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Abstract 
 
Pulses having a temporal Lorentzian shape arise naturally from topological changes in 
flow trajectories or phase space orbits associated with deterministic chaos. The pulses can 
appear as random intermittent events in the time series of observable quantities, and they 
are the cause of exponential frequency power spectra previously observed in 
magnetically confined plasmas and various nonlinear systems. 
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 In a recent letter [1] it was emphasized that detailed measurements in a basic 
linear plasma machine [2, 3], and in a toroidal stellarator confinement device [4], 
established a link between an exponential frequency dependence of the fluctuation power 
spectrum, i.e., P ω( ) ∝ exp − 2ω t( ) , and Lorentzian temporal pulses having the functional 
form   
   L t( ) = A 1 + t − t0( )2 τ 2⎡

⎣
⎤
⎦  ,                  (1) 

 
with A the peak amplitude at time , and τ  the pulse width. The insight obtained from 
experiments in magnetically confined plasmas also provided a physical interpretation for 
the well-established concept within the fluid and nonlinear dynamics communities [5-16] 
that an exponential frequency spectrum is an inherent signature of deterministic chaos 
[17]. The connection established by the plasma experiments ruled out that the exponential 
feature is a statistical property (e.g., a canonical distribution), but, rather, that it is the 
imprint of individual intermittent events with a unique shape. It is natural to question why 
pulses emerging from a chaotic system should have a Lorentzian shape.  In fact, some 
researchers [18-21] expect that such pulses should more closely follow a Gaussian form 
or other distorted shapes determined by random events. This letter answers this question 
by illustrating explicitly the origin of Lorentzian pulses as chaotic dynamics near the 
separatrix boundaries of elliptic regions in flow fields, or, more generally, near the limit 
cycles of attractors in nonlinear dynamics models.  Two explicit examples are considered, 
a bifurcation given by a potential field appropriate for drift waves in a plasma, and a case 
from the classic example of deterministic chaos, the Lorenz model [22].  
 

A 2D bifurcation, the Lorentzian bifurcation, is introduced that is appropriate for 
describing E×B motion arising from the interaction of two or more drift waves created by 
pressure gradients in the edge region of magnetically confined plasmas.  This bifurcation 
has trajectories, whose, y-components, y(t) have a Lorentzian character.  The flow field of 
the bifurcation has a single stationary point and the flow trajectories (or streamlines) are 
contours of constant potential.  The potential, and attendant velocity field have the form, 

 
Φ x, y( ) = − x2 + c2( ) y2 + b y ; vx = 2y x2 + c2( ) − b ; vy = − 2xy2

,  (2) 

 
with b and c real numbers.  The stationary point in the flow occurs at the point x = 0 and y 
= b/2c2.  The Jacobian matrix, evaluated at the stationary point in the flow, has zero trace 
and eigenvalues, ω = ± ib c . The potential value at the stationary point is a maximum and 
has the positive value, b2/4c2.  The form of the potential is illustrated in Fig. 1a for b = 1, 
c = 1. 
 
 Solutions for the trajectories, [x(t), y(t)], of the potential flow field are divided 
into three topological classes:  closed orbits, the separatrix, and unbounded orbits.  
Closed orbits occur for potential values greater than zero (Φ0 > 0), and their explicit form 
is, 

t0
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x t( ) =
− b2 − 4 c2Φ0( )1/2

2 Φ0

sin 2 Φ0 t( ) ; y t( ) = 2Φ0

b + b2 − 4 c2Φ0( )1/2
cos 2 Φ0 t( ) . (3) 

 
A closed orbit is illustrated by the contour labeled, Φ0 = .0475, in Fig. 1a.  The separatrix 
is the boundary between closed and unbounded orbits and is delineated by two curves;  

 x = 0 ∀ y ∈ −∞,∞( ), and x t( ) = bt ; y t( ) = b c2

1 + b2 t 2 c2 .   (4) 

 
Comparing Eq. (4) to Eq. (1) it is apparent that the width of the Lorentzian associated 
with the separatrix is τs = c/b, and its amplitude is b/c2. The separatrix is illustrated by the 
dashed lines in Fig. 1a.  Unbounded orbits occur for negative potential (Φ0 < 0), and have 
the form, 

 

x t( ) = 2qsinh Φ0 t( )cosh ; y t( ) =
2 Φ0

4 qsinh2 Φ0 t( ) + d
,   (5) 

where 

  

  

q2 = b2 + 4 c2 Φ0( ) 4 Φ0 ; d = 2 q − b 2 Φ0( ) .    (6) 

  
An unbounded orbit is illustrated by the contour labeled, Φ0 = -.2405, in Fig. 1a. 
  
 The y-component of these trajectories, y(t), are all Lorentzian in some respect.  
The trajectory along the upper part of the separatrix is a single Lorentzian pulse, the 
closed orbits are an infinite train of Lorentzian pulses and the unbounded orbits can be 
well approximated by the difference of two Lorentzians.  A function of the form 
δ 2 1 + 1 − δ 2 cos ω t( )( ) can be written as an infinite sum of equal width, equal amplitude, 

Lorentzian pulses [23], so that, for the closed orbits in Eq. (3),  
 

    y t( ) = 1 cτ( ) 1 1 + t − nπ Φ0( ) τ( )2{ }
n = −∞

n = ∞

∑ ,   (7) 

 
withτ = tanh−1 2c Φ0 b( ) 2 Φ0 .  The superposition of two Lorentzian pulses with 

amplitudes, 1/cτ  = .933, widths, τ = 1.07 and separated in time by π Φ0  = 14.4, are 
compared in Fig. 1b to a fourth order, Runge-Kutta integration along the contour with, Φ0 
= .0475, shown in Fig. 1a.  The two-pulse fit is very good, but slightly low in amplitude 
because it consists of only two pulses and not an infinite series. The distance between 
peaks in the sum of pulses in Eq. (7), π Φ0 , becomes infinite as Φ0 -> 0, and a single 
pulse remains, with the same width and amplitude as the separatrix trajectory of Eq. (4). 
The unbounded orbits occur along contours with negative potential and can be 
approximated by the difference of two Lorentzian pulses (assuming, τ1 < τ2), 
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 y t( ) ≈ A1 1 + t 2 τ1
2( ) − A2 1 + t 2 τ 2

2( ) , A1 = 2 Φ0 τ 2
2 d τ 2

2 − τ1
2( )( )

A2 = τ1
2 A1 τ 2

2 ; τ1
2 + τ 2

2 = 3 Φ0 ; τ1
2 = 3 − 9 − 3d q( ) 2 Φ0

 ,  (8)  
where d and q are given in Eq. (6).  The expression in Eq. (8) with (A1 = 1.267, τ1 = .791, 
A2 = .067 and τ2 = 3.44) is compared, in Fig. 1c, to a numerical integration along the 
potential contour with value, Φ0 = -.2405, shown in Fig. 1a. The approximation and 
numerical solution are indistinguishable over the time range shown.  
 The Lorentzian bifurcation leads to chaotic behavior if one, or both of the 
parameters values, b or c, is modulated.  As a specific example of chaotic behavior, 
contours of the amplitude, y(t), are shown in Fig. 2 for the case that the value of the 
parameter, b, is sinusoidally modulated over the range, 0.5 ≤ b ≤ 1.5, at various 
frequencies. The frequency is scaled to fs = b/2πc, as the imaginary part of the eigenvalue 
at the fixed point, b/c, represents an angular frequency.  Using the average value of b, b = 
1 and the fixed value of c, c = 1, fs = 1/2π, for this case.  In Fig. 2, the dynamic behavior 
of y(t), at a fixed modulation frequency, is given along a vertical line. A single Lorentzian 
pulse appears as a horizontal bar, as, for example, at f/fs = .50, while an extended series of 
pulses appears as a broken vertical line as, for example at f/fs = .183. All trajectories 
begin at the initial position, x = -20, y = 0.01, and their temporal behavior is computed 
using fourth order Runge-Kutta numerical integration. The parameter b is modulated with 
frequencies in the range, 0 ≤ f/fs ≤ 1.196.  In the case that the parameter b is time 
independent, only a single Lorentzian pulse is produced in the time history of the 
trajectory for all values of 0.5 ≤ b ≤ 1.5, similar to the behavior in the middle of the 
frequency range displayed in Fig. 2.  
 The details of the trajectory at the frequency indicated by the red arrow at the 
bottom of Fig.2, f/fs = .1032, are given in Fig. 3.  At this frequency, two Lorentzian pulses 
are produced.  At a frequency, just below it, f/fs  = .0985, as seen in Fig. 2, fourteen 
Lorentzian pulses are produced, so the dynamics are very sensitive to the modulation 
frequency, as is typical of chaotic behavior.  The time signal is color-coded in Fig. 3a, in 
order to show its relation to the orbit dynamics displayed in Fig. 3b.  Lorentzian pulses 
are produced by orbital motion in the immediate vicinity of the separatrix.  Modulation of 
the parameter, b, changes the location of the stationary point of the flow and, thus, the 
amplitude of the separatrix at x = 0.  In the example shown in Fig. 3, the modulation 
allows trajectories to change topological character from unbounded to closed and back 
again, thus producing two Lorentzian pulses rather than one, as would occur in the 
absence of modulation. The fact that the Lorentzian pulses are created near the separatrix 
is reflected in their widths and amplitudes.  As indicated in Eq. (4), the width of the 
separatrix is τs = c/b, and the amplitude is, As = b/c2.  Since the value of the parameter c is 
fixed (c = 1, in this example), the instantaneous width and amplitude of the separatrix are 
solely determined by the value of b, the amplitude is inversely related to the width.  For 
the two pulses shown in Fig. 3a, the first pulse (red) has an amplitude, A = 1.265 (1/A = 
.795), and width τ = .794, and the second pulse (blue) has an amplitude, A = 1.340 (1/A = 
.745), and width τ = .760.  The close relation between the inverse of the pulse amplitudes 
and their widths indicate that they reflect the state of the separatrix at the time of their 
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formation.  This occurs because the modulation frequency is a small fraction of the 
characteristic frequency at the fixed point (f = .1032 fs). 
 
 The flow field associated with the Lorentzian bifurcation transports (or advects) 
scalar quantities.  If a scalar quantity, in the vicinity of a Lorentzian bifurcation, has a 
linear gradient in the y-direction, then the Lorentzian nature of the y-component of the 
trajectories leads to Lorentzian shaped pulses in the time signals of the advected scalar.  
This is the origin of exponential power spectra in fluctuations of scalar quantities (such 
as, density or temperature) observed in magnetically confined plasmas. 
 
 Very similar dynamical behavior occurs near the limit cycles of attractors in 
nonlinear dynamics models.  Figure 4 illustrates details of the production of Lorentzian 
pulses in the Lorenz model. Results are obtained from fourth order Runge-Kutta 
integration of the Lorenz model for the same parameters used in the comprehensive 
survey by Ohtomo, et al. [11]. That study established that the different major 
mathematical models of deterministic chaos exhibit exponential frequency spectra, but 
the reason such spectra occur was not identified. The specific Lorenz parameters used 
are: σ = 3, r = 22, and b = 1. The integration time step used in this presentation, Δt = .005, 
is smaller than in Ref. [11]. Figure 4a displays the time series corresponding to the 
Lorenz variable x over the interval studied in Ref. [11]. The cursory interpretation is that, 
at this value of r, the system has entered the chaotic regime and exhibits intermittent 
pulses at seemingly random times. Figure 4b provides an expanded view of the sequence 
of three color-coded pulses bracketed by the arrows in Fig. 4a. The color-coded portion 
of the trace (red, green, blue) corresponds to the numerical solution. Superimposed on 
this solution is a black curve, which is the sum of three individual Lorentzian curves 
given by Eq. (1) with τ = 0.3135, but with positive and negative amplitudes, A, as 
appropriate to each peak. The specific value of τ corresponds to the expression τ = π 2ω , 
where ω  is the magnitude of the imaginary part of the complex eigenvalue of the 
Jacobian at the fixed points. For the Lorenz model, the two eigenvalues are complex 
conjugates with ω  =  5.01. It is evident that the intermittent pulses follow a Lorentzian 
functional form. A similar conclusion is obtained by performing analogous fits to the 
other pulses in the time series, as well as, for other values of r. In all cases the width of 
the Lorentzians generated are accurately determined by the imaginary part of the 
eigenvalue. Figure 4c corresponds to the (y, x) phase-space trajectory for the Lorenz 
model variables y and x, over the time interval during which the Lorentzian pulses in Fig. 
4b appear. The colors along the orbits correspond to those associated with the pulses in 
Fig. 4a-b; they help identify that each Lorentzian-shaped pulse corresponds to one 
rotation around the boundary of the attractor.   It is recognized from the display that these 
trajectories are near the limit cycle orbits around the two fixed points of the Lorenz 
attractors at y = x = b r − 1( ) = ± 4.5826. In displaying the power spectra in Fig. 4d the 
frequency is scaled to fω, where 2π fω = ω.  The temporal width, τ, of each Lorentzian is 
determined by the transit time around the attractor, and this in turn determines the slope 
(in a log-linear plot) of the exponential power spectrum, as illustrated in Fig. 4d. In Fig. 
4d the red curve corresponds to the power spectrum of the entire time series shown in 
Fig. 4a, while the black curve is the power spectrum of the sum of the three Lorentzian 
functions that fit the intermittent pulses in Fig. 4b.  It is seen that the characteristic 
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exponential spectrum associated with deterministic chaos is just the imprint of the 
Lorentzian pulses generated by the chaotic behavior of orbits near the limit cycle of the 
attractor. Analogous results are obtained for the average spectrum for a large ensemble of 
random initial values of the Lorenz variables (x, y, z). Similar results connecting 
exponential spectra to Lorentzian pulses have also been obtained for the Duffing [24] and 
Rossler [25] models of deterministic chaos.  Thus the property is robust. 
 
 In summary, Lorentzian pulses are a natural consequence of the chaotic dynamics 
in the vicinity of the separatrix of elliptic regions in potential flow fields or, analogously, 
the limit cycles of attractors in nonlinear dynamical models. The width of the Lorentzians 
is determined by the imaginary part of the complex eigenvalues of the underlying 
Jacobian matrix. These Lorentzian pulses are responsible for the exponential power 
spectra that characterize deterministic chaos and that are observed in a wide class of 
physical systems. 
 
 The work of J.E.M and G.J.M. is performed under the auspices of the BaPSF at 
UCLA which is jointly supported by a DOE-NSF cooperative agreement, and by DOE 
grant SC0004663. 
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Figure Captions  
Fig. 1.  (a) Potential contours of the Lorentzian bifurcation with parameter values, b = c = 
1. (b) Numerical solution along the contour, Φ0 = .0475, compared to the sum of two 
Lorentzians. (c) Numerical solution along the contour, Φ0 = -.2405, compared to the 
difference of two Lorentzians. 
 
Fig. 2.  Contours of y(t), with amplitude values indicated by the color bar, as a function of 
modulation frequency and time. Chaotic behavior is observed in two frequency intervals.   
Fig. 3.  (a) Details of the production of two Lorentzian pulses when the parameter, b, is 
modulated at f = .1032 fs (indicated by the red arrow in Fig. 2).  (b) Lorentzian pulses are 
produced over the portion of the orbit that is in the immediate vicinity of the separatrix.  
(c) Power spectrum of the time signal is exponential (two dashed curves are power 
spectra of the individual pulses). 
 
Fig4. (a) Time series for Lorenz model variable x shows intermittent pulses. (b) Color-
coded time series is fit by a sum of three Lorentzian functions (black curve). (c) Phase-
space trajectory of variables (y, x) is near the limit cycle of the attractor. (d) Frequency 
power spectrum of time series (red) compared to spectrum (black) of the sum of three 
Lorentzians. 


