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The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field
gradients as well as in the presence of well developed magnetohydrodynamic turbulence. For this
reason in such conditions the magnetic moment µ is no longer expected to be constant. This can
influence particle acceleration and have considerable implications in many astrophysical problems.

Starting with the resonant interaction between ions and a single parallel propagating electro-
magnetic wave, we derive expressions for the magnetic moment trapping width ∆µ (defined as the
half peak-to-peak difference in the particle magnetic moment) and the bounce frequency ωb. We
perform test-particle simulations to investigate magnetic moment behavior when resonances over-
lapping occurs and during the interaction of a ring-beam particle distribution with a broad-band
slab spectrum.

We find that the changes of magnetic moment and changes of pitch angle are related
when the level of magnetic fluctuations is low, δB/B0 = (10−3, 10−2), where B0 is the
constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation
values and its effect on pitch angle is the isotropization of the distribution function f(α). This is
a transient regime during which magnetic moment distribution f(µ) exhibits a characteristic one-
sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance
〈(∆z)2〉 grows linearly in time as in normal diffusion. With strong fluctuations f(α) isotropizes
completely, spatial diffusion sets in and f(µ) behavior is closely related to the sampling of the
varying magnetic field associated with that spatial diffusion.
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I. INTRODUCTION

Magnetic moment µ conservation is an important topic in plasma physics. Many commonly used theories that
describe particle motion in perturbed magnetic fields assume that particle magnetic moment is on average constant.
When µ is not conserved, the associated effects, such as particle energization, can have a bearing on astrophysical
phenomena such as coronal heating, cosmic ray transport, temperature anisotropies in the solar wind [1] and energy
release by magnetic reconnection [2]. Furthermore µ-conservation is strictly related to particle confinement in plasma
machines and dynamically chaotic systems [3]. The conditions that guarantee conservation of µ are well
understood in ideal circumstances (e.g., Ref. [4]). However the various conditions that can lead to
significant levels of nonconservation remain the subject of ongoing discussion, especially in turbulent
systems, with potentially major impact on understanding plasma dissipation and related topics. Recent
studies have clarified some aspects of this problem [2, 5].
To provide additional clarification of this issue, in this paper we study magnetic moment conservation for charged

particles in presence of a single electromagnetic wave as well as in presence of turbulent magnetic fields having one
dimensional spectra comparable to those measured in the solar wind. The goal is to established the validity range of
the adiabatic invariance and the key mechanisms that regulate magnetic moment non-conservation.
The guiding center approximation [4] splits charged particle motion into guiding center motion and the gyromotion

around it. When analyzing motion in nonuniform electromagnetic fields, it is desirable to neglect the rapid and
relatively uninteresting gyromotion, focusing instead on the far slower motion of the guiding center. Averaging the
particle equation of motion over the gyrophase, we obtain a reduced equation that describes the guiding center motion.
In the non-relativistic case the equation of motion of the guiding center in the direction parallel to the magnetic field
reads

dp‖

dt
= −µ∇‖B + qE‖, (1)

where particle magnetic moment is defined as µ = v2⊥/B and ∇‖ = (B̂ · ∇) is the spatial derivative along the field
direction. In the perpendicular direction the guiding center drifts with the velocity

vD =
F×B

qB2
, (2)

where F = [qE−µ∇B− (mv2‖)∇‖B] is the total force acting on the guiding center, averaged over a gyroperiod, in the

(non-inertial) frame co-moving with the guiding center. Therefore, as long as a particle moves through slowly varying
electric and magnetic fields, its guiding center behaves like a particle with a magnetic moment µ, which is conserved.
This approximation is valid when the smallest length-scales of the electromagnetic fields are much larger than

the particle’s Larmor radius. This corresponds to the well-known Born-Oppenheimer approximation in quantum
mechanics. This description of particle motion in a non-uniform magnetic field is also useful for numerical simulations.
Indeed direct simulations of kinetic equations (Vlasov, Boltzmann) with a large magnetic field require the resolution
of small spatial and time scales associated with gyration about the magnetic field. This difficulty is alleviated by
approaches such as the guiding center approximation, or gyrokinetics, that make use of µ-conservation, to provide
approximate models for particle motion in a strong magnetic field. However, in the presence of turbulence the
assumption of slow variation of the magnetic field over the particle Larmor radius can break down. Turbulent
magnetic fluctuations are observed in space plasmas in practically all environments and at all scales. Furthermore
collisionless wave-particle interactions can introduce dissipation processes that act to change magnetic moment. In
such case the validity of the guiding center theory might be questioned.
When the amplitude of the magnetic fluctuations is lower than that of the mean magnetic field (averaged over

the fluctuations time-scale), a perturbation approach called the quasilinear approximation is applicable [6–8]. In this
case the resonant fluctuations make the dominant contribution to particle scattering. The resonance condition for
wave-particle interaction is given by:

ω − k‖v‖ = nΩ (3)

where ω is the wave frequency, k‖ and v‖ are respectively the wavevector and the particle velocity components along
the mean magnetic field B0, and Ω = qB/m is the particle gyrofrequency. Landau resonance [9] is found at n = 0,
while n = ±1, ±2, . . . are the cyclotron resonances. In linear theory these resonances are represented by delta
functions. In the presence of well-developed magnetohydrodynamic turbulence we expect the discrete resonances to
be significantly broadened due to the rapid decorrelation of the wave’s phases in strong turbulence [10–12].
The particle reaction to the perturbation is always periodic except when condition (3) is satisfied. In this case the

perpendicular electric force due to the wave remains in phase with the particle cyclotron motion and particle reaction
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is secular or resonant and, over short times, non-oscillatory. The secular electric force acting on a given particle is
constant over a particle gyroperiod, so that the magnetic moment is no longer conserved.
Charged particles are scattered by their interaction with the waves and undergo pitch angle diffusion. The pitch

angle, θ = arctan(v⊥/v‖), is the angle between the direction of the magnetic field and the particle’s helical trajectory.
Scattering from magnetic fluctuations causes the distribution of pitch angle cosine, α = v‖/|v|, to become isotropic.
The familiar formulation of pitch angle scattering involves computation of a Fokker-Planck coefficient,
which under suitable conditions satisfies an adiabatic approximation [6, 13, 14]. For cosmic ray diffu-
sion in isotropic magnetostatic turbulence[15], the limits of validity of this approximation have been
explored.
The magnetic moment, µ, is formally related to the time averages of the cosine of pitch angle by:

µ ∼ v2⊥
|B| =

v2

|B| (1− α2) (4)

We therefore expect the behavior of the magnetic moment to be strongly related to pitch angle behavior. A comment
on the historical connection between magnetic moment changes and pitch angle scattering is in order.
Ref. [16] showed that the Landau resonance (in Eq. 3) is connected with violation of the first adiabatic
invariant. In fact, the general existence of a delta Dirac function in pitch angle scattering corresponds
to the prediction of the quasilinear approximation for the contribution of mirroring to pitch angle
scattering. The fact that mirroring exhibits itself as a delta function is a clear indication that this
particular pitch-angle scattering mechanism is misordered within the the quasilinear theory, that
assumed the effects of the random field on the motion of particles to be of the second order in the
random field strength.
Recently Ref. [5], studied plasma heating by examining charged test particles in three-dimensional

numerical simulations of weakly compressible magnetohydrodynamic turbulence. This study found
systematic changes in the standard deviation of the magnetic moment distribution function both
for high-gyrofrequency (ω ≪ Ω) and small-gyrofrequency (ω ∼ Ω) particles. This was attributed to
resonance broadening in the nonlinear turbulence. The important issue of parallel- vs perpendicular-
heating was a focus in Ref. [5].
In the present paper the emphasis is not on heating or realistic three dimensional turbulence spectra,

but rather on the relationship between velocity space pitch-angle scattering and magnetic moment
changes. We are especially interested in how these two distinct (but related) quantities separately
approach a diffusive limit. Pitch angle scattering is known to be dominated by parallel resonances,
and is therefore sensitive to the bandwidth of the turbulence [17]. To address this issue we therefore
adopted more simplified models, but with realistically large bandwidth, to gain a basic understanding
of the conditions for the onset of magnetic moment non-conservation.

II. STOCHASTIC MOTION, TRAPPING WIDTH AND RESONANCE OVERLAPPING

Wave-particle interactions usually involve multiple resonances. Particle motion is substantially different depending
on whether these resonances overlap or not. Numerical simulations show a complex behavior that cannot be ap-
proached analytically, e.g., it is not possible to write an equation for the evolution of particles distributions when two
resonances overlap [18]. Such motions in the presence of overlapping resonances are commonly labeled stochastic.
It is important to distinguish between two different kinds of stochasticity. Wave-particle interaction in the presence

of uncorrelated small amplitude electromagnetic waves or plasma turbulence is called extrinsically diffusive [19]. In
this case the regular phase space structure for a charged particle interacting resonantly with an electromagnetic
wave is perturbed by neighboring uncorrelated waves. This leads to extrinsic stochasticity and diffusive behavior.
On the other hand nonlinear systems, such as a particle interacting resonantly with a large amplitude obliquely
propagating (with respect to B0) electromagnetic plasma wave, can exhibit intrinsic stochasticity. Indeed, when the
wave amplitude is sufficiently large, the resonances at the gyrofrequency harmonics are sufficiently broadened that
they overlap with adjacent primary resonances. Therefore particles interacting even with a single monochromatic
wave may exhibit intrinsically stochastic and diffusive behavior [20]. This is the regime of nonlinear diffusion and
irreversible chaotic mixing of orbits.
Because one of the main hypotheses of quasilinear theory is that particles dynamics is adequately modeled by

their unperturbed trajectories, the quasilinear timescale τc must be much smaller than the timescale for the onset of
nonlinear orbit effects τnl [cf. 21–23]:

τc ≪ τnl ∼
1

ωb
, (5)
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Arbitrary length scale λ
Alfvén speed vA
Unit transit time τA = λ/vA
Magnetic field B0 =

√
4πρ vA

Electric field En = (vA/c)B0 = v2A
√
4πρ/c

TABLE I. Characteristic physical quantities.

where ωb is the bounce frequency. This means that the turbulent spectrum should be broad enough so that the typical
timescale for a charged particle to interact with a resonant wave-packet would be much less than its typical bounce
time, τb = 2π/ωb, in a monochromatic wave at the characteristic wavenumber and frequency of the wave-packet. The
bounce time, τb, for a particle in resonance with an electromagnetic wave is proportional to its oscillation period in
the pseudo-potential well governing the resonant wave-particle interaction [20]. This interaction can be approximated
by a pendulum Hamiltonian in the vicinity of the resonance point.
Particles in resonance with a single finite amplitude fluctuation undergo a finite amplitude and long period oscil-

lations, which can lead to a variety of interesting nonlinear effects (see e.g., Ref. [24] and Ref. [25]).
This is the so-called trapping width, ∆v‖, given by the half peak-to-peak difference in the particle velocity parallel
component. The trapping width and the bounce frequency for a nonrelativistic particle interacting resonantly with
an electromagnetic wave are given by Equations (5a)–(5c) of Ref. [25]. These approximate expressions for ∆v‖ and
ωb yield considerable physical insight into the diffusion process [23] when used in conjunction with the quasilinear
diffusion coefficient.

III. MAGNETIC MOMENT TRAPPING WIDTH

From the trapping width, ∆v‖, and bounce frequency, ωb, computed by Ref. [23] for the case of a circularly polarized
electromagnetic wave (see Appendix), it is possible to derive the pitch angle trapping half width as:

∆α =
∆v‖

v
= 2

[

(1− α2)1/2|α|δB
B0

]1/2

(6)

As magnetic moment µ is related to α by Eq. (4), we can write the trapping width for the magnetic moment as:

∆µ = 2α∆α = 4α

[

(1− α2)1/2|α|δB
B0

]1/2

(7)

These expressions apply to a circularly polarized wave. From Eq. (7) we expect that µ continues to be a good adiabatic
invariant when resonances are not present or when a particle interacts with extremely small amplitude waves.

IV. MODEL AND GOVERNING EQUATIONS

We investigate magnetic moment behavior first during the resonant interaction between one ion and a circularly
polarized magnetic wave, then when resonance overlapping occurs and finally during the interaction between a distri-
bution of particles and a broad-band turbulent spectrum. Because some of our normalization quantities are expressed
in terms of typical time and length scales of the turbulence slab model [6, 17], we first give a general summary of the
slab model.
For the general one dimensional (1D) slab description, turbulence is made up of a sum of right and left handed

circularly polarized nondispersive plane Alfvén waves propagating in the parallel direction. The magnetic field fluc-
tuations are perpendicular to both the wave vector and the mean field. The fields are assumed to be magnetostatic.
This amounts to the auxiliary assumption that the average particle speed is well in excess of the phase speed of the
underlying linear wave mode. We ignore nonlinear wave-wave couplings in the spirit of quasilinear theory [see e.g.,
26–28].
Considering Alfvén waves propagating with ω/k = ω/k‖ ≃ ±vA, the magnetostatic approximation implies |v| ≫ vA

(strictly |v‖| ≫ vA). Since particle energy is conserved in a frame moving at the parallel component of the phase
velocity of the wave (ω/k‖), quasilinear theory [26] implies:

(v‖ − ω/k‖)
2 + v⊥

2 = const.
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Because of the magnetostatic assumption, particle energy is conserved, i.e., energy diffusion in forbidden and in
velocity space the resonant interaction diffuses pitch angle and gyrophase only. Finally, we ignore all inter-particle
correlations resulting from their mutual interaction through their microfields (e.g.,Coulomb collisions, Debye shielding,
and polarization). Furthermore the feedback of the particles on the macroscopic fields is ignored, i.e., we consider
only test particles in prescribed macroscopic magnetostatic fields. By virtue of the inequality |v‖| ≫ vA, the turbulent
electric field of the order (δB/B0)vAB0 is negligible compared to the motional electric field of the particle, v‖B0.
The dispersionless hypothesis rules out phase mixing and, hence, phase decorrelation due to this process. Conse-

quently the only way for a particle to see a “wavepacket” phase-decorrelate is to traverse an autocorrelation length
of the turbulence [29]. The autocorrelation time in this case is given by [23]

τc =
1

|∆(ω − k‖v‖)|
=

1

|v‖∆k‖|
≃ λc

|v‖|
, (8)

where λc is the turbulence correlation length.
The behavior of a test particle is described by its time dependent position r(t) and three-dimensional velocity v(t),

that are advanced according to dr/dt = v and the Lorentz force equation:

m
dv

dt
= q

[

E+
v

c
×B

]

(9)

In order to render the equations non-dimensional, we use the characteristic quantities listed in Table I, where τA is
the Alfvén crossing time, vA is the Alfvén velocity, λ = lz is the turbulence coherence length related to the turbulence
correlation length λc (λc = 0.747lz for our particular slab configuration [30]). For the static case also the light speed
may be used as a characteristic quantity [31]. The introduction of an Alfvén speed in our test particle model, where
the waves are treated as static, may appear rather artificial. However, the magnetostatic assumption is valid here
provided that |v‖| ≫ vA and we introduce vA in anticipation of future work where we will drop the magnetostatic
hypothesis.
With our choice for the characteristic quantities (Table I) the dimensionless equations of motion of our charged test

particles are given by:

dr

dt
= v (10)

dv

dt
= β(E+ v ×B) (11)

Here β = ΩτA [cf. α parameter in Ref. 32] couples particle and field spatial and temporal scales and provides a
particularly useful means to relate our numerical experiments to space and astrophysical plasmas. In general in a
turbulent collisionless plasma the bandwidth of the inertial range fluctuations may extend from large fluctuations at
the correlation scale, λc, to small fluctuations at the ion inertial scale. In this case β ≫ 1 and the turbulent time-scales
are much slower than the typical particle gyroradius [33].
The resonant condition for the static case in terms of β is given by

kresλ =
nβ

α(v/vA)
=

nβ

(v‖/vA)
(12)

Time is advanced through a fourth-order Runge-Kutta integration method with an adaptive time-step [pp. 708-716
of Ref. 34].

V. NUMERICAL SIMULATIONS

Particles are loaded randomly in space at t = 0 throughout a one-dimensional simulation box of length L. The fields
are described in the following sections. In spherical coordinates, with the polar axis along the z-direction parallel to
the mean magnetic field of strength B0, particle velocity components are:

vx = v sin θ cosφ vy = v sin θ sinφ vz = v cos θ (13)

Particles initial velocities are randomly distributed in the gyrophase φ between [0 : 2π], while the velocity magnitude
v and pitch angle θ are determined by the particular numerical experiment.
Typical particle velocities used in our simulations are 10vA and 100vA, satisfying the magnetostatic constraint. In

our analysis magnetic moments are expressed in units of the characteristic quantity µn = v2/B0. We also define
δb = δB/B0.



6

     
0.10

0.12

0.14

0.16

α

δ b = 0.001

     
0.05

0.10

0.15

0.20
δ b = 0.01

     
-0.2

0.0

0.2

0.4
δ b = 0.1

     
-0.8

-0.4

0.0

0.4

0.8
δ b = 1.0

     
0.975

0.980

0.985

0.990

µ 
/ µ

n

     
0.96

0.98

1.00

     
0.88

0.92

0.96

1.00

     
0.2

0.4

0.6

0.8

0 10 20
t / τg

-10-3 

0.0 

10-3 

E
z 

/ E
n

0 10 20
t / τg

-0.01 

0.0 

0.01 

0 10 20
t / τg

-0.1

0.0

0.1

0 10 20
t / τg

-1

0

1

FIG. 1. Gyroresonant interaction between a circularly polarized wave and a particle with v = 100vA and α = 1/8: cosine of
pitch angle α (top row), particle magnetic moment µ (middle row) and parallel component of the induced electric field (bottom
row). Different columns correspond to different wave amplitude: δb = 0.001 (first column), δb = 0.01 (second column), δb = 0.1
(third column) and δb = 1.0 (fourth column).

The statistic analysis of particle magnetic moment involves averaging trajectories over the particle gyroperiod
τg = 2π/Ω. For each simulation we compute the effective number of gyroperiods Nτg that particles complete in a
given magnetic field configuration as:

Nτg =

∫ t

0

dt

2π

eB(t)

mc
. (14)

where B(t) is the intensity of the total magnetic field. When δb ≪ 1, B(t) ≃ B0; however increasing δb toward unity
the wave’s contribution to the strength of the total magnetic field B(t) is not negligible.

V.1. Single wave

We start studying the ion motion in presence of a constant magnetic field B0 and a perpendicular left-handed
circularly polarized wave with

B = δBx cos(k0z) êx − δBy sin (k0z) êy +B0 êz, (15)

where δBx and δBy are the amplitudes of the wave and k0 is the wavevector. We assume δBx = δBy = δB for the
rms average values. In these simulations β = 103, v = 100vA and α = 0.125 (θ = 82◦).
We follow the test-particles until they complete Nτg = 100 gyroperiods. For the resonance condition, Eq. (12), we

set k0 = 80/λ. Particles injected with a pitch angle cosine different to α = 0.125 will not be in resonance with this
wave, exhibiting a different behavior. For a direct comparison we also inject non-resonant particles, i.e., with α = 0.5
(θ = 60◦).
Figure 1 shows the time evolution of the cosine of pitch angle α, particle magnetic moment µ, and the parallel

component of the induced electric field Ez, for a resonant particle (α = 0.125). Different columns corresponds to
different values of the wave amplitude: δb = 0.001 (first column), δb = 0.01 (second column), δb = 0.1 (third column)
and δb = 1.0 (fourth column).
When the parallel component of the induced electric field is almost constant and equal to Ez ∼ −v⊥δb, the resonant

interaction produces variations that are secular over a gyroperiod. However an oscillation occurs over a longer time,
the bounce period τb = 2π/ωb (where ωb is the bounce frequency discussed in Section II). This is the typical timescale
over which the velocity, and hence the particle trajectory, exhibits significant deviations from the linear v‖ = const
and v⊥ = const case.
In Section III we derived the analytical expression for the half trapping-width of magnetic moment for a particle

interacting with a left or right handed circularly polarized wave (see Eq. 7). We now compute the values of the half
peak-to-peak difference in α and µ, ∆α = (αmax − αmin)/2 and ∆µ = (µmax − µmin)/2, for the resonant interaction
simulations. These values and those obtained from the theoretical expressions (6)-(7) are listed in Table II and are in
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δb ∆αth ∆αsim ∆µth ∆µsim

0.001 0.022 0.02 0.0056 0.0055
0.01 0.07 0.075 0.0176 0.02
0.1 0.2227 0.2 0.0556 0.055
1.0 0.704 0.6 0.176 0.175

TABLE II. Trapping width values for α and µ: comparison between theoretical (subscript th) and numerical (subscript sim)
values.
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FIG. 2. (Color online) Time evolution of cosine of pitch angle α (first row) and its distribution function f(α) (second row),
time evolution of magnetic moment µ (third row) and its distribution function f(µ) (fourth row) of resonant (α = 0.125, left
column) and non-resonant particle (α = 0.5, right column). v = 100 vA.

good agreement, confirming the validity of equations (6)-(7) and reinforcing the intuitive idea that magnetic moment
and pitch angle behaviors are strictly related.

To compare resonant and non-resonant dynamics, we show in Figure 2 the time evolution of cosine of pitch angle
α (first row), magnetic moment µ (third row), and their distribution functions f(α) (second row) and f(µ) (fourth
row) at the end of the simulation, for a resonant particle with α = 0.125 (left column), and a non-resonant one with
α = 0.5 (right column). In contrast with the resonant case in which α and µ exhibit well-known secular variations
with typical period equal to τb, the α and µ profiles for a non-resonant particle show a regular oscillating behavior, a
distinctive signature of regular particle motion. The values of the half peak-to-peak difference in α and µ obtained
from the simulation are ∆αsim = 0.0025 and ∆µsim = 0.003. These are smaller than the theoretical values computed
from equations (6)-(7) with δb = 0.01 and α = 0.5, for which we obtain ∆αth = 0.1316 and ∆µth = 0.1316.

The distribution functions f(α) and f(µ) (Figure 2) for a resonant particle are more spread in α and µ and are
centered around their initial values α = 0.125 and µ = 0.98. In the non-resonant case, f(µ) remains peaked at its
initial value, i.e., its magnetic moment is constant during particle motion. The spread in α of its distribution is
∼ 10%, small compared to the resonant case spreading of ∼ 40%.

Figure 3 shows the distribution functions, f(α) and f(µ), at the end of the simulation for 1000 resonant and
non-resonant particles injected in the simulation box with random positions and phases. For non-resonant particles
(right column) the distributions remain peaked around their initial values α = 0.5 and µ/µn = 0.75 with very little
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FIG. 3. (Color online) f(α) (first row) and f(µ) (second row) at the end of the simulation for an initial distribution of 1000
resonant (left column) and non-resonant (right column) particles randomly distributed in the simulation box. δb = 0.01.

spreading. For the resonant particles (left column) f(α) acquires a Gaussian shape centered around its initial value
α = 0.125. Furthermore it spreads of ∼ 0.1, comparable to the trapping width for the single particle 2∆α = 0.014
(Figure 2). The magnetic moment distribution for the resonant case has a characteristic shape found for µ in the
parameter range in which pitch angle exhibits a Gaussian distribution and the density distribution function is still
isotropic (particle free-streaming regime). As for the pitch angle, the spread in the magnetic moment distribution of
∼ 0.03 is comparable to the trapping width for the single particle 2∆µ = 0.00352 (see Eq. 7 and Figure 2).

V.2. Overlapping resonances

In order to understand the effect of overlapping resonances on particle magnetic moment, we perform a numerical
experiment with four different particles in the simulation box with random initial positions, same initial velocity
v = 100 vA, but different values for pitch angle cosine: α1 = 1/2, α2 = 1/4, α3 = 1/8, α4 = 1/32. For β = 103, making
use of the resonance condition for the static case [Eq. (12)], the cyclotron resonances n = 1 for the different values of
α are expected for k1λ = 20, k2λ = 40, k3λ = 80, and k4λ = 320.
The total magnetic field is given by:

B = B0êz +

4
∑

i=1

δb cos[kiz + φi]êx −
4

∑

i=1

δb sin[kiz + φi]êy, (16)

where the φi are random phases. Taking into account resonance broadening effects, all particles with parallel velocities
in the range

v‖ −∆v‖ < v‖ < v‖ +∆v‖ (17)

can potentially resonate with a wave, whose wave number is k‖ = Ω/v‖. As found by Ref. [35], the direct evidence of
resonances overlapping is the disappearance of constants of motion, i.e., the onset of stochasticity in the Hamiltonian
formalism. We undertook simulations with four different wave amplitudes δb = 0.001, 0.01, 0.1, and 1.0. The values
of the trapping half-widths ∆v‖ computed for the different pitch angles with Eq. (A.8) are listed in Table III for the
different δb considered.
Figure 4 shows time histories of pitch angle cosine α (left column) and magnetic moment µ (right column) profiles

for various δb. Again similar behavior is seen for α and µ. For the smallest wave amplitude, δb = 0.001 (first row), it
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δb α = 1/2 α = 1/4 α = 1/8 α = 1/32
0.001 4.16 3.1 2.227 1.3
0.01 13.1 9.85 7.042 3.583
0.1 41 31.1 22.27 11.33
1.0 131 98.3 70.42 35.83

TABLE III. Values of ∆v‖ for α =1/2, 1/4, 1/8, and 1/32 resonances at different δb.
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FIG. 4. (Color online) Transition from non-overlapping to overlapping resonances: α (left column) and µ (right column) profiles
varying the waves amplitude: δb = 0.001 (first row), δb = 0.01 (second row), δb = 0.1 (third row), δb = 1.0 (fourth row).

is possible to recognize very well the four different resonances in the profiles of α and µ. For δb = 0.01 (second row)
the resonance at α3 = 1/8 is overlapping with the resonance at α4 = 1/32. Indeed, the initial parallel velocity of the
particle injected at the smallest pitch angle, v‖,4 = 3.125vA, lies in the range of velocities [see Eq. (17)] in possible
resonance with k‖ = k3. For higher wave amplitudes, δb = 0.1 (third row) and δb = 1.0 (fourth row), the condition (17)
is satisfied by all particle velocities. Stochasticity arises and the different resonances are indistinguishable.
The distribution functions (Figure 5) f(α) (left column), f(µ) (central column) and f(δz) (right column) (where

δz = z − z0 is the displacement along z relative to the particle initial position z0) after 100τg exhibit similar charac-
teristics.
For δb = 0.001 (first row), f(α) and f(µ) are peaked in correspondence of their four initial values because of the

good resonances separation. f(δz) shows that the particles are simply free-streaming in the parallel direction and,
depending on their initial parallel velocity, they cover shorter or longer distances along z.
For δb = 0.01 (second row), f(α) spreads around its initial four peaks because particles interact resonantly with

waves of larger amplitude, and resonances overlap for α < 1/4, as discussed previously. Similar effects are shown also
by f(µ), confirming that for small δb the resonant interaction affects magnetic moment and pitch angle in similar
ways.
While for δb = 0.01 particles continue to free-stream in the z-direction, different profiles for f(δz) appear for δb = 0.1

(third row). The pitch angle distribution begins to isotropize and magnetic moment exhibits a one-sided long tail
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(first row), δb = 0.01 (second row), δb = 0.1 (third row), δb = 1.0 (fourth row). The distribution functions f(α) (left column),
f(µ) (central column) and f(δz) (right column) are averaged over time.

distribution extending toward smaller µ. This behavior is similar to the regime found previously in the single wave
experiment when f(α) is nearly isotropic, f(δz) still indicates particles free-streaming, and the magnetic moment
distribution displays a long tail.
For δb = 1.0 (fourth row), by t = 100τg the pitch angle cosine distribution f(α) has become completely isotropic,

while f(δz) approaches a Gaussian distribution indicative of spatial diffusion. In this regime f(µ) loses its long-tail
and starts to acquire a Gaussian shape. In that way we have identified three distinct regimes of statistical magnetic
moment behavior with increasing degree of turbulence.

VI. SLAB SPECTRUM

In this section we present the results of our numerical simulations of test-particles in presence of a broad-band slab
spectrum [see Eq. (19) and Figure 6]. We have performed simulations for different particle velocities and amplitudes
of the magnetic field fluctuations.
Simulations use a unidimensional computational box of length L = 10000 lz (lz = 1 is the coherence scale for the

slab spectrum) with Nz = 228 = 268, 435, 456 grid points [36]. The magnetic field in physical space is generated from
a spectrum P (k) in Fourier space, via inverse fast Fourier transform (FFT). The turbulent magnetic field is given by:

B(z) = B0ez + δB(z), (18)

with δB(z) = δBx(z) êx + δBy(z) êy and the solenoidality condition is identically satisfied.
The modes of the magnetic field components in k-space are given by:

δBx(kn) = [P (kn)]
1/2eiΦn

δBy(kn) = [P (kn)]
1/2eiΨn

where kn = 2πn/L and Φn and Ψn are random phases. The slab spectrum P (k) is given by:

P (kn) =







Cslab[1 + (knlz)
2]−5/6, for kn < kdiss

Cdiss

(

kn

kdiss

)−7/3

, for kn ≥ kdiss
(19)

where Cslab = 2λcδb
2
x,slab is a constant specific to this form of the slab model, δb2x,slab is the mean square fluctuation,

kdiss is the dissipation range wavenumber, Cdiss = Cslab[1+(kdisslz)
2]−5/6 is the constant for the dissipation range (set
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TABLE IV. Characteristic scales in the spectrum.

Wavenumber index Wavenumber value
Nkmin = 1 kmin = 6.28 × 10−4

Nklz = 104 klz = 2π
Nkdiss

= 1.6× 106 kdiss = 103

NkMAX
= 6.7× 107 kMAX = 4.2 × 104

NkMAX1
= 1.3× 108 kMAX1 = 8.4× 104

by the continuity of the spectrum P (k) at kdiss). The vectors of Fourier coefficients are zero-padded for Nmax + 1 ≤
n ≤ Nz providing an extra level of smoothness to the fields by an effective trigonometric interpolation [30]. In all
the simulations we use Nmax = 6.7× 107 and a simple linear interpolation to compute the fields at the test particle
position.
The resulting spectrum is shown in Figure 6. Several important scales are present in the system. They are labeled

as kmin, klz , kdiss, kmax and kNz
. The discrete wavenumbers are obtained through kn = 2πn/L as:

Nk =
L

2π
k ∼ 1600 k. (20)

We summarize the values for k and Nk used in our simulations in Table IV, where:

- kmin = 2π/L is the minimum wave vector of the spectrum, corresponding to Nk = Nkmin = 1.

- klz = 2π/lz = 2π is the wave vector that marks the beginning of the inertial range. Three decades of energy
containing range from kmin to klz ensure turbulence homogeneity. lz or λc = 0.747lz [see Ref. 30] correspond
to the typical length scales over which the particles attain diffusive behavior of the pitch angle. Three decades
of inertial range with P (k) ∝ k−5/3 well represent solar wind conditions.

- kdiss is the wave vector corresponding to the beginning of the dissipation range. In our model, the spectrum
extends beyond kdiss with P (k) ∝ k−7/3.

- At two decades higher wavenumber, kMAX =
√

mi/mekdiss determines the end of the dissipation range.

- Extending for two decades beyond kMAX = 4.2 × 104, the spectrum includes zero-padding up to kMAX1 =
8.4× 104.

- Another important scale, not labeled in Figure 6 because it depends on test-particle velocity, is the wave
vector corresponding to zmax = vTtot, the distance covered by a charged test particle moving at speed v in the
simulation running time Ttot. To avoid periodicity effects it is important that the box length L is large enough
so that particles trajectories are limited to a small fraction of the full length, i.e., L ≫ zmax or kmin ≪ 1/zmax.
Periodicity might indeed give rise to artificial field lines diffusion.

We fix the value of the β parameter [see Eq. 11] equal to 104. This corresponds approximately to observed solar
wind turbulence properties at 1 AU, as follows:

β = ΩτA =
( q

m

) λc

√
4πρ

c
=

ωpiλc

c
=

λc

λii
, (21)
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TABLE V. Typical values used in the simulations.

V [vA] rL[lz] kres ǫ tc[τA]
10 10−3 8× 103 1.33 × 10−3 0.0747
100 10−2 8× 102 1.33 × 10−2 0.00747

where λc is the turbulence correlation length ωpi = (4πn0iqi
2/mi)

1/2 is the ion plasma frequency (qi and mi are

respectively the ion charge and mass) and λii = c/ωpi =
(

c2mi/4πnie
2
)1/2

is the ion inertial length. For ni = ne

then λii = (mi/me)
1/2ρie. Because the solar wind density at 1 AU is approximately n ∼ (1, 10) cm−3 on average

λii ∼ 1000 km. At the same distance the turbulence correlation length λc is approximately 106 km [37] and β ≃ 104.
Typically 1000 particles are injected in the simulation with random initial positions. Particles are loaded from a cold

ring beam [see equations (13)] distribution with constant velocity magnitude, sin θ is set equal to (1− α2
0)

1/2, where
α0 is the initial pitch angle cosine respect to the background field B0. The initial gyrophase φ is chosen randomly.
For all the simulations α0 = 0.125 (θ ≃ 82◦).
From the previous section, we know that the behavior of magnetic moment is related to pitch angle behavior for a

low level of magnetic fluctuation (δb = 0.001, 0.01). Pitch angle and magnetic moment exhibit Gaussian distribution
functions typical of normal diffusion processes. Increasing the turbulence level, the pitch angle distribution approaches
isotropizy and a transient regime is observed with the magnetic moment starting to be influenced by the onset of
spatial parallel diffusion. When f(α) completely isotropizes, spatial diffusion sets in and the f(µ) behavior is closely
related to the sampling of the varying magnetic field strength associated with that spatial diffusion.
From quasilinear theory we know that velocity and real space diffusion occur at two different time scales. Typically,

velocity space diffusion takes place with the time scale τc = λc/v shorter than the typical time scale at which parallel
diffusion occurs τ‖ = λ‖/v, where λ‖ = 3D‖/v is the parallel mean free path. For this reason we follow test particles
in the simulation box for a time T > τc, typically with T = 20τc. Particle parameters used in the simulations are
listed in Table V.
An important parameter in the description of energetic test particles is ǫ = rL/λc, which is sometimes called the

dimensionless particle rigidity. It can be related to the bend-over wavenumber of the turbulence, kbo = 1/λc, and the
minimum resonant wavenumber, krmin = 1/rL, as ǫ = kbo/k

r
min. For example when rL ≫ λc particles experience all

possible k-modes in few gyroperiods resonating with the energy containing scale (krmin ≪ kbo). For lower energies
the test particles resonate in the inertial range. Those with v = 10 vA will resonate at the end of the inertial range
(1/r1 in Fig. 6), while those with v = 100vA at the middle of the inertial range (1/r2 in Fig. 6). Furthermore, as
explained previously, the condition kmin ≪ zmax is necessary to avoid artificial effects in particle transport associated
with periodicity of the magnetic field.
Figure 7 shows f(α) (left column), f(µ) (central column) and f(δz) (right column) for a distribution of particles

moving with an initial velocity v = 10 vA in presence of the slab spectrum [Eq. (19), Figure 6]. Different rows
correspond to different values of δb (0.001 first row, 0.01 second row, 0.1 third row and 1.0 fourth row). All the
distribution functions are computed at the end of the simulation, i.e., after 20 τc. The blue line and the green (light
gray) line indicate the initial value and the mean value of each distribution. As particles are injected at different
positions, it is convenient to define the quantity δz = z(j)− z(0) (j is a temporal index). In this way it is possible to
take out from the distribution function f(δz) both the drift effect (vDt) and particle diffusion relative to their own
positions (∆zi). The general expression for the z position of the i-th particle is given by

zi = zi(0) + vDt+∆zi = zi(0) + δzi. (22)

The primary diagnostic for studying particle diffusion is the variance σ2(t) ∝ ts of the particles cosine of pitch
angle, magnetic moment and position parallel to the mean field direction. Figure 8 illustrates the time evolution of
the variances, 〈(∆α)

2〉 (figure a), 〈(∆µ)
2〉 (figure b) and 〈(∆z)

2〉 (figure c) for a particles distribution moving with
initial velocity equal to 10 vA. Different colors correspond to different δb values: δb = 0.001 black line (1), δb = 0.01
purple line (2), δb = 0.1 red line (3) and δb = 1.0 blue line (4). The variances are fitted with the gray lines: the dotted
line is used for s = 2, the dotted-dashed line for s = 1, the dashed line for s = 0.8 and the three dotted-dashed line
for s = 0.7.
For δb = 0.001, α and µ display Gaussian distributions while particles free-stream in the z-direction. Particles that

cover greater distance in z are more scattered in pitch angle and consequently in µ. Figure 8 shows superdiffusive
behavior (black line, s = 2) with particles free streaming along z, and later, variance characteristic of normal diffusion

with 〈(∆α)2〉 and 〈(∆µ)2〉 scaling ∝ t.
For δb = 0.01, particles cover only one side of the α hemisphere continuing to travel along z (purple line in Figure 8).

This is the transient regime already observed in Figure 5 when f(µ) exhibits a one-sided long tail distribution toward
smaller µ.
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FIG. 7. (Color online) Distribution functions of cosine of pitch angle f(α) (left column), magnetic moment f(µ) (central column)
and particle displacements relative to the initial position f(δz) (right column) at 20 τc for different values of δb: δb = 0.001
(first row), δb = 0.01 (second row), δb = 0.1 (third row) and δb = 1.0 (fourth row). The blue and the green (light gray) line
indicate the initial value and the mean value of each distribution. Particle parameters at injection: v = 10 vA and α0 = 0.125.

For δb = 0.1, pitch angle distribution becomes completely isotropic and spatial diffusion sets in, as shown by the
slope s = 1 of 〈(∆z)

2〉 in Figure 8 (red (3)-line) at the end of the simulation. The deviation from purely free-streaming
or ballistic behavior means that, while the system has not become fully diffusive along the mean field direction, there
are signs that diffusive processes in velocity space are beginning to diminish the free-streaming. Although f(µ) still
exhibits a long-tail, the influence of spatial diffusion starts to appear. The well-pronounced peak observed in f(µ) for
δb = 0.01 is substantially reduced and the mean value of magnetic moment decreases. Moreover µ displays subdiffusive
behavior up to 0.02τc. After this time particles diffuse in space and 〈(∆µ)

2〉 attains a plateau. The Gaussian shape
is not reached yet, probably because spatial diffusion is just beginning.

For δb = 0.5 [see Figure (9)] and δb = 1.0, f(α) is isotropic, particle motion is completely diffusive in real space [as

the slope s = 1 in 〈(∆z)
2〉 in Figure 8 (blue (4)-line) shows], and f(µ) behavior is closely related to the sampling of

varying magnetic field strength associated with that spatial diffusion, displaying a Gaussian distribution centered at
the middle of µ-space.

From a more detailed analysis of the case δb = 0.5 [Figure (9)] we notice that magnetic moment variance (first

figure) scales according to 〈(∆µ)
2〉 ∝ t0.17 (red dotted-dashed line) up to 0.002τc and after 0.005τc a plateau is attained

(blue dotted line). Instead, particle motion (see time evolution of 〈(∆z)
2〉, second plot) becomes fully diffusive (blue

dotted line) only after 0.007τc. The magnetic moment distribution f(µ) in the first part of the evolution (third plot)
is in the transient regime characterized by the long tail. In contrast, when particles diffuse in real space (fourth plot),
f(µ) reacquires the Gaussian profile. Thus the final stage of magnetic moment variance evolution, i.e. the formation
of the plateau, can be considered as a precursor for the onset of the parallel diffusion of particles in space. Of course
this effect is present in pitch angle variance too, but in addition in µ behavior we have a direct signature of the onset
of the spatial diffusion, that is the reappearance of the Gaussian shape in the distribution function, while pitch angle
distribution remains completely isotropic.

Thus these transitions in magnetic moment behavior are related not just to the variation of the turbulence level,
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but also to the different time scale at which magnetic moment conservation is studied.
The magnetic moment distribution functions f(µ) and variances 〈(∆µ)2〉 in the case v = 100 vA (not shown) exhibit

the same features observed for v = 10vA. However, increasing particle speed the total number of gyroperiods, Nτg ,
performed by each particle decreases; as a consequence, faster particles sample less variation in magnetic field strength.
This leads to a slower spatial diffusion, i.e., for 100vA spatial diffusion occurs on a time scale longer than 20τc.
For v = 100vA we show in Figure (10) magnetic moment standard deviation σµ/µmin (blue triangle, left plot) and

the changes in its mean ∆µ/µin = (µ̄− µin)/µin (red circle, right plot) versus δb after 20τc. As δb increases toward
unity the changes in magnetic moment distribution start to increase faster.
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FIG. 10. (Color online) Standard deviation σµ/µmin (blue triangle, left plot) and variation in magnetic moment ∆µ//µmin

(red circle, right plot) versus δb for at 20τc v = 100vA and α = 0.125.
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VII. CONCLUSIONS

In this paper we have investigated the conservation of charged particle magnetic moment in the presence of turbulent
magnetic fields. For slow spatial and temporal variations of the magnetic field with respect to the particle gyroradius
and gyroperiod, the magnetic moment µ is an adiabatic invariant of the particle motion. Non-conservation of magnetic
moment can influence particle acceleration and have considerable implications in many astrophysical problems such
as coronal heating, cosmic ray transport and temperature anisotropies in the solar wind. These applications motivate
the present basic study of the degree to which magnetic moments are conserved in increasingly complex models of
one dimensional spectra. While all the models considered here have been very oversimplified relative to the spectra
observed for example in the solar wind [17, 38] or in simulations of MHD turbulence [5, 39], the present study is intended
to contribute to the basic understanding of the conditions for the onset of magnetic moment non-conservation. We
point the interested reader also to a recent study by Ref. [5] that addresses this issue from a somewhat different
perspective.
In order to reproduce and extend some of the result obtained by Ref. [25], we started to study the resonant

interaction between ions and a single parallel propagating electromagnetic wave (see Section V.1). Using the specialized
expression for the trapping width ∆v‖ found by Ref. [23] in the case of a single circularly polarized wave, we have
been able to write a similar expression for magnetic moment (see Eq. 7). In the presence of a single finite amplitude
fluctuation the magnetic moment of a resonant particle undergoes a finite amplitude nonlinear oscillation too. We
have performed several simulations changing both particle velocity and the amplitude of the wave. For each of them
we compare the values of ∆µ and ∆v‖ with those obtained using our specialized expression and they are in good
agreement.
We designed a particular experiment to study the effects of resonances overlapping (see Section V.2). From the

analysis of the distribution functions of particles pitch angle, f(α), magnetic moment, f(µ), and z-position, f(z),
we distinguish three different regimes. First, for a low level of magnetic fluctuation, i.e., δB/B0 = 0.001, 0.01, the
magnetic moment distribution half-width is directly related to pitch angle distribution. Second for δB/B0 = 0.1
stochasticity arises as a consequence of overlapping resonances and its effect on pitch angle is isotropization of the
distribution function. This is a transient regime during which the magnetic moment exhibits a one-sided long-tail
distribution and starts to be influenced by the onset of spatial parallel diffusion. Finally, when f(α) completely
isotropizes, spatial diffusion sets in ( δB/B0 = 0.1), f(µ) behavior is closely related to the sampling of varying
magnetic field strength associated with that spatial diffusion.
Other studies regarding particle interaction with two electromagnetic waves as well as a flat turbulent spectrum

(not shown) were also conducted and they confirmed this general picture.
Motivated by these results we studied the behavior of many particles interacting with a broad-band slab spectrum,

generated in order to mimic some of the major features of the solar wind (see Figure 6): (a) three decades of the energy
containing scale ensure turbulence homogeneity, (b) three decades of inertial range well-reproduce the observations
and (c) two decades of dissipation range enable us to cross the “αmin barrier” related with the “resonance gap”
predicted by quasilinear theory [29, 40]. After that there are almost other two decades of zero-padding, important for
the trigonometric interpolations and for the smoothness of the field. This is implemented using a numerical grid with
Nz = 228 = 268, 435, 456 points corresponding to 134, 217, 728 wavevectors for the spectrum. Apart from the obvious
limitation that this spectrum is purely one dimensional, it is constructed to correspond roughly to features of solar
wind spectra observed by single spacecraft, where the fully three dimensional spectrum is in effect reduced to a one
dimensional form. Information is lost in the process [see, e.g., 38].
In order to gain insight on magnetic moment conservation we have performed simulations changing both particle

velocity, v = (10, 100) vA, and the amplitude of magnetic field fluctuations δB/B0 = (0.001, 0.01, 0.1, 0.5, 1.0). Parti-
cles injected at different velocities start to resonate at different points of the spectrum. We analyzed the distribution
function [see Figure 7] and the variance [see Figure (8)] of pitch angle cosine α, magnetic moment µ and parallel
position z.
From the experiment of resonances overlapping, we know that the three different regimes of µ statistical behavior

are related with other two effects: diffusion in velocity space and spatial parallel diffusion. These take place at different
characteristic times, τc and τ‖ respectively. In order to investigate the effects of both processes on magnetic moment
distributions, we followed test-particles in the simulation box for times T > τc.
For a low level of magnetic fluctuations particles free-stream in the z-direction while α and µ exhibit Gaussian

distributions around their initial values. For δB/B0 = 0.01 particles cover completely one side of the α hemisphere
continuing to stream freely along z. This is the transient regime during which f(µ) exhibits a one-sided long tail
distribution in the direction of smaller µ that appears to be a typical feature of magnetic moment distribution.
During this transient regime the distribution of particles nearly conserves its magnetic moment. Increasing the value
of δB/B0 spatial diffusion starts to take place, f(µ) recovers the typical Gaussian shape centered in the middle of
µ-space. These different regimes of magnetic moment statistical behavior are related not just to the variation of the
turbulence level δB/B0, but also to the different time scale at which magnetic moment conservation is studied [see
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Figure (9)].
In spite of the limitations of the present approach, the results presented here provide a basic view of how magnetic

moments are modified in simplified models, and in particular how magnetic moment changes are related to pitch angle
changes and sampling of magnetic variations due to spatial diffusion. It is clear that additional study is required to
understand more fully the influences of turbulence on magnetic moment statistics. For example, realistic three
dimensional models of the magnetic field turbulence, as well as incorporation of electric field fluctuation effects, are
expected to have significant effects. It is also possible that non-Gaussian features of magnetic field fluctuations, such
as, are associated with intermittency effects, may also influence magnetic moment changes, much as they influence
spatial transport due to trapping and related influences [41, 42]. In this regard the present results, along with those
of Ref. [5], may be considered as baseline or minimal quantification of non-conservation of magnetic moments of
a distribution of test particles in turbulence. Planned future studies will investigate quantitatively how additional
realism in the modeling might produce even more significant departures from magnetic moment conservation.
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Appendix: Derivation of trapping half width for a circularly polarized wave

Using equations (5a) and (5b) of Ref. [25] it is possible to derive a simplified expression for the trapping half-width
and the bounce frequency in the case of an Alfvén static wave [23]. For this particular case k⊥ = 0 and φ = 0. We
can rewrite equation (5c) of Ref. [25] as

Zn = mc2
{

v⊥
2c

[(

ǫ2 −
k‖

k
σǫ1

)

Jn−1(k⊥ρ)+

−
(

ǫ2 +
k‖

k
σǫ1

)

Jn+1(k⊥ρ)

]

+

+σ

(

v‖k⊥

ck
ǫ1 + ǫ3

)

Jn(k⊥ρ)

}

, (A.1)

with cosα = 1 and sinα = 0. Because k ‖ B0 we can choose êz = B0/|B0|, êy is any arbitrary direction perpendicular
to êz and êx = êu × êz. The vector potential can be obtained from the magnetic field ∇× B⊥ = Bxêx + Byêy. In
Fourier space ∇ → ikzêz, so we have:

Ax = − i

k‖
By

Ay =
i

k‖
Bx (A.2)

Considering only a single circularly polarized wave in space, for the two different possible helicities we can write:

B± = (B±ê±) exp [i(k‖z)] (A.3)

where

B± =
1√
2
(Bx ∓ iBy) and ê± =

1√
2
(êx ∓ iêy) (A.4)

are respectively the complex amplitudes and the orthogonal polarization unit vectors. The +(−) polarization state
is the positive (negative) helicity, i.e., the vector B is rotating counter-clockwise (clockwise). At first, let’s consider

only the left-handed polarized wave B+. Assuming B+ =
√
2δBe−iπ/2 we can write the x and y components of the

wave magnetic field as

Bx = δB exp [i(k‖z − π/2)]

By = δB exp (ik‖z) (A.5)
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TABLE VI. Wave polarization and resonance contribution to trapping width.

Polarization η resonance n
B+ left-handed 1 parallel −1
B− right-handed −1 anti-parallel 1
B+ left-handed −1 parallel 1
B− right-handed 1 parallel −1

Inserting this two expressions into Eq. A.2 we obtain:

Ax =
δB

k‖
exp [i(k‖z − π/2)]

Ay =
δB

k‖
exp (ik‖z)

Comparing the real parts of these equations with equation (1b) of Ref. [25] we obtain an expression for the coefficients
A1 and A2 and for the normalized components of the wave polarization vector ǫ1, ǫ2 and ǫ3:

A1 = η
δB

k‖
, A2 =

δB

k‖
, where η =

k‖

|k‖|
(A.6)

ǫ1 =
|q|ηδB
mc2k‖

, ǫ2 =
|q|δB
mc2k‖

, ǫ3 = 0. (A.7)

Similarly, for a right-handed circularly polarized wave B− we have:

A1 = −η
δB

k‖
, A2 =

δB

k‖
, where η =

k‖

|k‖|

ǫ1 = −|q|ηδB
mc2k‖

, ǫ2 =
|q|δB
mc2k‖

, ǫ3 = 0.

In case of a single circularly polarized wave propagating parallel (or antiparallel) to the magnetic field there is only
one resonance present and particle motion is integrable [25]: indeed Jn(0) = 0 unless n = 0. Therefore depending on
the polarization of the wave and on its direction of propagation η only l = 1 or l = −1 resonances contribute to the
trapping width, as shown in Table VI. Thus, considering equations (5a) and (5b) of Ref. [25], Eq. A.1 and Eq. A.6-A.7
with J0(0) = 1, Ref. [23] find a specialized formula for the trapping half width and bounce frequency applied to the
case of a circularly polarized wave propagating parallel k‖ > 0 and n = −1, or antiparallel, k‖ > 0 and n = 1 to B0:

∆v‖
(−1) = 2v

[

(1 − α2)1/2|α|δB
B0

]1/2

ωb
(−1) = Ω0

[

(1− α2)1/2

|α|
δB

B0

]1/2

(A.8)

if k‖v‖ > 0 and zero otherwise, in which α = cos θ is the cosine of pitch angle. Exactly the same set of equations

holds for ∆v
(+1)
‖ and ω

(+1)
b . However the condition for their being nonzero is reversed, i.e., k‖v‖ > 0. We omit the

superscripts (±1) because of this degeneracy.
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