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Understanding the organization of collective motion in biological systems is an ongoing challenge.
In this Paper we consider a minimal model of self-propelled particles with variable speed. Inspired
by experimental data from schooling fish, we introduce a power-law dependency of the speed of
each particle on the degree of polarization order in its neighborhood. We derive analytically a
coarse-grained continuous approximation for this model and find that, while the specific variable
speed rule used does not change the details of the ordering transition leading to collective motion,
it induces an inverse power-law correlation between the speed or the local polarization order and
the local density. Using numerical simulations, we verify the range of validity of this continuous
description and explore regimes beyond it. We discover, in disordered states close to the transition,
a phase-segregated regime where most particles cluster into almost static groups surrounded by
isolated high-speed particles. We argue that the mechanism responsible for this regime could be
present in a wide range of collective motion dynamics.

I. INTRODUCTION

Bacterial colonies [1], insect swarms [2], bird flocks [3],
and fish schools [4] are all examples of biological sys-
tems that display distinct collective motion. While they
differ in many specific aspects, they also share an impor-
tant characteristic: Each one is made up of individual
organisms that are self-propelling and move guided by
interactions with their surrounding neighbors. When we
strip down collectively moving systems in this way, we
obviously leave out important biological details, but in
return we obtain a good starting point for a theoretical
understanding of collective motion. Our central concern
in this paper is to introduce and study a very simple
model (a minimal model) where individuals move with
variable speed, and to show through theory and simula-
tions that it displays new properties not found in models
with constant speed.

In recent years, research on self-propelled (or active)
systems has grown steadily. Starting with the seminal
work by Vicsek et al. [5], we now find a range of theoret-
ical, numerical and experimental studies [6–15] concern-
ing a number of aspects of their dynamics. In Vicsek’s
original work [5], a minimal model of self-propelled col-
lective motion—now known as the Vicsek model—was in-
troduced, similar in flavor to the equilibrium XY-model
[16], but exhibiting new physical properties due to its
non-equilibrium nature.

In the standard Vicsek model, each individual is de-
scribed as a point particle with a given position and
heading direction. All particles advance with the same
constant speed and decide their next heading direction
based on the headings of all particles in their local neigh-
borhood. Particles are also subject to noise, which alters
their chosen direction. Under these simple conditions,
the Vicsek model exhibits a dynamical phase transition
from a disordered state (with no polarization order) to

an ordered state (where particles align and advance to-
gether) as the noise level is decreased, or the density of
particles increased.

Following its initial formulation, many variations of
the original Vicsek model [10, 17] have been introduced
to carry out analytical [6, 11, 12, 18] and numerical [5, 19]
studies of collective motion. However, almost all of these
models consider particles that advance with equal con-
stant speed. But in biological systems the speed of each
individual could vary in response to its neighbors’ dy-
namics, and it is reasonable to expect this variation to
be important for the resulting collective motion. Fur-
thermore, in recent experiments on fish schooling, it has
been observed that fish swimming in disordered regions
typically move slower than those in ordered ones [20, 21].
This observation supports the idea that variable speed
may play an important role in the collective dynamics of
real groups of self-propelled individuals.

In this Paper, we introduce an experimentally moti-
vated minimal model describing the collective motion in
groups of self-propelled particles with variable speed, and
study it analytically and numerically. The model is al-
most identical to the standard Vicsek model, but here
both the speed and orientation of each particle depends
on the state of its local neighborhood. While the choice
of speed dynamics is motivated by our experimental re-
sults on schooling fish, we emphasize that the model is
not intended to function as a detailed replicate of this
biological system. Note that models similar to the one
presented here were used in two recent numerical studies
focusing on how variable speed can enhance convergence
to an ordered state [22]. These studies, however, did not
address the analytical results or novel spatial dynamics
discussed here. In other recent studies, the same vari-
able speed rule that we use here was deduced as a conse-
quence of other rules implemented in their corresponding
models [23–25]. Starting from our model, we derive the
corresponding hydrodynamic equations of motion for the
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density of particles and for the order parameter field,
which undergoes a symmetry breaking transition at the
critical point, like in the original Vicsek model. Using
these equations, we find an analytical relation between
the coarse-grained particle speed and the local density
of particles, which we verify numerically. We then study
our variable speed model numerically, characterizing its
ordered and disordered phases as a function of the noise,
mean particle density, and variable speed rule. In partic-
ular, we discover in the disordered regime a novel state
where static cluster are formed, containing particles mov-
ing at speeds close to zero. Within these clusters, each
particle receives conflicting heading information from its
neighbors and thus advances at low speeds, which in turn
limits its ability to spread its own heading information
throughout the group. We hypothesize that this mecha-
nism could also be present in more realistic systems.

The Paper is organized as follows. In Section II we in-
troduce our variable speed model using new experimen-
tal results to motivate the particle speed dynamics. In
Section III we derive the corresponding coarse-grained
hydrodynamic equations of motion and compare them to
the constant speed case. Section IV presents numerical
results that confirm the validity of the analytical approx-
imations and explore regimes beyond these, where the
hydrodynamic description is no longer valid. We study
here the static clusters described above. Finally, Sections
V and VI contain our discussion and conclusions.

II. VARIABLE SPEED MODEL AND
EXPERIMENTAL MOTIVATION

A. Experimental background

Fish schools are a clear example of systems exhibit-
ing collective motion. To motivate the choice of speed
dynamics in our variable speed model we examined ex-
perimentally the relationship between individual speed
and local polarization order in a school of 300 golden
shiners (Notemigonus crysoleucas) swimming freely in a
shallow tank. A snapshot from the experiment is shown
in Fig. 1(a). The state of each individual i at a given time
t is defined by its position ~ri(t) (defined as the centroid of
the fish’s image), speed vi(t) and heading direction unit
vector n̂i(t), determined from automated video tracking.
Further details on the experimental setting, protocol and
tracking system can be found in Katz et al. [21].

To quantify the level of heading alignment in the local
neighborhood of an individual fish i we first define the set
Ui that contains all neighbors j within a given interaction
radius r̃, such that |~ri−~rj | ≤ r̃. Note that Ui also includes
the focal fish i. We then define χi as a measure of the
local polarization order around individual i, given by

χi(t) =
1

Ni

∣∣∣∣∣∣
∑
j∈Ui

n̂j(t)

∣∣∣∣∣∣ , (1)

where Ni is the number of individuals in Ui.
We analyzed the experimental data by finding for ev-

ery individual fish in each of the 300 000 frames recorded
its speed vi(t) and local order χi. We use here r̃ ≈ 15.5
cm, but verified that similar results are obtained for dif-
ferent values of r̃. This interaction zone is illustrated in
Fig. 1(a) by a white circle centered around a focal fish
marked by a black dot. We then generated a histogram of
the vi(t), χi data. For each bin value of χ, we normalized
the speed in order to get the probability distributions for
the speed as a function of the local polarization order.
The resulting data is visualized as a smoothed contour
plot in Fig. 1(b). It is apparent that there is typically
a strong (superlinear) relationship between the speed of
an individual fish and the alignment of its local neigh-
borhood. Note that this result does not reveal anything
about the causality, since we only show here correlations
within the data. These could be a consequence, for ex-
ample, of having individuals that advance slower when
they find themselves in a disordered environment or that
are unable to align to slow-moving neighbors.

B. variable speed model

Our model system consists of N polar particles moving
in a plane with periodic boundaries. At every time-step,
each particle updates its position according to the rule

~ri(t+ 1) = ~ri(t) + vi(t)n̂i(t), (2)

where we have implicitly, and without loss of generality,
defined the time-step here as ∆t = 1. To compute the
new position we must first define update rules for the
speed and direction. The latter is given by

n̂i(t+ 1) =
1

Wi

∑
j∈Ui

n̂j(t) +Niηi

 , (3)

were Wi is a normalization factor chosen so that n̂i is a
unit vector. Noise is introduced by adding the randomly
oriented vector ~ηi = η (cosφi, sinφi), with η the noise
intensity and φi a uniformly distributed random variable
in the interval [−π,+π].

Guided by the experimental results, we formulate a
minimal variable speed model by considering a simple
power-law relationship between the local order χi around
particle i and the particle speed vi. We write it as

vi(t) = vM [χi(t)]
γ
. (4)

If all neighbors within the interaction range r̃ of particle
i have a similar heading, we will have χi ' 1 and the
particle speed will be close to its maximal value vM . By
contrast, in disordered regions χi ' 0 and particles will
advance with speed close to zero. Note that for any γ
an isolated particle will move with maximal speed vM ,
since a particle is always contained within its own neigh-
borhood, i ∈ Ui, which implies χi = 1 in this case. The
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FIG. 1. (Color online) (a): Snapshot of experimental system
with 300 golden shiners swimming in a shallow tank. The
white circle defines the local neighborhood Ui of the focal
fish i marked by the black dot. The full experiment consists
of 3 × 56 minutes of video at 30 fps. (b): Experimental re-
lationship between the local polarization order χ around an
individual fish and its speed v. The contour lines delineate a
2d surface obtained by measuring the probability distribution
of v for every given value of χ. The overlaid curves display
the mode of these distributions, together with the v = vMχ

γ

relationship used in our variable speed rule, for different val-
ues of γ. We set here vM = 12 in order to make v coincide
at χ = 1 with the mode of the corresponding experimental
distribution.

exponent γ controls the shape of the curve that relates
local order and speed, as shown in Fig. 1(b). For γ = 0,
we recover the fixed speed model. Other examples of the
variable speed rule in Eq. (4) for different values of γ are
overlaid on Fig. 1(b). We observe that the variable speed
rule greatly simplifies the individual dynamics in that it
replaces the speed distribution expected for a given χi
by a single imposed speed value. It captures, however,
the qualitative dependency of the typical (most common)

value of vi on the local polarization order. If we would
consider the mean of the speed distribution, instead of
its mode, a similar curve would be obtained but now vi
would not approach zero for low χi values. Either way,
our minimal variable speed rule (4) was not formulated to
capture these subtleties and provides a reasonable simple
qualitative approximation of the actual speed dynamics.

Note that our choice of variable speed rule (4) is not
unique, despite its consistency with our experimental re-
sults. Indeed, some recent works find it as a consequence
of other interaction rules, which they consider to be more
fundamental, such as the dependency of individual speed
on local density [23–25]. We will focus here on the con-
sequences of Eq. (4), without trying to explain its origin.

Keeping N and r̃ fixed, the main parameters of our
model are the mean number density of particles (per in-
teraction zone area) ρs = Nπr̃2/L2, the noise intensity
η, and the variable speed exponent γ. In our numerical
study, we will explore different ρs regimes by varying the
system size L and study the order-disorder transition as
a function of η and ρs.

III. ANALYTICAL RESULTS

Systems of active particles are by construction out of
equilibrium, since energy is being continuously injected
at the particle level for self-propulsion. Therefore, free
energy functional methods cannot be applied. It is, how-
ever, possible to study the coarse-grained dynamics of
self-propelled particles in terms of a set of hydrodynamic
equations, which are derived either using symmetry argu-
ments [6, 8] or directly from the underlying microscopic
model [11, 12, 26]. We choose here the latter approach
to obtain hydrodynamic equations for the variable speed
model. Specifically, we will find equations for the coarse-
grained local density and polarization order parameter
fields and compare them to the constant speed case [12].
The derivation is carried out in the spirit of the Ginzburg-
Landau theory [27], that is, in an approximation that as-
sumes slow modulations in time and space of the local
order parameters considered. We follow here the same
approach detailed in [12], but applying it to a variable
speed case.

We begin by defining the coarse-grained local density
field as

ρ(~r, t) =

N∑
i=1

δ(~r − ~ri), (5)

the polarization order parameter field as the vector

~P (~r, t) =

∑N
i=1 n̂i(t) δ(~r − ~ri)

ρ(~r, t)
, (6)

and the traceless symmetric tensor,

Q(~r, t) =

∑N
i=1

[
n̂i(t) n̂i(t) − 1

21
]
δ(~r − ~ri)

ρ(~r, t)
, (7)
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which would correspond to the nematic order parameter
field in systems with apolar order [12]. Here, δ(·) is the
Dirac delta function, 1 is the identity matrix, and the
outer product n̂in̂i yields a 2 × 2 matrix with entries

nαi n
β
i , where nαi and nβi are the α and β components

of unit vector n̂i, respectively. Using the update rules in
Eqs. (2), (3) and (4), together with the analysis in [28], we
will find a stochastic partial differential equation for the
dynamics of the coarse grained density field ρ(~r, t). We
start by performing the second order Taylor expansion

ρ(~r, t+ ∆t)− ρ(~r, t) =

N∑
i=1

[δ(~r − ~ri(t+ ∆t))− δ(~r − ~ri(t))]

≈ −
N∑
i=1

vi(t) n̂i(t) · ∇δ(~r − ~ri(t)) +
1

2

N∑
i=1

v2i (t) n̂i(t)n̂i(t):∇∇δ(~r − ~ri(t)). (8)

Here, the operator ‘:’ is the double-dot (or colon) product

defined by ~a~b :~c ~d =
∑
α

∑
β a

αbβcαdβ , with indexes α
and β indicating the vector components. The expansion
in Eq. (8) is valid for small values of the order parameter

field (i.e. in the disordered regime) and small particle
speed, such that the displacement per time-step is much
smaller than the interaction range. By replacing vi(t)
from the variable speed expressions (4) and (1), dividing
by ∆t and taking the limit ∆t→ 0, we find

∂ρ

∂t
≈ −vM

N∑
i=1

[
1

Niγ
|
∑
j∈Ui

n̂j(t)|γ
]
n̂i(t) · ∇δ(~r − ~ri(t)) +

v2M
2

N∑
i=1

[
1

Ni2γ
|
∑
j∈Ui

n̂j(t)|2γ
]
n̂i(t)n̂i(t) : ∇∇δ(~r − ~ri(t))

= −vM
N∑
i=1

1

Niγ/2

[
1 +

1

Ni

∑
j 6=j′

n̂j · n̂j′
]γ/2

n̂i(t) · ∇δ(~r − ~ri(t)) +

v2M
2

N∑
i=1

1

Niγ
[
1 +

1

Ni

∑
j 6=j′

n̂j · n̂j′
]γ
n̂i(t) n̂i(t) : ∇∇δ(~r − ~ri(t)). (9)

We can write this expression in terms of ρ, ~P and Q by
using definitions (5), (6) and (7). The resulting partial
differential equation describes the dynamics of the den-
sity field in the Ginsburg-Landau approximation. It is
given by

∂ρ

∂t
= −∇ ·

( vM
m̄γ/2

~Pρ
)

+
1

2
∇∇ :

[
v2M
m̄γ

(
Q +

1

2
1

)
ρ

]
,

(10)
where m̄(~r, t) is a coarse-grained field representing the
number of particles within a circle of radius r̃ and cen-
tered at ~r. More precisely, m(~x, t) =

∫
ρ(~x, t) d~x, with

the integral performed over all values of ~x satisfying
|~x− ~r| < r̃.

We are now in a position to compare Eq. (10) with the
corresponding expression obtained in [12] for particles
moving with constant speed vC :

∂ρ

∂t
= −∇ ·

(
vC ~Pρ

)
+

1

2
∇∇ :

[
v2C

(
Q +

1

2
1

)
ρ

]
. (11)

Note that Eqs. (10) and (11) have the same form, and

become identical when we replace

vC(~r, t) =
vM

m̄(~r, t)
γ/2

. (12)

Hence, within the current approximation, we find that
the particle speed and coarse-grained local number of
neighbors will be correlated through an inverse power-
law. This amounts to a relationship between local speed
and local density that results from the specific power-
law dependency of the particle speed on the local po-
larization order that was imposed in our variable speed
rule, Eq.(4). Note that Eq. (12) can also be obtained by
directly replacing Eq. (1) into (4), expanding the result-
ing expression, and then finding the relationship between
particle speed and number of neighbors to leading order.
We confirm in Section IV that this relationship is sat-
isfied in numerical simulations of our model, within the
disordered regime.

The result in Eq. (12), combined with the variable
speed rule in Eqs. (1) and (4), implies that regions of
higher density will tend to be less ordered in this regime.
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This is in qualitative agreement with what we have ob-
served experimentally, but is opposite to the typical rela-
tionship between mean density and global order found in
minimal self-propelled particle models [10, 17]. Indeed,
we will show numerically in Section IV that, even in our
current variable speed case, the level of polarization or-
der of the whole system, ψ (defined in Eq. (18) below),
grows with its mean density ρs. Despite its simplicity,
our model is therefore able to capture a mechanism that
relates local levels of density and order nontrivially if we
impose the current particle speed rule.

By following the same procedure as outlined above (see
[12] for details), we can also write equations of motion
for the polarization order parameter. After a long but

straightforward calculation, we find

∂(~Pρ)

∂t
= ~F + ~G+ ~H, (13)

where ~F is the polynomial term, ~G the derivative term,

and ~H is the noise term. The polynomial term is given
by

~F =
√
m̄

[
1− 2η2 − 1√

m̄
− 1

2
~P · ~P

]
~P . (14)

The derivative term is

~G = −vM
√
m̄

2m̄γ/2

[
~P∇ · (~Pρ) +∇(|~P |2ρ) + (~P · ∇)~Pρ+∇ · (Qρ) +

1

2
∇ρ
]

+
v2M
√
m̄

4m̄γ

[
~T +∇2(~Pρ) +∇(∇ · ~P ) ρ

]
. (15)

where we have simplified notation by introducing the vec-

tor ~T , with Ti = ρ∇l∇k(QlkPi + PlPkPi + PlQik) and
indexes i, k, and l labeling the corresponding tensor com-
ponents. Finally, the noise term (in the Itô interpreta-
tion) is found to be

~H =
√
ρM ĥ. (16)

Here, ĥ(~r, t) is a vector field of unit length and random

orientation, delta correlated in space and time, while
M(~r, t) is a 2× 2 tensor field satisfying M2 = 1.

We now compare Eq. (13) to the constant speed case

derived in [12]. First, we find that the expressions for ~F

and ~H remain unchanged. This implies that the transi-
tion point, which can be computed in both cases using a
mean field approximation, will be the same. We confirm
this result in Section IV through numerical simulations.
By contrast, the derivative term (15) differs from the
constant speed case, where we have

~G = −vC
√
m̄

2

[
~P∇ · (~Pρ) +∇(|~P |2ρ) + (~P · ∇)~Pρ+∇ · (Qρ) +

1

2
∇ρ
]

+
v2C
√
m̄

4

[
~T +∇2(~Pρ) +∇(∇ · ~P ) ρ

]
. (17)

Again, we find that the constant and variable speed cases
are equivalent if we replace vC using Eq. (12).

We conclude that the hydrodynamic equations for the
density and order parameter fields can be obtained in the
variable speed case by simply replacing Eq. (12) into the
constant speed expressions.

IV. NUMERICAL STUDY

In this section, we use numerical simulations to ex-
plore the range of validity of the analytic description de-
rived above and study the dynamics of our variable speed
model beyond this regime.

We implemented agent-based simulations of N = 2000
particles in a two-dimensional periodic box of side L us-
ing Eqs. (2), (3) and (4). All runs presented in this Paper
were carried out for an interaction range r̃ = 2.0, maxi-

mum particle speed vM = 0.1 and time-step ∆t = 1, so
that the particle displacement per time-step was never
greater than 1/20-th of the interaction radius. We stud-
ied simulations for different levels of noise η and mean
density ρs, using the variable speed rule in Eq. (4) with
exponent ranging from γ = 0 to γ = 6. The mean den-
sity was varied by changing the box size L while keeping
the total number of particles fixed.

We characterize the collective dynamics resulting from
simulations using two different global order parameters.
First, the global polarization order ψ, given by

ψ(t) =
1

N

N∑
i=1

n̂i(t). (18)

This measures the degree of alignment in the system. It
is equal to 1 when all particles are heading in the same
direction, and to 0 when they are randomly oriented, re-
gardless of the particle speeds. Second, the mean particle
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speed v̄, defined as

v̄(t) =
1

N

N∑
i=1

vi(t). (19)

This order parameter is equal to 0 when all particles are
immobile and to vM when they advance at their maximal
speed. Note that both quantities are defined here for a
specific simulation snapshot at time t. We will use below
these instantaneous values and their averages over time:
〈ψ〉 and 〈v̄〉.

A. Range of validity of analytical results

In order to verify the validity of the analytical deriva-
tions in Section III, we confirmed that the relation in
Eq. (12) holds approximatively for a range of simulation
parameters. We performed runs using γ = 6, ρs = 2.5
and various levels of noise η. We then measured the speed
vi of each particle and the number of neighbors Ni within
its interaction range (including itself).

The average speed of all particles with a given number
of neighbors N is plotted on Fig. 2. In regimes where
our analytical approach is valid, Eq. (12) implies that
this speed should be approximately equal to vM/N γ/2.
The figure shows that this relationship is satisfied for high
levels of disorder, where no ordered structures that could
violate the approximations in our Ginzburg-Landau ap-
proach are present. We find that for η ≥ 0.7 the in-
verse power-law proportionality is already verified and
that for η ≈ 0.85 the exact analytical dependency in Eq.
(12) is approximately followed (displayed on the figure
as a dashed line). We observed numerically that this in-
verse proportionality continues to hold even for the cases
with the highest density considered in this paper. In-
deed, for ρ = 10, η = 0.7 and γ = 6.0, the mean speed
follows a power-law given by n−2.7 (data not shown),
which only slightly deviates from the n−3 predicted an-
alytically. We expect, however, that this approximation
will fail if ρ is increased much further, since various higher
order correlations will develop. The analytic approxima-
tion also fails for noise values < 0.7, where particles are
more ordered. In this regime, particles are approximately
aligned and distribute inhomogeneously in space, forming
clusters of various sizes. Interestingly, the mean particle
speed remains almost constant for all N values, implying
that the level of local alignment is not strongly dependent
on the local particle density.

B. The order-disorder transition

It is common to find in self-propelled particle models,
such as the Vicsek model [5], a non-equilibrium phase
transition that separates the disordered state where par-
ticles move in random directions from the ordered one
where they have a common heading. The ordered phase
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FIG. 2. (Color online) Relationship between the particle
speed and local density that emerges from simulations of our
minimal variable speed model for γ = 6. Mean values and
error bars were computed using data from 4×105 time-steps.
The top and bottom error bars show the standard deviations
computed using only speeds above or below the mean, respec-
tively. The dashed line displays the v = vMN γ/2 relationship
deduced analytically in the continuous approximation. As the
noise is increased and local ordered structures vanish, this ap-
proximation becomes more valid. Instead, for the low noise
η = 0.6 case we find an approximately constant speed for all
N . Here, the system orders and our analytical approxima-
tions are no longer valid.

can be reached by decreasing the noise level or by in-
creasing the mean density [9, 29–32]. This transition is
also present in a variation of the Vicsek model introduced
by Grégoire and Chaté in [29] that is almost identical to
our current model, but with constant particle speed (i.e.,
our γ = 0 case). We will examine below the effect of the
variable speed rule on this transition.

Figure 3 displays the mean polarization order param-
eter 〈ψ〉 and particle speed 〈v〉 as functions of the noise
η for different values of ρs. We observe that for values of
ρs ≥∼ 1 there is a sharp discontinuous transition point
at ηc ≈ 0.6. For lower values of ρs, the transition ap-
pears smoother and, as expected, occurs at lower critical
noise levels. The decrease in the order parameter 〈ψ〉 is
accompanied by a reduction of the mean particle speed.
Note that 〈v〉 is already substantially reduced for η val-
ues where 〈ψ〉 is still high. In addition to the curves
obtained with the variable speed model, we also include
in Fig. 3(a) a curve displaying the transition for a con-
stant speed case (γ = 0) with ρs = 8.61. We observe
that the transition point does not change strongly, as
predicted by the analytical results presented in Section
III. We verified that this is also the case for other values
of γ between 0 and 6 (data not shown).

Figure 4 shows the same order-disorder transition as
Fig. 3, but now as a function of the mean density ρs, for
different values of η. We find again that the mean particle
speed decreases as the system loses order. For η > 0.6,
the dynamics remain disordered even at high density val-
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FIG. 3. (Color online) Mean global polarization order 〈ψ〉 (a)
and mean speed 〈v〉 (b) as a function of the noise strength η
for different values of the mean density ρs. At ηc ≈ 0.63, the
system undergoes a discontinuous transition from an ordered
to a disordered state. This value appears unchanged for the
γ = 0 case (constant speed) and for ρs ≥ 0.98. As the system
approaches the disordered state, 〈v〉 decreases, vanishing for
η > ηc. All curves were computed using N = 2000 particles,
interaction radius r̃ = 2.0, maximum particle speed vM = 0.1,
and variable speed parameter γ = 6.0. Mean values and error
bars were computed using data from 4× 105 time-steps. The
different densities were obtained by changing the system size,
with L = 27, 40, 80, 120, and 200.

ues, which is consistent with the results in Fig. 3. As the
noise level is reduced, the critical ρs decreases until it
reaches a point where no transition is observed even for
very low mean denisity values. Finally, we include again
in Fig. 4(a) a curve for γ = 0 to show that the transition
point also remains unchanged here with respect to the
constant speed case.

We conclude from this analysis that the main features
of the order-disorder transition remain unchanged in the
variable speed case, as predicted by our analytical calcu-
lations. However, the critical slowdown of particles that
is shown above to occur as the system loses order has sig-
nificant effects in the resulting collective dynamics. We
will study this phenomenon in more detail below.
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FIG. 4. (Color online) Mean global polarization order 〈ψ〉 (a)
and mean speed 〈v〉 (b) as a function of the mean density ρs
for different levels of noise η. All other parameters are the
same as in Fig. 3. Mean values and error bars were computed
using data from 4 × 105 time-steps. As ρs is decreased, the
system undergoes a transition from an ordered state with high
〈ψ〉 and 〈v〉 values to a disordered state with 〈ψ〉 ≈ 〈v〉 ≈ 0.
The transition displayed by the order parameter 〈ψ〉 is very
similar for the constant speed case displayed (γ = 0). For
η = 0.7 > ηc no transition is observed, since the stationary
solutions remain disordered for all values of the density ρs.

C. Bi-stable solutions

We now take a closer look at the order-disorder tran-
sition. Our aim here is not to extrapolate its properties
to the thermodynamic limit, as this would require larger
computations and a systematic finite size scaling analy-
sis. Instead, we focus on understanding how the variable
speed affects the particle dynamics near the transition
point for a specific finite-size system with N = 2000.
Note that, while the mechanisms underlying the emerg-
ing dynamics appear to be robust, we cannot state that
these will not change as a function of the system size, or
for N →∞. In order to understand how our results de-
pend on system size, further work on larger groups and
a systematic study of finite-size effects will have to be
carried out. Such analysis, however, is beyond the scope
of this paper.

Figure 5(a) displays the global order parameter ψ as a
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FIG. 5. (Color online) Global polarization order ψ(t) and mean speed v̄(t) per frame, as a function of time. The variable
speed (a and b) and constant speed (c) cases are displayed for the same parameters used in Fig. 3, with ρs = 8.61 and different
noise strengths, close to the transition point. Bistable solutions are observed in both cases, but in the variable speed case the
transition to the disordered branch is accompanied by a critical slowdown of the dynamics, due to the imposed relationship
between particle speed and local polarization order. The intermittent switching between states thus becomes much less frequent.
Note that the critical noise value ηc is slightly higher in the variable speed case.
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FIG. 6. (Color online) Distribution of the global order param-
eter ψ for the variable speed case displayed in Fig. 5(a). The
system exhibits a discontinuous transition with two coexist-
ing states near the critical point. Each curve results from a
8×105 time-steps run, of which the first 105 steps of transient
dynamics were discarded.

function of time for three different values of η close to the
critical noise. The corresponding histograms are shown
in Fig. 6. We observe that the dynamics is bistable near
the transition; the system switches between ordered and
disordered states. This is in agreement with the first-
order transition that had been previously reported in the

constant speed case, both in simulations and in the mean-
field approximation [9, 29–32]. We confirm in our simula-
tions that the γ = 0 case also displays bistable dynamics
near the critical point, as shown in Fig. 5(c). We find,
however, that there is a strong difference between the
time series obtained in the variable speed and constant
speed cases. While the former presents very few transi-
tions between states, even for the long time-series pre-
sented, the latter shows several intermittent jumps from
one state to the other [33]. This difference is explained
by the lower speed imposed in our model to particles
surrounded by low local order, which results in a critical
slowdown of the global dynamics as the order parame-
ter ψ fluctuates to its lower metastable state. Indeed,
Fig. 5(b) displays the mean particle speed v̄(t) for the
same simulation used to generate Fig. 5(a). The corre-
sponding curves are strongly correlated, with the average
global dynamics following the local variable speed rule.
The disordered branch of the bistable solution therefore
acts similar to an absorbing state; once it is reached the
particle dynamics slow down so much that it is very hard
to escape.

D. Spatial dynamics and phase segregation

We turn our attention to the spatial dynamics observed
in the variable speed model. This is where the strongest
differences with the constant speed case emerge. We find
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that, in the disordered state close to the transition, a
phase separation occurs where some particles condense
into almost immobile high-density clusters while the rest
form a low-density ballistic gas between them.

Figure 7 presents simulation snapshots of the variable
speed model with γ = 6, N = 2000, ρs = 8.61 and three
different levels of noise. The length of each line is pro-
portional to the speed of the corresponding particle. The
four panels display: an ordered state (a), a disordered
state (b), and the two branches of the bistable state dis-
cussed in the previous section (c and d). Snapshot (a)
corresponds to a simulation with low noise η = 0.1. The
system is ordered (η is much lower than its critical value
ηc ≈ 0.625), with particles moving in the same approx-
imate direction. Since local neighborhoods are mostly
ordered, χ takes values close to 1 in Eq. (4) and parti-
cles advance at speeds close to vM . By contrast, snap-
shot (b) corresponds to a high noise, η = 0.7, disordered
case. Here, particles are almost immobile. Due to the
high mean density, even if the noise spreads out particles
almost homogeneously, each one has several neighbors
within its interaction range. Given the low local order,
χ ≈ 0 in Eq. (4) and particle speeds are close to zero.

Snapshots (c) and (d) are particularly interesting as
they display previously unobserved dynamics, not possi-
ble in a constant speed model, that occur when the noise
is close to its critical value. As shown in Figs. 5 and
6, we have in this case bistable global dynamics. The
two metastable solution branches correspond to an or-
dered state with high ψ and to a disordered state with
low ψ. Both states organize into a high-density cluster
surrounded by a low-density particle gas. In panel (c),
the cluster moves as indicated by the red arrow, while in
panel (d) it remains almost static. Larger simulations can
display several clusters with similar behavior. Particles
surrounding the clusters move rapidly.

While the presence of moving clusters is common in
Vicsek-like models [33, 34], static clusters such as the
one on Fig. 7(d) have not been previously observed. The
mechanism that leads to their nucleation therefore de-
serves more a detailed analysis. As the system fluctuates
between an ordered and a disordered state (being close
to the transition point), it reaches situations where par-
ticles are typically not locally aligned. This leads to the
formation of groups of slow moving particles that grow
as other particles reach them, because incoming parti-
cles suddenly confront high density disordered regions,
thereby losing orientation and slowing down drastically.
Once clusters are formed, they can only lose particles at
their frontier. There, some particles will spontaneously
align due to noise fluctuations and manage to escape
if they head away from the cluster, since they will feel
less and less the influence from the disordered region.
Eventually a single particle, or a small group, will be
far enough removed to feel only its own influence, form-
ing a low density ballistic gas between clusters. Particles
in this gas are isolated and their χ is therefore close to
1. They move at speeds close to vM until they reach

another cluster and condense again. These clusters will
thus grow until their absorption rate is balanced by their
evaporation rate. In the bulk of the clusters particles
advance very slowly, which hinders their ability to re-
order. Indeed, it has been shown that, when noise is
present, Vicsek-like models can only reach an ordered
state if particles are able to move with respect to each
other, which allows them to switch neighbors and estab-
lish effective long-range interactions over time [32]. If
particles always interact with the same neighbors, the
system becomes equivalent to an XY-model, for which
the Mermin-Wagner theorem shows that no long-range
order can exist in two dimensions at nonzero noise levels
[35]. Hence, the lack of relative particle motion in the
bulk of a static cluster helps stabilize it in a disordered,
immobile state.

In order to study how the particles distribute between
those that are part of a static cluster and those that are
not, we plot on Fig. 8 the individual particle speed dis-
tribution for various values of noise and density. Panel
(a) shows that, as the noise level is incresased, first the
typical particle speed is smoothly reduced and then a
zero-speed peak emerges, corresponding to static clus-
ters. While in the ordered phase, groups of particles
therefore move slower and slower until the critical noise
level is reached and static clusters start nucleating. In
panel (b) the noise level is fixed at a high value (η = 0.7),
so the system is always in the disordered state. As we
vary the density ρs, the particle speed distribution re-
mains bimodal. Particles can either be within a static
cluster and stop advancing or be part of the inter-cluster
gas and move at maximum speed vM while remaining iso-
lated. As the mean density is increased, more particles
are trapped in static clusters and thus have zero speed.

Finallly, we present in Fig. 9 the individual particle-
speed distribution as a function of the variable speed
exponent γ. We consider two parameter regimes, one
with noise intensity just below the critical noise value
[Fig. 9(a), η = 0.6] and one just above it [Fig. 9(b),
η = 0.7]. In the first situation, the typical particle speed
gradually decreases as γ is increased, from v ≈ vM = 0.1
when γ = 0, to v ≈ 0.04 for γ = 6. In the disordered
state, by contrast, the typical particle speed is reduced
much more abruptly for any γ > 0, quickly giving rise to
the nucleation of static clusters.

V. DISCUSSION

The analysis above demonstrates the similarities and
differences between standard, minimal constant speed
models of collective motion [5, 10] and our variable speed
version. We show that the variable speed case displays
an order-disorder transition analogous to that observed
for constant speed. In both cases, as the noise level is de-
creased or the mean density increased, the system goes
from a disordered state to an ordered one where they
align to a common heading. The dynamics associated to
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(a) (b) (c) (d)

FIG. 7. (Color online) Simulation snapshots for N = 2000 particles in four different steady states with the same mean density
ρs = 8.61, maximum particle speed vM = 0.1, and variable speed exponent γ = 6. Each particle is represented by a short line
with length proportional to its speed. (a) Low noise (η = 0.1) ordered state. We observe clusters of moving particles (with
velocity indicated by the arrow) equivalent to those found in models with constant speed. (b) High noise (η = 0.7) disordered
state. Particles are almost immobile and homogeneously distributed in space. Due to the high ρs value considered here, each
particle interacts with several neighbors heading in different directions, resulting in low particle speed. (c and d) Intermediate
noise states (η = 0.6253) close to the transition. The system here can be either in the ordered solution branch (c), displaying
a moving cluster (with velocity indicated by the arrow), or in the disordered branch (d), which exhibits a static cluster as
described in the main text.

the transition, however, are very different.

An interesting finding is that our variable speed rule
induces an inverse power-law relationship between the
speed of a particle, or the level of order in its surround-
ings, and the local density. Note that this is opposite
to the typical correlation between global order and mean
density in minimal models [5]. Indeed, high mean density
makes particles interact in average with more neighbors,
which increases the level of order, as it has been shown
numerically and analytically (in the mean field approxi-
mation) [31, 32].

Another observation from our study is the nucleation
of static clusters. In simulation videos the dynamical pro-
cess leading to these clusters looks similar to jamming in
granular materials [36]. Despite the differences between
these processes, we can draw some analogies that go be-
yond their visual appearance. In physical systems, the
opposing forces on jammed particles add to zero, stop-
ping their flow. Likewise, here opposing headings (i.e.
conflicting information) add up to zero, producing no lo-
cal order and therefore a vanishing particle speed. We
also note that both jammed and static regions will grow
by recruiting moving particles that reach them and are
stopped by opposing interactions. Finally, an additional
similarity is given by the dynamics in the bulk and edges
of the clusters. In both cases edge particles can escape if
the sum of all surrounding interactions points away from
the cluster, while bulk particles can only move if there is
a pathway of particles with a non-zero sum of interactions
along it that percolates through the group [36].

Despite the similarities outlined above, the mecha-
nisms behind both processes are very different. Jam-
ming is produced by contact forces or repulsive poten-
tials, while interactions in the variable speed model are
based on heading directions. Another important differ-
ence is that in our model static clusters cannot form be-

low a certain noise level, while jamming is always in-
creased at lower noise levels.

We end this section by pointing out that our variable
speed model considers only one possible way of relating
the speed of an individual particle to its local environ-
ment. While the model was inspired by experimental
data, we do not claim any specific causal origin to this
correlation. It could result from the interplay of a num-
ber of biological interactions that are not considered in
this minimal model. It could also be for example, that
alignment is enhanced in faster moving particles or that
the speeding rule depends in fact directly on the local
density.

VI. CONCLUSION

We have studied the dynamics of a minimal model of
collective motion where the particles move with variable
speed. We found that, despite the simplicity of the al-
gorithm and its similarity with standard constant speed
models, our system displays not only the usual order-
ing transition but also new dynamical phenomena that
could be present in more realistic models or in experi-
mental systems. These are: (1) an inverse correlation
between individual particle speed or local polarization
order and local density, resulting from the relationship
we imposed in our model between particle speed and lo-
cal order, and (2) the nucleation in certain regimes of
static clusters where individuals remain immobile, only
turning in place without achieving order.

We conclude that including variable speed dynamics in
standard self-propelled particle models produces a range
of new phenomena that can be relevant for experimental
systems. Given the amount of work dedicated up to now
to models with constant speed, we hope that our work
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FIG. 8. (Color online) (a) Distribution of individual particle
speeds for the same parameters as in Fig. 3, with ρs = 8.61
and different levels of noise intensity. As the noise level is in-
creased, the typical particle speed decreases until static clus-
ters start nucleating for η ≥ ηc ≈ 0.625. These clusters absorb
most particles, while a few isolated particles continue to move
between them at maximal speed, as shown by the peaks at
v = 0 and v = vM = 0.1. (b) Distribution of individual parti-
cle speeds for the same parameters as in Fig. 4, with η = 0.7
(disordered state) and different values of the mean density ρs.
Here, static clusters are always present, their size increasing
with ρs. Particles are again either frozen within these clusters
or moving alone between them at maximal speed. Each curve
results from 10 independent runs starting from different (ran-
dom) initial conditions. Each run was integrated for 5 × 105

time-steps, of which the first 105 steps of transient dynamics
were discarded.

will serve as a motivation to explore the generic and spe-
cific consequences of considering variable speed rules in
this class of systems.

ACKNOWLEDGMENTS

This work was partially supported by the National Sci-
ence Foundation under Grant No. PHY-0848755. SM

would like to thank Prof. Sriram Ramaswamy for his
help in the derivation of hydrodynamic equations for the
constant speed model. KT acknowledges support from

0

0.5

1  
ρs = 8.61
η = 0.6

γ = 0.0
γ = 0.25
γ = 1.0
γ = 2.0
γ = 3.0
γ = 6.0

0 0.05 0.1

0

0.5

1

Speed v

 

 
ρs = 8.61
η = 0.7

γ = 0.0
γ = 0.25
γ = 1.0
γ = 2.0
γ = 3.0
γ = 6.0

P(
v

)

(a)

(b)

P(
v

)

FIG. 9. (Color online) Distribution of individual particle
speeds for the same parameters as in Fig. 3, with noise inten-
sity just below (η = 0.6) or above (η = 0.7) the critical noise
value, and different values of the variable speed exponent γ.
When in the ordered state (a), the typical particle speed grad-
ually decreases as γ is increased, from a fixed v = vM = 0.1
value for γ = 0, to v ≈ 0.04 for γ = 6. In the disordered
state (b), by contrast, the typical particle speed is reduced
much more abruptly for any γ > 0, where the static clusters
described in the main text are nucleated. Each curve results
from 10 independent runs starting from different (random)
initial conditions. Each run was integrated for 5 × 105 time-
steps, of which the first 105 steps of transient dynamics were
discarded.

the Research Council of Norway.



12

[1] E. Ben-Jacob, I. Cohen, O. Shochet, A. Czirók and T.
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