . . . )ε
n, (9.7)

into the equation (9.4) and equating the coefficients for
power of ε, we obtain the recursion relations to calculate
In in an explicit form

I0 = q2x = v, I1 = −I0,x = −vx,

In = −In−1,x −
n−2
∑

k=0

IkIn−2−k, n = 2, 3, . . . .
(9.8)

Substituting (9.7) into (9.6) and simplifying terms in
the power of ε provide us infinitely many conservation
laws

Fn,t +Gn,x = 0, n = 1, 2, . . .

where the conversed densities Fn and the fluxes Gn are
by (9.2) and (9.3), respectively. �
Here, we already give recursion formulas (9.7) and (9.8)

to show how to generate conservation laws (9.6) based
on the first few explicitly provided. Apparently, the first
equation in conservation laws (9.6)

vxxt − 2vvt + 2wvx + 2wxv = 0

is exactly the NKdV equation (1.1)

vt + wx = 0,

wxxx + 4vwx + 2wvx = 0.

which is reduced to the NKdV equation (1.2) under the
constraints v = −uxx/u and w = u2.
In conclusion, the NKdV equation (1.1) is completely

integrable and admits bilinear Bäcklund transformation,
Lax pair and infinitely many local conservation laws.

X. QUASI-PERIODIC SOLUTIONS OF THE
NKDV EQUATION

In this section, we study quasi-periodic wave solutions
of the NKdV equation (1.1) by using bilinear Bäcklund
transformation (7.1) and bilinear formulas derived in sec-
tion 9. In fact, a quasi-periodic solution, also called
algebro-geometric solutions or finite gap solutions, which
are often obtained based on the inverse spectral the-
ory and algebro-geometric method [21, 33, 67–76]. The
algebro-geometric theory, however, needs Lax pairs and
is also involved in complicated analysis procedure on the
Riemann surfaces. It is rather difficult to directly deter-
mine the characteristic parameters of waves, such as fre-
quencies and phase shifts for a function with given wave-
numbers and amplitudes. Based on the Hirota forms,
Nakamura proposed a convenient way to find a kind of
explicit quasi-periodic solutions of nonlinear equations
[77]. For example, it does not need any Lax pair and
Riemann surface for the given nonlinear equation, and
is also able to find the explicit construction of multi-
periodic wave solutions. The method relies on the ex-
istence of the Hirota bilinear form as well as arbitrary
parameters appearing in Riemann matrix [59, 78, 79].
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A. Multi-dimensional Riemann theta functions

Let us first begin with some preliminary work about
multi-dimensional Riemann theta functions and their
quasi-periodicity. The multi-dimensional Riemann theta
function is defined by

ϑ(ζ, ε, s|τ ) =
∑

n∈ZN

exp{2πi〈ζ+ε,n+s〉−π〈τ (n+s),n+s〉},

(10.1)
where n = (n1, . . . , nN )T ∈ ZN is an integer value vec-
tor, and s = (s1, . . . , sN )T , ε = (ε1, . . . , εN)

T ∈ CN is
a complex parameter vector. ζ = (ζ1, . . . , ζN )T , ζj =
αjx+ βjt+ δj , αj , βj , δj ∈ Λ0, j = 1, 2, . . . , N are com-
plex phase variables, where x, t are ordinary real vari-
ables and θ is a Grassmann variable. The inner product
of two vectors f = (f1, . . . , fN)

T and g = (g1, . . . , gN )T

is defined by

〈f , g〉 = f1g1 + f2g2 + · · ·+ fNgN .

The matrix τ = (τij) is a positive definite and real-valued
symmetric N ×N matrix. The entries τij of the periodic
matrix τ can be considered as free parameters of the
theta function (10.1).
In this paper, we choose τ to be purely imaginary ma-

trix to make the theta function (10.1) real-valued. In
definition (10.1) for the case of s = ε = 0, we denote
ϑ(ζ, τ ) = ϑ(ζ,0,0|τ ) for simplicity. Therefore, we have
ϑ(ζ, ε,0|τ ) = ϑ(ζ + ε, τ ).
Remark 4. The above periodic matrix τ is different

from the one in the algebro-geometric approach discussed
in [15–21], where it is usually constructed on a compact
Riemann surface Γ with genus N ∈ N. One may see that
the entries in the matrix τ are not free and difficult to
be explicitly given. �
Definition 3. A function g(x, t) on CN × C is

said to be quasi-periodic in t with fundamental periods
T1, . . . , Tk ∈ C if T1, . . . , Tk are linearly dependent over
Z and there exists a function G(x,y) ∈ CN × Ck such
that

G(x, y1, . . . , yj + Tj, . . . , yk) = G(x, y1, . . . , yj , . . . , yk),
for all yj ∈ C, j = 1, . . . , k.
G(x, t, . . . , t, . . . , t) = g(x, t).

In particular, g(x, t) becomes periodic with T if and only
if Tj = mjT . �
Let’s us first see periodicity of the theta function

ϑ(ζ, τ ).
Proposition 9. [80] Let ej be the j−th column of

N ×N identity matrix IN ; τj be the j−th column of τ ,
and τjj the (j, j)-entry of τ . Then the theta function
ϑ(ζ, τ ) has the periodic properties

ϑ(ζ + ej + iτj , τ ) = exp(−2πiζj + πτjj)ϑ(ζ, τ ).

The theta function ϑ(ζ, τ ) which satisfies the condi-
tion (5.4) is called a multiplicative function. We regard

the vectors {ej , j = 1, . . . , N} and {iτj , j = 1, . . . , N}
as periods of the theta function ϑ(ζ, τ ) with multipliers
1 and exp(−2πiζj + πτjj), respectively. Here, only the
first N vectors are actually periods of the theta func-
tion ϑ(ζ, τ ), but the last N vectors are the periods of
the functions ∂2ζk,ζl lnϑ(ζ, τ ) and ∂ζk ln[ϑ(ζ+e, τ )/ϑ(ζ+

h, τ )], k, l = 1, . . . , N .

Proposition 10. Let ej and τj be defined as above
proposition 2. The meromorphic functions f(ζ) are as
follow

(i) f(ζ) = ∂2ζkζl lnϑ(ζ, τ ), ζ ∈ CN , k, l = 1, . . . , N,

(ii) f(ζ) = ∂ζk ln
ϑ(ζ + e, τ )

ϑ(ζ + h, τ )
, ζ, e, h ∈ CN , j = 1, . . . , N.

then in all two cases (i) and (ii), it holds that

f(ζ + ej + iτj) = f(ζ), ζ ∈ CN , j = 1, . . . , N,

which implies that f(ζ) is a quasi-periodic function.

B. Bilinear formulae of theta functions

To construct a kind of explicitly quasi-periodic solu-
tions of the NKdV equation (1.1), we propose some im-
portant bilinear formulas of multi-dimensional Riemann
theta functions, whose derivations are similar to the case
of super bilinear equations [79], so we just list them with-
out proofs.

Theorem 11. Suppose that ϑ(ζ, ε′,0|τ ) and
ϑ(ζ, ε,0|τ ) are two Riemann theta functions, in which
ε = (ε1, . . . , εN ), ε′ = (ε′1, . . . , ε

′
N ), and ζ = (ζ1, . . . , ζN ),

ζj = αjx + ωjt + δj, j = 1, 2, . . . , N . Then opera-
torsDx, Dt and S exhibit the following perfect properties
when they act on a pair of theta functions

Dxϑ(ζ, ε
′,0|τ )ϑ(ζ, ε,0|τ )

=
∑

µ

∂xϑ(2ζ, ε
′ − ε,−µ/2|2τ )|ζ=0ϑ(2ζ, ε

′ + ε,µ/2|2τ ),

(10.2)
where µ = (µ1, . . . , µN ), and the notation

∑

µ represents

2N different transformations corresponding to all possible
combinations µ1 = 0, 1; . . . ;µN = 0, 1.

In general, for a polynomial operator H(Dx, Dt) with
respect to Dx and Dt, we have the following useful for-
mula

H(Dx, Dt)ϑ(ζ, ε
′,0|τ )ϑ(ζ, ε,0|τ )

=
∑

µ

C(ε′, ε,µ)ϑ(2ζ, ε′ + ε,µ/2|2τ ), (10.3)

in which, explicitly
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C(ε, ε′,µ) =
∑

n∈ZN

H(M) exp [−2π〈τ (n− µ/2),n− µ/2〉 − 2πi〈n− µ/2, ε′ − ε)] . (10.4)

where we denote M = (4πi〈n − µ/2,α〉, 4πi〈n −
µ/2,ω〉).
Remark 6. The formulae (10.3) and (10.4) show that

if the following equations are satisfied

C(ε, ε′,µ) = 0, (10.5)

for all possible combinations µ1 = 0, 1;µ2 =
0, 1; . . . ;µN = 0, 1, in other word, all such combinations
are solutions of equation (10.5), then ϑ(ζ, ε′,0|τ ) and
ϑ(ζ, ε,0|τ ) are N -periodic wave solutions of the bilinear
equation

H(Dx, Dt)ϑ(ζ, ε
′,0|τ )ϑ(ζ, ε,0|τ ) = 0.

We call the formula (10.5) constraint equations, whose
number is 2N . This formula actually provides us an uni-
fied approach to construct multi-periodic wave solutions
for supersymmetric equations. Once a supersymmetric
equation is written bilinear forms, then its multi-periodic
wave solutions can be directly obtained by solving system
(10.5).
Theorem 12. Let C(ε, ε′,µ) and H(Dx, Dt) be given

in Theorem 10, and make a choice such that ε′j − εj =
±1/2, j = 1, . . . , N . Then
(i) If H(Dx, Dt) is an symmetric operator, i. e.

H(−Dx,−Dt) = H(Dx, Dt),

then C(ε, ε′,µ) vanishes automatically for the case when

∑N
j=1 µj is an odd number, namely

C(ε, ε′,µ)|µ = 0, for

N
∑

j=1

µj = 1, mod 2.

(ii) If H(Dx, Dt) is a skew-symmetric operator, i.e.

H(−Dx,−Dt) = −H(Dx, Dt),

then C(ε, ε′,µ) vanishes automatically for the case when
∑N
j=1 µj is an even number, namely

C(ε, ε′,µ)|µ = 0, for

N
∑

j=1

µj = 0, mod 2.

Proposition 11. Let ε′j − εj = ±1/2, j = 1, . . . , N .
Assume H(Dx, Dt) is a linear combination of even and
odd functions

H(Dx, Dt) = H1(Dx, Dt) +H2(Dx, Dt),

where H1 is even and H2 is odd. In addition, C(ε, ε′,µ)
corresponding (10.8) is given by

C(ε, ε′,µ) = C1(ε, ε
′,µ) + C2(ε, ε

′,µ),

where

C1(ε, ε
′,µ) =

∑

n∈ZN

H1(M) exp [−2π〈τ (n− µ/2),n− µ/2〉 − 2πi〈n− µ/2, ε′ − ε)] ,

C2(ε, ε
′,µ) =

∑

n∈ZN

H2(M) exp [−2π〈τ (n− µ/2),n− µ/2〉 − 2πi〈n− µ/2, ε′ − ε)] .

Then

C(ε, ε′,µ) = C2(ε, ε
′,µ) for

N
∑

j=1

µj = 1, mod 2,

C(ε, ε′,µ) = C1(ε, ε
′,µ), for

N
∑

j=1

µj = 0, mod 2.

The theorem 2 and corollary 1 are very useful to deal
with coupled super-Hirota bilinear equations, which will
be seen in the following section 10.

By introducing differential operators

∇ = (∂ζ1 , ∂ζ2 , . . . , ∂ζN ),

∂x = α1∂ζ1 + α2∂ζ2 + · · ·+ αN∂ζN = α · ∇,
∂t = β1∂ζ1 + β2∂ζ2 + · · ·+ βN∂ζN = β · ∇,
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then we have

∂kx∂
l
tϑ(ζ, τ ) = (α · ∇)k(β · ∇)lϑ(ζ, τ ), k, l = 0, 1, . . . .

C. One-periodic waves and asymptotic analysis

Let us first construct one-periodic wave solutions of the
NKdV equation (1.1) by using bilinear Bácklund trans-
formation (7.6). As a simple case of the theta function
(10.1) with N = 1, s = 0, we choose F and G as follows

F = ϑ(ζ, 0, 0|τ) =
∑

n∈Z

exp(2πinζ − πn2τ),

G = ϑ(ζ, 1/2, 0|τ) =
∑

n∈Z

exp(2πin(ζ + 1/2)− πn2τ)

=
∑

n∈Z

(−1)n exp(2πinζ − πn2τ ),

(10.6)

where ζ = αx + βt + δ is the phase variable, and τ > 0
is a positive parameter.

By Theorem 6, in section 9, the operator H1 = D2
x−λ

in bilinear equation (7.6) is symmetric, and its corre-
sponding constraint equation in the formula (10.5) au-
tomatically vanishes for µ = 1. Meanwhile, H2 =
DtD

2
x − 2w0Dx + (4v0 + 3λ)Dt are skew-symmetric, and

its corresponding constraint equation automatically van-
ishes for µ = 0. Therefore, the Riemann theta function
(10.6) is a solution of the bilinear equation (7.6), provided
the following equations

∑

n∈Z

{[4πi(n− µ/2)]2α2 − λ} exp(−2πτ(n− µ/2)2 + πi(n− µ/2))|µ=0 = 0,

∑

n∈Z

{[4πi(n− µ/2)]3α2β + 8πi(n− µ/2)αw0 + 4πi(n− µ/2)(4v0 + 3λ)β}

× exp(−2πτ(n− µ/2)2 + πi(n− µ/2))|µ=1 = 0.

(10.7)

hold.
We introduce the notations by

ρ = e−πτ/2,

ϑ1(ζ, ρ) = ϑ(2ζ, 1/4,−1/2|2τ)
=
∑

n∈Z

ρ(2n−1)2 exp[4iπ(n− 1/2)(ζ + 1/4)],

ϑ2(ζ, ρ) = ϑ(2ζ, 1/4, 0|2τ) =
∑

n∈Z

ρ4n
2

exp[4iπn(ζ + 1/4)],

then, the equation (10.7) can be written as a linear sys-
tem about β and λ

ϑ′′2α
2 − ϑ2λ = 0,

ϑ′′′1 α
2β + 2ϑ′1αw0 + (4v0 + 3λ)ϑ′1β = 0,

(10.8)

where the derivative value of ϑj(ζ, ρ) at ζ = 0 is denoted
by simple notations

ϑ′j = ϑ′j(0, ρ) =
dϑj(ζ, ρ)

dζ
|ζ=0, j = 1, 2.

It is not hard to see that the system (10.8) admits the
following solution for the NKdV equation (1.1)

λ =
ϑ′′2α

2

ϑ2
, β =

−2ϑ′1ϑ2w0

ϑ′′′1 ϑ2α
2 + 4ϑ′1ϑ2v0 + 3ϑ′1ϑ

′′
2α

2
.

(10.9)

So, we obtain the following one-periodic wave solution

V = v0+2∂2x lnϑ(ζ, 0, 0|τ), W = w0+2∂x∂t lnϑ(ζ, 0, 0|τ),
(10.10)

where ζ = αx+βt+δ and parameter β is given by (10.9),
while other parameters α, τ, v0, w0 are arbitrary. Among
the four parameters, the two ones α and τ completely
dominate a one-periodic wave.
In summary, one-periodic wave (10.10) is one-

dimensional and has two fundamental periods 1 and iτ
in phase variable ζ (see Figure 3).
In the following theorem, we will see that the one-

periodic wave solution (10.10) can be broken into soliton
solution (6.20) under a long time limit and their relation
can be established as follows.
Theorem 13. In the one-periodic wave solution

(10.6), the parameter β is given by (10.9), other param-
eters are chosen as

α =
k

2πi
, δ =

γ + πτ

2πi
, (10.11)

where k1 and γ are the same as those in (6.20). Then
under a small amplitude limit, one-periodic wave solution
(10.10) can be broken into the single soliton solutions
(6.20), that is,

V −→ v, W −→ w, as ρ→ 0. (10.12)
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FIG. 3: (Color online) One-periodic wave for the NKdV equa-
tion (1.1) with parameters: α = 0.6, τ = 2, v0 = 0.5, w0 = 1.
(a) and (b) show that every one-periodic wave is periodic
in both x and y directions. (c) Perspective view of the wave.
(d) Overhead view of the wave, with contour plot shown. The
bright hexagons are crests and the dark hexagons are troughs.

In particular, in the case of v0 = 0, w0 = 1, the one-
periodic solution (10.5) tends to the kink-type soliton
solution (5.2), that is,

V −→ ṽI , W −→ w̃I , as ρ→ 0. (10.13)

Proof. Here we use the system (10.8) to analyze asymp-
totic properties of the one-periodic solution (10.10). Let
us explicitly expand the coefficients of the system (10.8)

as follows

ϑ′1 = −4πρ+ 12πρ9 + . . . ,

ϑ′′′1 = 16π3ρ+ 432π3ρ9 + . . . ,

ϑ2 = 1 + 2ρ4 + . . . ,

ϑ′′2 = 32π2ρ4 + . . . ,

(10.14)

Suppose that the solution of the system (10.8) has the
following form

λ = λ0 + λ1ρ+ λ2ρ
2 + · · · = λ0 + o(ρ),

β = β0 + β1ρ+ β2ρ
2 + · · · = β0 + o(ρ).

(10.15)

Substituting the expansions (10.14) and (10.15) into
the system (10.8) and letting ρ → 0, we immediately
obtain the following relation

λ0 = 0, β0 =
−αw0

−2π2α2 + 2v0
. (10.16)

Combining (10.11) and (10.16) leads to

λ −→ 0,

2πiβ −→ 2πiβ0 =
−2πiαw0

−2π2α2 + 2v0
=

−2kw0

k2 + 4v0
, as ρ→ 0,

or equivalently rewritten as

ζ̂ = 2πiζ − πτ = kx+ 2πiβt+ γ

−→ kx− 2kw0

k2 + 4v0
t+ γ = ξ, as ρ→ 0.

(10.17)

It remains to verify that the one-periodic wave (10.11)
has the same form as the one-soliton solution (6.20) under
the limit ρ → 0. Let us expand the function F in the
following form

F = 1 + ρ2(e2πiζ + e−2πiζ) + ρ8(e4πiζ + e−4πiζ) + . . . .

It follows from (10.11) and (10.17)

F = 1 + eζ̂ + ρ4(e−ζ̂ + e2ζ̂) + ρ12(e−2ζ̂ + e3ζ̂) + . . .

−→ 1 + eζ̂ −→ 1 + eξ, as ρ→ 0.
(10.18)

So, combining (10.11) and (10.18) yields

v −→ v0 + 2∂xx ln(1 + eξ),

w −→ w0 + 2∂t∂x ln(1 + eξ), as ρ→ 0.

Thus, we conclude that the one-periodic solution (10.10)
may go to a bell-type soliton solutions (6.20) as the am-
plitude ρ→ 0. �

D. Two-periodic waves and asymptotic properties

Let us now consider two-periodic wave solutions to the
NKdV equation (1.1). For the case of N = 2, s = 0, ε =
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1/2 = (1/2, 1/2) in the Riemann theta function (10.1),
we choose F and G as follows

F = ϑ(ζ,0,0|τ ) =
∑

n∈Z2

exp{2πi〈ζ,n〉 − π〈τn,n〉}

G = ϑ(ζ,1/2,0|τ ) =
∑

n∈Z2

exp{2πi〈ζ + 1/2,n〉 − π〈τn,n〉}

=
∑

n∈Z2

(−1)n1+n2 exp{2πi〈ζ,n〉 − π〈τn,n〉}

(10.19)
where n = (n1, n2) ∈ Z2, ζ = (ζ1, ζ2) ∈ C2, ζi =
αjx+βjt+δj , j = 1, 2, and α = (α1, α2), β = (β1, β2) ∈

C2. The matrix τ is a positive definite and real-valued
symmetric 2× 2 matrix that is,

τ = (τij)2×2, τ12 = τ21, τ11 > 0, τ22 > 0, τ11τ22−τ212 > 0.

According to Theorem 5, constraint equations associ-
ated with H1 = D2

x−λ and H2 = DtD
2
x−2w0Dx+(4v0+

3λ)Dt automatically vanish for (µ1, µ2) = (0, 1), (1, 0)
and for (µ1, µ2) = (0, 0), (1, 1), respectively. Hence, mak-
ing the theta functions (10.19) satisfy the bilinear equa-
tion (7.6) gives the following constraint equations

∑

n1,n2∈Z

[

−16π2〈n− µ/2,α〉2 − λ
]

exp{−2π〈τ (n− µ/2),n− µ/2〉

+ πi

2
∑

j=1

(nj − µj/2)}|µ=(µ1,µ2) = 0, for (µ1, µ2) = (0, 0), (1, 1) = 0,

∑

n1,n2∈Z

[

−64π3i〈n− µ/2,α〉2〈n− µ/2,β〉+ 8πi〈n− µ/2,α〉w0 + 4πi〈n− µ/2,β〉(4v0 + 3λ)
]

× exp{−2π〈τ (n− µ/2),n− µ/2〉+ πi

2
∑

j=1

(nj − µj/2)}|µ=(µ1,µ2) = 0,

for (µ1, µ2) = (0, 1), (1, 0).

(10.20)

Next, let us introduce the following notations

ρkl = e−πτkl/2, k, l = 1, 2,ρ = (ρ11, ρ12, ρ22)

ϑj(ζ,ρ) = ϑ(2ζ,1/4,−sj/2|2τ) =
∑

n1,n2∈Z

exp{4πi〈ζ + 1/4,n− sj/2〉}
2
∏

k,l=1

ρ
(2nk−sj,k)(2nj−sj,l)
kl ,

sj = (sj,1, sj,2), j = 1, 2, s1 = (0, 1), s2 = (1, 0), s3 = (0, 0), s4 = (1, 1)

then the system (10.20) can be rewritten as a linear sys-
tem

(α · ∇)2ϑj − λϑj = 0, j = 3, 4, (10.21)

(β · ∇)(α · ∇)2ϑj + 2w0(α · ∇)ϑj

+ (4v0 + 3λ)(β · ∇)ϑj = 0, j = 1, 2,
(10.22)

where ϑj represent the derivative values of functions
ϑj(ζ,ρ) at ζ1 = ζ2 = 0.
The system (10.22) admits a unique solution

(

β1
β2

)

=

[

∂(f, g)

∂(ζ1, ζ2)

]−1(
2w0(α · ∇)ϑ1
2w0(α · ∇)ϑ2

)

(10.23)

where ∂(f,g)
∂(ζ1,ζ2)

is the Wronskinan matrix given by

∂(f, g)

∂(ζ1, ζ2)
=

(

∂ζ1f ∂ζ2f
∂ζ1g ∂ζ2g

)

,

f = [(α · ∇)2 + 4v0 + 3λ]ϑ1,

g = [(α · ∇)2 + 4v0 + 3λ]ϑ2.

With the help of the above (β1, β2), we are able to get a
two-periodic wave solution to the NKdV equation (1.1)

V = v0 + ∂2x lnϑ(ζ,0,0|τ ), W = w0 + ∂x∂tϑ(ζ,0,0|τ ),
(10.24)

where α1, α2, τ12, δ1 and δ2 are arbitrary parameters,
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FIG. 4: (Color online) Two-periodic wave for the NKdV equa-
tion (1.1). (a) and (b) show that every one-periodic wave is
periodic in both x- and y-directions. (c) Perspective view of
the wave. (d) Overhead view of the wave, with contour plot
shown. The bright hexagons are crests and the dark hexagons
are troughs.

while other parameters β1, β2 and τ11, τ22 are given by
(10.23) and (10.21), respectively.

In summary, the two-periodic wave (10.24) is a direct
generalization of two one-periodic waves. Its surface pat-
tern is two-dimensional with two phase variables ζ1 and
ζ2. The two-periodic wave (10.24) has 4 fundamental pe-
riods {e1, e2} and {iτ1, iτ2} in (ζ1, ζ2), and is spatially
periodic in two directions ζ1, ζ2. Its real part is not peri-
odic in θ1 direction, while its imaginary part and modulus
are all periodic in both x and t directions.

Finally, we study the asymptotic properties of the two-
periodic solution (10.24). In a similar way to Theorem
5, we figure out the relation between the two-periodic
solution (10.24) and the two-soliton solution (6.21) as

follows.
Theorem 14. Assume that (β1, β2) is a solution of

the system (10.22), and in the two-periodic wave solution
(10.24), parameters αj , δj , τ12 are chosen as

αj =
kj
2πi

, δj =
γj + πτjj

2πi
, τ12 = −A12

2π
, j = 1, 2,

(10.25)
where kj , γj , j = 1, 2 and A12 are those given in (6.21).
Then, we have the following asymptotic relations

λ −→ 0, ζj −→
ηj + πτjj

2πi
, j = 1, 2,

F −→ 1 + eη1 + eη2 + eη1+η2+A12 , as ρ11, ρ22 → 0.
(10.26)

So, the two-periodic wave solution (10.24) just tends to
the two-soliton solution (6.21) under a limit condition

V −→ v, W −→ w, as ρ11, ρ22 → 0.

Proof. Using (10.20), we may expand the function F
in the following explicit form

F = 1 + (e2πiζ1 + e−2πiζ1)e−πτ11 + (e2πiζ2 + e−2πiζ2)e−πτ22

+(e2πi(ζ1+ζ2) + e−2πi(ζ1+ζ2))e−π(τ11+2τ12+τ22) + . . .

Furthermore, adopting (10.25) and making a transforma-
tion we infer that

F = 1 + eζ̂1 + eζ̂2 + eζ̂1+ζ̂2−2πτ12 + ρ411e
−ζ̂1

+ρ422e
−ζ̂2 + ρ411ρ

4
22e

−ζ̂1−ζ̂2−2πτ12 + . . .

−→ 1 + eζ̂1 + eζ̂2 + eζ̂1+ζ̂2+A12 , as ρ11, ρ22 → 0,

where ζ̂j = αjx+ β̂jt+ δj, j = 1, 2, and β̂j = 2πiβj , j =
1, 2.
Now, we need to prove

β̂j −→
−2kjw0

k2j + 4v0
, ζ̂j −→ ξj , j = 1, 2, as ρ11, ρ22 → 0.

(10.27)
As in the case of N = 1, the solution of the system

(10.23) has the following form

β1 = β1,0 + β1,1ρ11 + β2,2ρ22 + o(ρ11, ρ22),

β2 = β2,0 + β2,1ρ11 + β2,2ρ22 + o(ρ11, ρ22),

λ = λ0 + λ1ρ11 + λ2ρ22 + o(ρ11, ρ22).

(10.28)

Expanding functions ϑj , j = 1, 2, 3, 4 in equations
(10.21) and (10.22) with substitution of assumption
(10.28), and letting ρ11, ρ22 −→ 0 , we will obtain

λ0 = 0,

16πi(−π2α2
1 + v0)β1,0 − 8πiw0α1 = 0,

16πi(−π2α2
2 + v0)β2,0 − 8πiw0α2 = 0.

(10.29)

Using (10.28) and (10.29), we conclude that

λ = o(ρ11, ρ22) −→ 0,

βj =
−2kjw0

k2j + 4v0
+ o(ρ11, ρ22) −→

−2kjw0

k2j + 4v0
, as ρ11, ρ22 → 0,
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and therefore we have (10.26). So, the two-periodic wave
solution (10.24) tends to the two-soliton solution (6.21)
as ρ11, ρ22 → 0. �
In this paper, we only consider one- and two-periodic

wave solutions of the NKdV equation (1.1). There are
still certain computation difficulties in the calculation for
the case of N > 2, which will be studied in the future.
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