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Error correction during DNA replication: DNAP as Dr. Jekyll-and-Mr. Hyde
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DNA polymerase (DNAP) is a dual-purpose enzyme that plays two opposite roles in two different
situations during DNA replication. It plays its normal role as a polymerase catalyzing the elongation
of a new DNA molecule by adding a monomer. However, it can switch to the role of an exonu-

clease and shorten the same DNA by cleavage of the last incorporated monomer from the nascent
DNA. Just as misincorporated nucleotides can escape exonuclease causing replication error, correct
nucleotide may get sacrificed unnecessarily by erroneous cleavage. The interplay of polymerase and
exonuclease activities of a DNAP is explored here by developing a minimal stochastic kinetic model
of DNA replication. Exact analytical expressions are derived for a few key statistical distributions;
these characterize the temporal patterns in the mechanical stepping and the chemical (cleavage)
reaction. The Michaelis-Menten-like analytical expression derived for the average rates of these two
processes not only demonstrate the effects of their coupling, but are also utilized to measure the
extent of replication error and erroneous cleavage.

PACS numbers: 87.16.Ac 89.20.-a

I. INTRODUCTION

DNA polymerase (DNAP) replicates a DNA molecule;
the sequence of the nucleotides, the monomeric subunit
of DNA, on the product of polymerization is dictated
by that on the corresponding template DNA through
the Watson-Crick complimentary base-paring rule [1].
DNAP moves step-by-step along the template strand uti-
lizing chemical energy input and, therefore, these are also
regarded as a molecular motor [2, 3].

An unique feature of DNAP is that it is a dual-purpose
enzyme that plays two opposite roles in two different cir-
cumstances during DNA replication. It plays its normal
role as a polymerase catalyzing the elongation of a new
DNA molecule. However, upon committing an error by
the misincorporation of a wrong nucleotide, it switches
its role to that of a exonuclease catalyzing the shortening
of the nascent DNA by cleavage of the misincorporated
nucleotide at the growing tip of the elongating DNA [4].
The two distinct sites on the DNAP where, respectively,
polymerization and cleavage are catalyzed, are separated
by 3-4 nm [5]. The nascent DNA is transferred back to
the site of polymerization after cleaving the incorrect nu-
cleotide from its growing tip. The elongation and cleav-
age reactions are thus coupled by the transfer of the DNA
between the sites of polymerase and exonuclease activity
of the DNAP. However, the physical mechanism of this
transfer is not well understood [6].

In this paper we develop a minimal kinetic model of
DNA replication (more precisely, that of the “leading
strand” which can proceed continuously) that captures
the coupled polymerase and exonuclease activities of a
DNAP within the same theoretical framework. From
this model, we derive the exact analytical expressions
for (i) the dwell time distribution (DTD) of the DNAP
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at the successive nucleotides on the template DNA, and
(ii) the distribution of the turnover times (DTT) of the
exonuclease (i.e., the time intervals between the suc-
cessive events of cleavage of misincorporated nucleotide
from the nascent DNA). The mean of these two distri-
butions characterize the average rates of elongation and
cleavage, repectively; we show that both can be written
as Michaelis-Menten-like expressions for enzymatic reac-
tions which reveals the effect of coupling explicitly.
In our model, the kinetic pathways available to the cor-

rect and incorrect nucleotides are the same. However, it
is the ratio of the rate constants that makes a pathway
more favorable to one species than to the other. Similar
assumption was made by Galas and Branscomb [7] in one
of the earliest models of replication. Therefore, in spite
of the elaborate quality control system, some misincor-
porated nucleotides can escape cleavage; such replication

error in the final product is usually about 1 in 109 nu-
cleotides. Moreover, occasionally a correct nucleotide is
erroneously cleaved unneccessarily; such “futile” cycles
slow down replication [8].
We define quantitative measures of these two types of

error and derive their exact analytical expressions from
our model for “wild type” DNAP. Using special cases of
these analytical expressions, we also examine the effects
of two different mutations of the DNAP [5]- (i) “exo-
deficient” mutant that is incapable of exonuclease activ-
ity, and (ii) “transfer-deficient” mutant on which the rate
of transfer to the exonuclease site is drastically reduced.

II. MODEL

Almost all DNAP share a common “right-hand-like”
structure. Binding of the correct dNTP substrate trig-
gers closing of the “hand” which is required for the forma-
tion of the diester bond between the recruited nucleotide
monomer and the elongating DNA molecule. The kinetic
scheme of our stochastic model of replication is shown in
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FIG. 1: The kinetic model of DNA replication. The chemo-
mechanical states of a single DNAP and the allowed transi-
tions are shown along with the corresponding transition prob-
abilities per unit time (the rate constants). The corresponding
rate constants for the incorrect nucleotide are denoted by the
symbol Ω (see the text for details).

fig (1). The rate constants for the correct and incorrect
nucleotides are denoted by ω and Ω, respectively; the
same subscript is used in both the cases for the same
transition.

Let us begin with the situation where the DNAP is
ready to begin its next elongation cycle; these mechano-
chemical state is labelled by the integer index 1. In prin-
ciple, the transition 1 → 2 consists of two steps: binding
of the dNTP substrate and the formation of the diester
bond. The overall rate of this step is ωf for a correct
substrate and Ωf for an incorrect substrate.

Occasionally, because of the random fluctuation of the
“hand” between the “open” and “closed” conformations,
the dNTP may escape even before the formation of the
diester bond; this takes place with the rate constant ωr.
If the recruited dNTP is incorrect, the hand remains
“open” most of the time and the rate constant for the
rejection of the dNTP is Ωr (Ωr >> ωr). Note that
dNTP selection through 1 ⇋ 2 involves a discrimination
between the correct and incorrect dNTP substrate on
the basis of free energy gained by complementary base-
pairing with the template.

The transition 2(i + 1) → 1(i + 1) corresponds to the
relaxation of the freshly incorporated nucleotide to a con-
formation that allows the DNAP to be ready for the next
cycle. The rate constants for this step are ωh and Ωh

respectively, for correctly and incorrectly incorporated
nucleotides. Alternatively, while in the state 2(i + 1),
the DNAP can transfer the growing DNA molecule to
its exonuclease site; this transfer takes place at a rate
ωpf (Ωpf ) if the selected nucleotide is correct (incorrect).
Since Ωh << ωh, and Ωpf >> ωpf , the misincorporated
nucleotide most often gets transferred to the exonuclease
site whereas relaxation, rather than transfer, is the most
probable pathway when the incorporated nucleotide is
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FIG. 2: “Purely” polymerizing reaction (left panel) and
“pure” exonuclease reaction (right panel).

correct.

The actual cleavage of the diester bond that severs
the nucleotide at the growing tip of the DNA is repre-
sented by the transition 3(i + 1) → 1(i). For a correct
nucleotide, ωpr >> ωe indicating that the DNA is likely
to be transferred back to the polymerase site without
the unneccesary cleavage of the correct nucleotide. In
contrast, for an incorrect nucleotide, Ωpr << Ωe which
makes error correction a highly probable event. More-
over, Ωpr << ωpr,Ωe >> ωe.

Since the trimmed DNA is transferred to the poly-
merase site extremely rapidly [4], each of the rate con-
stants ωe and Ωe incorporate both the trimming and
transfer.
Interestingly, the full kinetic scheme in fig.1 can be

viewed as a coupling of a purely polymerase-catalyzed
reaction (shown in the left panel of fig.2) and a purely
exonuclease-catalyzed reaction (shown in the right panel
of fig.2); the transition with the rate ωpr couples these
two reactions.
Strictly speaking, for an “exo-deficient” DNAP [5],

ωe = 0 = Ωe although the rates of forward and reverse
transfer between the sites of polymerase and exonuclease
activities may not be necessarily negligible. Similarly, ei-
ther ωpf = 0 = Ωpf , or ωpr = 0 = Ωpr (or, both) can be
the cause of “transfer-deficiency” of the DNAP.

III. RESULTS AND DISCUSSION

A. Distribution of Dwell time

The DTD considered here arises from intrinsic stochas-
ticity and not caused by any sequence inhomogeneity of
the mRNA template [9]. For a molecular motor that is
allowed to step backward as well as forward, we use pos-
itive (+) and negative (−) signs to represent the forward
and backward steps, respectively. For example, ψ+−(t)
is the conditional DTD (cDTD) [10] when a forward step
is followed by a backward step and p+− is the probability
of such a transition. Therefore, the DTD can be written
as

ψ(t) = p+−ψ+−(t)+p++ψ++(t)+p−+ψ−+(t)+p−−ψ−−(t)
(1)
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Since in our model two consecutive backward steps are
forbidden implies that p−−ψ−−(t) = 0. We calculate the
cDTD following the standard method [11] that has been
used successfully earlier for the calculation of cDTD for
some other motors (see, for example, ref.[10]).
Let Pµ(j, t) be the probability of finding the DNAP

in the µ-th (µ = 1, 2, 3) chemical state at the j-th site
(i.e., at the discrete position xj (j = ∞, ...−1, 0, 1, ...∞).
Then master equations for Pµ(j, t) are

dP1(j, t)

dt
= −ωfP1(j, t) + ωrP2(j + 1, t) + ωhP2(j, t)

+ ωeP3(j + 1, t) (2)

dP2(j, t)

dt
= ωfP1(j − 1, t)− (ωr + ωpf + ωh)P2(j, t)

+ ωprP3(j, t) (3)

dP3(j, t)

dt
= ωpfP2(j, t)− (ωe + ωpr)P3(j, t) (4)

In terms of the Fourier transform

P̄µ(q, t) =

∞
∑

j=−∞

Pµ(xj , t)e
−iqxj (5)

of Pµ(xj , t), the master equations can be written as a
matrix equation

d

dt
P̄(q, t) = M(q)P̄(q, t) (6)

where P̄(q, t) is a column vector whose 3 components are
P̄1(q, t), P̄2(q, t), P̄3(q, t) and

M(q) =





−ωf ωh + ωrρ−(q) ωeρ−(q)
ωfρ+(q) −(ωh + ωr + ωpf ) ωpr

0 ωpf −(ωe + ωpr)





(7)
with ρ+(q) = e−iqd and ρ−(q) = eiqd; d being the step
size, ie., xj+1 − xj = d.
Taking Laplace transform of (6) with respect to time

P̃µ(q, s) =

∫ ∞

0

P̄µ(q, t)e
−st, (8)

the solution of the master equation in the Fourier-Laplace
space is

P̃(q, s) = R(q, s)−1P̃(0) (9)

where

R(q, s) = sI−M(q) (10)

and P̃(0) is the column vector corresponding to the initial
probabilities.

Now we define

P̃ (q, s) =
3

∑

i=1

P̃i(q, s) (11)

which can be calculated from

P̃ (q, s) =

3
∑

i,j=1

Coj,iPj(0)

|R(q, s)|
(12)

where Coj,i are the cofactors of the R(q,s).
The determinant of the matrix R(q,s) is a third order

polynomial of s and can be expressed as

|R(q, s)| = s3 + αs2 + β(q)s + γ(q) (13)

Note that α is independent of q whereas β and γ are
the function of q. For the explicit form (7) of M the
coefficients α, β(q) and γ(q) are given below.

α = ωe + ωf + ωh + ωpf + ωpr + ωr (14)

β can be expressed as

β(q) = β(0)+β+(1−ρ+(q))+β+−(1−ρ+(q)ρ−(q)) (15)

where

β(0) = ωeωf + ωeωh + ωeωpf + ωfωpf + ωfωpr

+ ωhωpr + ωeωr + ωprωr (16)

β+ = ωfωh (17)

and

β+− = ωfωr. (18)

Similarly,

γ(q) = γ+(1− ρ+(q)) + γ+−(1− ρ+(q)ρ−(q)) (19)

where

γ+ = ωeωfωh + ωfωhωpr (20)

and

γ+− = ωeωfωpf + ωeωfωr + ωfωprωr (21)

For convenience, we define the 2× 2 diagonal matrix

ρ(q) =

[

ρ+(q) 0
0 ρ−(q)

]

(22)

the column vector

Ψ(s) =
1

s

[

1− p++ψ++(s)− p+−ψ+−(s)
1− p−+ψ−+(s)− p−−ψ−−(s)

]

(23)
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and the 2× 2 matrix

ψ(s) =

[

p++ψ++(s) p+−ψ+−(s)
p−+ψ−+(s) p−−ψ−−(s)

]

(24)

where ψ±±(s) are the Laplace transforms of the cDTDs
ψ±±(t).

P̃ (q, s) and cDTD are related [11] by the equation

P̃ (q, s) = pT
0 (I− ψ(s)ρ(q))−1Ψ(s) (25)

where p0 is the vector of initial conditions. For exam-
ple, pT

0 = (1 0) corresponds to the given condition that
the motor has taken the initial step in the forward (+)
direction.
Thus, in principle, if one can calculate P̃ (q, s), one can

use the relation (25) to solve for ψ±±(s) and, then taking
inverse Laplace transform, obtained ψ±±(t). To calculate

P̃ (q, s), one has to use an appropriate set of initial con-
ditions consistent with the defnition of the dwell times.
The set P1 = 0,P2 = 1,P3 = 0 ensures that first step
is taken forward. In other words, in our calculation, we
start the clock by setting it to t = 0 when the DNAP
reaches the state 2 at j from state 1 at j − 1. Therefore,
in this case p−− = 0 = p−+. Corresponding to this initial
condition, we now define,

P̃+(q, s) = P̃ (q, s)
∣

∣

∣

{P1(0)=0,P2(0)=1,P3(0)=0}
(26)

and, from equation (25), we get [11]

1

sP̃+(q, s)

∣

∣

∣

∣

{ρ
−
(q)=0}

=
1− ρ+(q)p++ψ̃++(s)

1− p++ψ̃++(s)− p+−ψ̃+−(s)

(27)

Equation (27) can be re expressed as

1

sP̃+(q, s)

∣

∣

∣

∣

{ρ
−
(q)=0}

= a0 + a+ρ+(q) (28)

where

a0 =
1

1− p++ψ̃++(s)− p+−ψ̃+−(s)

a+ = −
p++ψ̃++(s)

1− p++ψ̃++(s)− p+−ψ̃+−(s)
(29)

Hence,

p++ψ̃++(s) = −
a+
a0

(30)

and

p+−ψ̃+−(s) =
a0 + a+ − 1

a0
(31)

Therefore, next we obtain
1

sP̃+(q, s)

∣

∣

∣

∣

{ρ
−
(q)=0}

directly

from (12) and, by comparing it with equation (28), find
out the expressions for a0 and a+; substituting these ex-
pressions for a0 and a+ into equations (30) and (31) we

get p++ψ̃++(s) and p+−ψ̃+−(s), respectively.

Using the same initial condition, from equation (12),
we get

P̃+(q, s) =
s2 + s(α − ωr(1− ρ−(q)) + β(0)− (1− ρ−(q))(ωeωpf + ωeωr + ωprωr)

s3 + αs2 + β(q)s+ γ(q)

(32)

Therefore,

1

sP̃+(q, s)

∣

∣

∣

∣

{ρ
−
(q)=0}

=
s3 + αs2 + s(β(0) + β+ + β+−) + γ+ + γ+− − (sβ+ + γ+)ρ+(q)

s3 + s2(α− ωr) + s(β(0)− (ωeωpf + ωeωr + ωprωr))
(33)

Comparing equation (33) with equation (28) we identify a0 and a+ and substituting these expressions for a0 and a+
into (30) we get

p++ψ̃++(s) =
sβ+ + γ+

s3 + αs2 + s(β(0) + β+ + β+−) + γ+ + γ+−
=

sβ+ + γ+
(s+ ω1)(s+ ω2)(s+ ω3)

(34)

where ω1,ω2 and ω3 are roots of the following equation

ω3 − αω2 + ω(β(0) + β+ + β+−)− (γ+ + γ+−) = 0 (35)

Inverse Laplace transformation of equation (34) gives the exact expression of p++ψ++(t)

p++ψ++(t) =
e−ω1t(γ+ − β+ω1)

(ω1 − ω2)(ω1 − ω3)
+

e−ω2t(γ+ − β+ω2)

(ω2 − ω1)(ω2 − ω3)
+

e−ω3t(γ+ − β+ω3)

(ω3 − ω1)(ω3 − ω2)
(36)
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Similarly, using the expressions of a0 and a+ in eq. (31), we get

p+−ψ̃+−(s) =
s2ωr + s(β+− + ωeωpf + ωeωr + ωprωr) + γ+−

s3 + αs2 + s(β(0) + β+ + β+−) + γ+ + γ+−
(37)

Inverse Laplace transformation gives the exact expression of p+−ψ+−(t)

p+−ψ+−(t) =
e−ω1t(γ+− − c1ω1 + ω2

1ωr)

(ω1 − ω2)(ω1 − ω3)
+
e−ω2t(γ+− − c1ω2 + ω2

2ωr)

(ω2 − ω1)(ω2 − ω3)
+
e−ω3t(γ+− − c1ω3 + ω2

3ωr)

(ω3 − ω1)(ω3 − ω2)
(38)
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FIG. 3: (Color online) Probability density of conditional dwell
time, ψ+−(t) is plotted for a few different values of parameter
ωr. The values of other parameters are (all in s−1) ωf=20.0,
ωpf=30.0, ωpr=15.0, ωh=40.0 and ωe =4.0.

Note that by putting s = 0 in equation (34) and (37)
we get the “branching probabilities”

p++ =
γ+

γ+ + γ+−
(39)

p+− =
γ+−

γ+ + γ+−
(40)

which satisfy the normalization condition p+++p+− = 1.
The cDTDs ψ+−(t) and ψ++(t) are plotted in figs. 3 and
4, respectively, for a few different values of the parame-
ters ωr and ωf . In both the figures, the most probable
dwell time increases with decreasing ωr and decreasing
ωf .
In the same matrix-based formalism, the average ve-

locity of a DNAP is given by the general expression [11]

Vp = −i
γ̇(0)

β(0)
, (41)

where the dot indicates derivative with respect to q. The
right hand side of eqn.(41) can be evaluated for our model
of DNAP using the explicit expressions (19) and (16) for
γ(q) and β(0), respectively. For the purpose of show-
ing close relation of V with the Michaelis-Menten (MM)
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FIG. 4: (Color online) Probability density of conditional dwell
time, ψ++(t) is plotted for a few different values of parameter
ωf . The values of other parameters are (all in s−1) ωr=5.0,
ωpf=30.0, ωpr=15.0, ωh=40.0 and ωe = 4.0.

equation for the average rates of enzymatic reaction, we
now assume that dNTP binding is rate limiting (the gen-
eral framework of our theory does not need this assump-
tion). Under this assumption, we can write

ωf = ω0
f [dNTPc] and Ωf = Ω0

f [dNTPw] (42)

where [dNTPc] and [dNTPw] are the concentrations of
the correct and incorrect substrates, respectively, and
that ω0

f >> Ω0
f . In this case, the average velocity of

the DNAP, i.e., the average rate of polymerization, can
be expressed in a MM-like form

V (c)
p =

K̃cat[dNTPc]

K̃M + [dNTPc]
(43)

for the correct nucleotides, where

K̃cat =
ωh(ωe + ωpr)

ωpr + ωe + ωpf

(44)

and the effective Michaelis constant is

K̃M =
(ωpr + ωe)(ωh + ωr) + ωpfωe

ω0
f (ωpr + ωe + ωpf )

(45)
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Replacing ω by Ω and [dNTPc] by [dNTPw] we get the
average rate of polymerization V w

p for the wrong nu-
cleotides. In the limit of negligible exonuclease activity,
the kinetic diagram shown in fig.1 reduces to the scheme
shown on the left panel of fig.2 which is the standard
MM-scheme with a single intermediate complex; in this
limit the expressions for K̃cat and K̃M are consistent with
those for the standard MM scheme [12].

B. Distribution of turnover time for exonuclease

In this section we derive the DTT for exonuclease ac-
tivity of the DNAP. We insert a hypothetical state P ∗

1

such that

P3
ωe→ P ∗

1
δ
→ P1 (46)

where in the limit δ → ∞, P1 and P ∗
1 become identical

and we recover our original model.
For the simplicity of notation, in this subsection we drop
the site index without loss of any information. The mas-
ter equations for Pµ(t) (µ = 1, 2, 3) and that for P ∗

1 (t)
are

dP1(t)

dt
= −ωfP1(t) + (ωr + ωh)P2(t) (47)

dP2(t)

dt
= ωfP1(t)− (ωr + ωpf + ωh)P2(t)

+ ωprP3(t) (48)

dP3(t)

dt
= ωpfP2(t)− (ωe + ωpr)P3(t) (49)

dP ∗
1 (t)

dt
= ωeP3(t) (50)

For the calculation of DTT, we impose the initial con-
dition P1(0) = 1, and P2(0) = P3(0) = P ∗

1 (0) = 0.
Suppose, f(t) denotes the DTT. Then, f(t) ∆t is the
probability that one exonuxlease cycle is completed be-
tween t and t+∆t, i.e., the DNAP was in state 3 at time
t and made a transition to the state 1∗ between t and
t+∆. Obviously, f(t)∆t = ωeP3(t) and, hence,

f(t) = ωeP3(t) (51)

Using a compact matrix notation, the equations (47),(48)
and (49) can be written the form

d

dt
Q(t) = NQ(t) (52)

where

N =





−ωf ωh + ωr 0
ωf −(ωh + ωr + ωpf ) ωpr

0 ωpf −(ωe + ωpr)



 (53)

and

Q =





P1(t)
P2(t)
P3(t)



 (54)

Solution of the equation (52) in Laplace space

Q̃(s) = S(s)−1Q̃(0) (55)

where

S(s) = sI−N. (56)

Solution (55) for the assumed initial conditions provide,

P̃3(s) =
(−1)1+3Co13

|S(s)|
(57)

which, explicitly in terms of the rate constants, takes the
form

P̃3(s) =
ωfωpf

s3 + α′s2 + β′s+ γ′
(58)

where

α′ = ωe + ωf + ωh + ωpf + ωpr + ωr (59)

β′ = ωfωpf + ωeωh + ωeωpf + ωfωpf + ωfωpr + ωhωpr

+ ωeωpr + ωprωr
(60)

γ′ = ωfωpfωe (61)

Since in the Laplace space the equation (51) becomes

f̃(s) = ωeP̃3(s), (62)

we get

f̃(s) =
ωeωfωpf

s3 + α′s2 + β′s+ γ′
=

ωeωfωpf

(s+ υ1)(s+ υ2)(s+ υ3)
(63)

as the DTT in the Laplace space.
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Taking the inverse Laplace transform of equation (63), we get the DTT

f(t) =

[

ωfωpfωe

(υ1 − υ2)(υ1 − υ3)

]

e−υ1t +

[

ωfωpfωe

(υ2 − υ1)(υ2 − υ3)

]

e−υ2t +

[

ωfωpfωe

(υ3 − υ1)(υ3 − υ2)

]

e−υ3t (64)

where υ1,υ2,υ3 are solution of the following equation

υ3 − (ωe + ωf + ωh + ωpf + ωpr + ωr)υ
2 + (ωfωpf + ωeωh + ωeωpf + ωfωpf + ωfωpr + ωhωpr + ωeωpr + ωprωr

)υ

− (ωfωpfωe) = 0. (65)
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FIG. 5: (Color online) Probability density of turnover time
for unproductive exonuclease mode of enzyme, f(t) is plotted
for a few different values of parameter ωpf . The values of the
other parameters are (all in s−1) ωf=20.0, ωr=5.0, ωpr=15.0,
ωh=40.0 and ωe = 4.0.

This DTT is plotted in fig(5). Plots are consistent with
the intuitive expectation that increasing ωpf leads to a
decrease the turnover time.

Suppose 〈t〉 denotes the mean time gap between the
completition of the successive exonuclease reactions cat-
alyzed by the DNAP. Then the average rate Ve = 1/〈t〉 of
the exonuclease reaction can be expressed in a MM-like
form [13]

V (c)
e =

Kcat[dNTPc]

KM + [dNTPc]
with Kcat =

ωpfωe

ωe + ωpf + ωpr

(66)

for the correct nucleotides where KM = K̃M . Replacing

ω by Ω and [dNTPc] by [dNTPw] in (66) we get V
(w)
e

for the wrong nucleotides. In the limit ωh → 0, ωpr → 0,
the kinetic diagram shown in fig.1 reduces to the simpler
scheme shown on the right panel of fig.2 which is essen-
tially a generalized MM-like scheme with two interme-
diate states. Not surprisingly, in this limit, the average
rate of the exonuclease reaction is consistent with that of
the MM-like scheme with two intermediate states [12].
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FIG. 6: (Color online) Φp and Φe plotted against ωpr while
the ratio Ωpr/ωpr = 0.1 is kept fixed. The three curves cor-
respond to ωe = 1.0s−1, 2.0s−1, 3.0s−1. The values of the
other pararemeters are (all in s−1): ωf = 1.0, Ωf = 10−5,
ωpf = 0.1, Ωpf = 10.0, ωr = .1, Ωr = 1.0, ωh = 10.0,
Ωh = 0.1.

C. Quantitative measures of error

Note that Φp = Ṽ
(w)
p /(Ṽ

(w)
p + Ṽ

(c)
p ) is the fraction of

nucleotides misincorporated in the final product of repli-
cation. Similarly, the fraction Φe = V c

e /(V
c
e + V w

e ) is a
measure of the errorneous severings, i.e., fraction of the
cleaved nucleotides that were incorporated correctly into
the growing DNA. Since ωpr is the strength of the “cou-
pling” between the two different enzymatic activities, we
plot Φp and Φe against ωpr in fig.6 for a few typical sets
of values of the model parameters.

Decreasing Φe with increasing ωpr is a consequence
of the escape route via ωpr for the correctly incorpo-
rated nucleotides that get transferred unnecessarily to
the exonuclease site. It is the increasing number of such
correctly incorporated nucleotides recused from the ex-
onuclease site that leads to the lowering of Φp with in-
creasing ωpr. The limiting values of Φp and Φe in the
limit of large ωpr, are determined by the corresponding

limiting expressions Ṽ
(c)
p ≃ (ωfωh)/(ωh + ωf + ωr), and

V
(c)
e ≃ (ωfωpfωe)/[ωpr(ωh + ωf + ωr)]. (Expressions for
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Ṽ
(w)
p and V

(w)
e are similar in the limit of large Ωpr.)

IV. SUMMARY AND CONCLUSION

Here we have theoretically investigated the effects of
the coupling of two different modes of enzymatic activ-
ities of a DNAP, in one of these it elongates a DNA
whereas in the other it shortens the same DNA. The fun-
damental questions we have addressed here in the context
of DNA replication have not been addressed by earlier
theoretical works [14]. The effects of tension on the poly-
merase and exonuclease activities, which have been the
main focus of the earlier works [14], will be reported else-
where [15]. The mechanism of error correction by DNAP
is somewhat different from the mechanism of transcrip-
tional proofreading which is intimately coupled to “back
tracking” of the RNA polymerase [16, 17].
We have derived exact analytical formulae for the

cDTD and DTT which will be very useful in analyzing
experimental data in single DNAP biophysics, particu-
larly its stepping patterns and enzymatic turnover. In

spite of their coupling, the average rates of both the
enzymatic activities are MM-like; the analytical expres-
sions for the effective MM parameters explicitly display
the nature of the coupling of the two kinetic processes.
We have also reported exact analytical expressions for
the fractions Φp and Φe which measure replication error

and erroneous cleavage; these expressions can be used
for analyzing data from both single molecule [5] and
bulk [18] experiments on wild type and mutant DNAPs.
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