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Recent experiments have shown that defect conformations in spherical nematics can be controlled
through variations of temperature, shell thickness, and other environmental parameters. These
modifications can be understood as a result of the induced changes in the effective elastic constants
of the system. To characterize the relation between defect conformations and elastic anisotropy
we carry out Monte Carlo simulations of a nematic on a spherical surface. As the anisotropy is
increased the defects flow from a tetrahedral arrangement to two coalescing pairs and then to a
great circle configuration. We also analyze this flow using a variational method based on harmonic
configurations.

PACS numbers: 61.30.Dk, 61.30.Cz, 64.70.mf

I. INTRODUCTION

Liquid crystals confined to curved geometries exhibit,
quite generally, topological defects [1]. These structures
are of current interest because of their prospective use
as building blocks for meso-structures [2]. Topological
defects on these surfaces organize in robust but control-
lable patterns. The defect sites at the surface of colloids
or nano-particles can be functionalized to dictate the or-
ganization of multi-particle aggregates. Such large-scale
organization of functionalized nano-particles has already
been achieved [3]. Investigations of defect arrangements
in spherical nematics create an avenue for the discovery of
new self-assembling structures. The purpose of this work
is to offer new insight into the defect structure in these
systems, focusing on spherical geometries. We carry out
simulations that map the flow of defects as environmental
conditions are changed, and we provide heuristic insight
into this behavior using a variational method.
We can understand the defect structure as deter-

mined by changes in the effective elastic constants of
the nematic. These constants are in turn controlled
by microscopic and environmental parameters. In two-
dimensional objects, the nematic field can be effectively
described by the Frank free energy, a mean-field theory
for the local director of the field that uses just two elastic
parameters: the splay K11 and bend K33 elastic moduli.
The free energy of this field theory is

F =
1

2

∫ √
g[K11( ~D · ~n)2 +K33(~n× ~D × ~n)2]d2x, (1)

where ~n is the nematic director describing the local
molecular orientation,

√
g is metric of the surface, and

the operator ~D is the covariant derivative on the surface
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of the sphere. A central goal of our simulations and an-
alytical investigations is to map the dependence of the
elastic constants of the system on microscopic and envi-
ronmental details.
A number of theoretical studies [1, 2, 4] have inves-

tigated in detail the director field and defect positions
for K11 = K33 (the one-constant approximation). It has
been clearly shown that, in this approximation, the min-
imum energy configurations of a spherical nematic com-
prise four +1/2 point defects at the vertices of a tetrahe-
dron inscribed in the sphere. It is also known, however,
that differences in the effective values of the elastic con-
stants are enhanced in finite systems.
Several theoretical and computational approaches have

been used to investigate the interaction between the sur-
face curvature and the topological defects of the texture
[5–13]. Despite these studies, many features of the defect
configurations, even in the simple geometry of a sphere,
are not known. Experimentally, on the other hand, a
novel type of double emulsions of nematic liquid crys-
tals has been developed that allows the study of defect
structures in thin nematic shells [14–17]. These struc-
tures range from 30− 100µm in size and are quite stable
when the line-interfacial energy is too large to allow de-
formations. In a series of recent experiments [14–17],
it has been shown that the bend elastic constant of a
spherical nematic diverges near the transition to the SmA
phase, and a continuous evolution of the defect structure
from a tetrahedral to a great circle configuration has been
revealed upon lowering the temperature. These experi-
ments lead to an important question regarding the mech-
anism governing the defect evolution and how it changes
with the microscopic parameters.
Although earlier simulations [5–7] focused on the ef-

fects of unequal elastic constants, there are still a num-
ber of open questions. First, a quantitative test of the
defect evolution in a thin nematic shell for the whole
range of elastic anisotropy has not been carried out thus
far; we are able in the present work to simulate a sys-
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FIG. 1: (Color online) (a) Nematic molecules are represented
as rods made up of connected spheres. The interaction be-
tween the rods is modeled as the sum of the interactions be-
tween beads. (b) Scheme to describe the defect structure in
spherical nematic. The defect positions and orientation are
defined by three angles θ, φ, and γ. (c) Simulation configura-
tion at a very high density. The defects in each pair on either
hemisphere are close to each other.

tem over a wide range of elastic anisotropy by employing
the new simulation model. The role of the microscopic
parameters is also of importance: rod lengths, density,
droplet size, etc., influence the defect configuration on
the sphere. We quantitatively connect these values to
the effective Frank constants that describe the textures.
Another novel aspect of our work is the exploitation of
symmetries of the ground state of the system at different
anisotropy values: we introduce a useful set of coordi-
nates for the overall structure of the defects. Finally,
we also introduce a variational approach to the study
of textures in curved geometries that complements other
analytical approaches to the problem.

We investigate the problem with two different meth-
ods. First, we carry out a series of Monte Carlo simula-
tions over a wide range of parameters leading to inferred
values of elastic anisotropy in the range 0 ≤ ǫ ≤ 0.9,

a. b.

d.c.

FIG. 2: (Color online) Evolution with temperature of defect
configurations in a spherical nematic. Results correspond to
simulations at u/kBT = 1.37, 2.22, 4.0 and 40.0 (a, b, c and
d). The small spheres represent a defect location, and defect
orientations are shown as red-vectors. As temperature is low-
ered in the nematic phase, there is a continuous transition
from a high-temperature tetrahedral configuration character-
ized by ǫ ≈ 0 to a low-temperature great circle configura-
tion with much stronger elastic anisotropy ǫ ≈ 1. We pair
nearest-neighbor defects and associate a great circle to each
of the pairs. At high temperatures we observe a tetrahedral
arrangement with the angle between great circles ≈ π/2. The
angle continuously decreases with temperature and at very
low temperatures the great circles coincide and the defect di-
rectors are perpendicular to them.

where ǫ is defined as the normalized ratio of the dif-
ference between splay and bend elastic constants, i.e.,
ǫ = (K33 − K11)/(K33 + K11). Then, we analyze the
defect flow using a variational approach and show that
the results of these approaches are consistent, especially
in the low-anisotropy range. The picture that emerges
from these approaches provides a better understanding
of the ways in which external factors control the defect
location transformation.

This paper is organized as follows. In Sec.II we dis-
cuss the simulation model. We describe a technique to
estimate the inferred value of the elastic anisotropy in
simulations with a planar approximation in Sec.III. In
Sec.IV, we give the results of Monte Carlo simulations
and provide the quantities measured in the simulations.
We discuss the variational approach in Sec.V. Finally,
in Sec.VI, we discuss and summarize the conclusions of
this study. Appendix A presents some technical details
associated with the variational calculation.
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FIG. 3: Asymptotic nematic textures on a plane around a
defect core for different values of elastic anisotropy: (a) ǫ =
0.0,(b) ǫ = 0.30, (c) ǫ = 0.60, and (d) ǫ = 0.90. These textures
have angular but not radial dependence.

II. SIMULATION MODEL

We simulate the nematic as rods formed by connected
spherical beads with each bead representing an interac-
tion site as shown in Fig. 1. This method has been widely
used in simulations of the liquid-crystalline phase behav-
ior in different systems [18–20]. In this approach, the rods
are assumed to be perfectly rigid, i.e., the intra-bead in-
teraction is ignored. As the goal in these simulations is
to explore the defect structure in the nematic phase, only
the excluded volume interaction between rods is neces-
sary to recover the phase behavior of interest. The inter-
action between the component beads is described via the
Weeks-Chandler-Anderson potential [21]:

Uαβ
ij =







4u

[

(

σ
rij

)12

−
(

σ
rij

)6
]

+ u, if rij ≤ 21/6σ

0, otherwise,

(2)
where rij = |~ri − ~rj | and i and j are the beads indices
on different molecules α and β. Here, σ defines the hard-
core diameter of a single bead. In this model, the elas-
tic anisotropy of in-plane nematic order is controlled by
rod length (l), overall density (ρ), interaction strength
(u/kBT ) and sphere radius (R). In our simulations, the
length and energy scales are defined by σ and u, respec-
tively. In this paper, we use σ = 1.0 and u = 4.0 unless
otherwise specified.

FIG. 4: (Color online) Comparisons of nematic textures
around a defect core: On a sphere around a +1/2 defect
(snapshot from simulations) and on the plane with an en-
forced boundary condition to have a +1/2 defect at the cen-
ter for ǫ = 0.74. We match the texture on the sphere with
that of the plane to estimate the elastic anisotropy in our
simulations.

III. ESTIMATION OF ELASTIC ANISOTROPY

IN SIMULATIONS

In a system constrained on a spherical surface, the ob-
served textures are the result of local and global factors.
In close proximity to a point defect, the local texture
is determined by the values of the effective coupling con-
stants while, at longer scales, the texture will also depend
on the interaction between the fields associated with each
defect [23]. We exploit this idea to extract the effective
coupling constant ǫ from our simulation results. We com-
pare the nematic texture on the sphere around a defect
core to the asymptotic plane solution obtained when the
radial dependence of the texture is ignored [24]. It can
be shown that the asymptotic solution in the plane is
also the asymptotic solution on a sphere. We position a
+1/2 defect at the center of a flat system of coordinates
as shown in Fig. 4(b) and write a nematic field of the
form n̂ = (cos(ψ+φ), sin(ψ+φ)), where ψ measures the
orientation of the field with respect to the radial vector.
It can be shown that the free energy density reduces to
f = (1+ ǫ cos 2ψ)(1+ψ′)2/2r, where the prime indicates
the derivative with respect to the two-dimensional polar
angle φ. The equation that describes the free energy min-
imum can be integrated to obtain a first-order relation
for ψ(φ):

dψ

dφ
=

√

1− ǫ cos 2ψ

p− ǫ cos 2ψ
(3)

where p is an integration constant that is set by the
strength of the defect and the anisotropy parameter ǫ.
This last equation can also be explicitly integrated, and
p(ǫ) can be determined as a solution to a transcendental
equation. We use these expressions to estimate the value
of ǫ for a given director pattern around a defect; some
examples are shown in Fig. 3. In each simulation, we
set a planar reference frame with an axis aligned with
the defects directors. The orientation of the rods in a
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FIG. 5: (Color online) Monte Carlo simulation results: (a-c)
Different angles as functions of temperature for a system of
N = 1600, l = 15σ at a fixed surface density(ρ ≈ 0.42). The
final droplet size is 59.99σ in LJ units. (d) Elastic anisotropy
as functions of temperature. The solid lines are merely guides
to the eye.

neighborhood of the defect gives a set of pairs (φ, ψ). An
approximate value of ǫ is then extracted by a least-square
comparison between these pairs and the values of ψ(φ) at
the same location for different values of ǫ. The inferred
values of ǫ are averaged over both time and four defects
of each configuration.
The determination of the defect position involves, in

addition to the statistical fluctuations associated with
the simulation method, further uncertainties due to the
finite sizes of the rods. In a given configuration, the
order-parameter, the position and orientation of a defect
core is determined using a finite set of neighboring rods.
The neighborhood considered has a radius 1.5 l. Our re-
sults retain some dependence on the size of the region
used, and this procedure introduces further uncertainties
in the determination of other derived quantities. We have
checked, however, that the results are not highly sensitive
to the specific size of the region. Our plots show error es-
timates that arise from both statistical fluctuations and
other systematic errors.

IV. MONTE CARLO SIMULATION

We have carried out constant - NPT Monte Carlo sim-
ulations of rod-like molecules on a spherical surface in-
teracting via the potential in Eq. (2). In all of these
simulations, we enforce a planar anchoring for the orien-
tation of the rods. Each Monte Carlo cycle consists of
random translations and reorientations of all N rods and
a compression move. The moves are accepted or rejected
in accordance with the standard Metropolis algorithm.
The translation and reorientation move is accepted with
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FIG. 6: (Color online) Variation of θ and φ as a function of
l/R at u/kBT = 1.33. The great circle angle (φ) decreases
smoothly with density (l/R). However, the distance between
the pair of defects (θ) on each hemisphere initially decreases
and finally increases with l/R. In these simulations, we con-
sider three different rod lengths l = 13σ, 15σ and 17σ. The
corresponding droplet sizes range from 52.96σ− 63.85σ in LJ
units. The solid lines are simply guides to the eye.

transition probability Pacc = min(1, exp(−(Ef − Ei)).
For the compression move, the area of the spherical shell
is allowed to fluctuate, and we replace the energy of
each microstate by the enthalpy H(i) = E(i) + σA(i),
where σ is the surface tension. So the transition proba-
bility, in the Metropolis scheme, for this move is Pacc =
min(1, exp(−∆H)), where; ∆H = (Ef −Ei)+(Af −Ai),
Af = final area, and Ai = initial area. We monitor
the energy of the system to ensure that equilibrium is
reached. A typical run consists of ∼ 107 Monte Carlo
steps for each σ. The system is compressed slowly with
increasing σ in steps of 0.01, or 0.001 at very low tem-
peratures and high densities.
To investigate the effect of temperature on the de-

fect structure we simulated a system of N = 1600 rods
(l = 15σ) at different temperatures. We start with a ran-
dom state and gradually compress the system until the
desired density of ρ ≈ 0.42 is reached. Here the surface
density is defined as ρ = NNbπσ

2/(16πR2), where Nb is
the number of beads on each rod. Figures 2(a-d) show
nematic textures obtained in these simulations. To iden-
tify the defect locations, we calculate the local nematic
order parameter, which is the largest eigen-value of the
nematic order tensor Qαβ(~r) = 2(nα(~r)nβ(~r) − 1

2
δαβ),

where n is a three-dimensional unit vector representing
the orientation of a rod. At high temperatures, nematic
textures contain both splay and bend deformations but
upon lowering the temperature the texture becomes more
splay- rich as shown in Figs. 2(c) and (d). These results
demonstrate that lowering the temperature tunes up the
elastic anisotropy of the nematic.
We further analyze these results by matching the tex-

ture near defect cores as described in the previous sec-
tion. Figure 4 shows an example of the simulation con-
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figuration and its matched asymptotic local texture, and
Fig. 5(d) shows the calculated values of elastic anisotropy
as a function of temperature. It is clearly seen that at
high temperatures in the nematic phase, ǫ ≈ 0, i.e.,
K11 ≈ K33. Upon lowering the temperature, the elas-
tic anisotropy gradually increases and the deformation is
splay-dominated. We argue that these simulations are on
the verge of the nematic to SmA transition, however, the
process is never complete as indicated by the measured
values of ǫ that are always less than 1.0. The argument
is justified as the local orientation of the rods in the sim-
ulation follows the geodesic on the sphere as seen in Fig.
2(d).

We characterize the defect locations by matching four
defects into two nearest-neighbor pairs, with each pair
defining a great circle. The angle between the great cir-
cles is φ. In our simulations, the pairs are highly sym-
metrical so that the separation angle 2θ is similar for
both pairs and we report only its average value. Finally,
each defect director forms an angle γ with respect to its
great circle. The angles for each of the defects are again
always similar. Figures 5(a-c) shows θ, φ and γ as func-
tions of temperature. We have, at higher temperatures,
configurations close to tetrahedral arrangements, as ex-
pected from Refs. [1, 2, 4] at lower anisotropy values.
In a perfect tetrahedral configuration, the angles must
be θ = 1

2
cos−1(−1/3) and φ = π/2, while γ is degener-

ate. It should be noted that at high temperatures, the
anisotropy parameter is small but not identically zero
in our simulations. This is the case for slightly deformed
tetrahedral configurations, and indeed has been observed
in most of the simulations around ǫ = 0. Consequently,
the value of θ shows large fluctuations. To get better
statistics near the tetrahedral configuration, we average
the angles over three possible great circle configurations.

Upon lowering the temperature, the anisotropy in-
creases and the angles gradually decrease and we ob-
serve an incipient coalescence of the pairs, though this
is never complete. At even lower temperatures, the po-
sitions of the defects move towards a great circle con-
figuration where in the majority of our simulations they
are approximately equally spaced θ = π/4, φ = 0, and
the defect directors are anti-parallel and perpendicular
to the common great circle γ = π/2. However, in limited
simulations at very high densities, we observe a pair of
defects moving towards the poles as shown in Fig. 1(c).
The graph of the pair distance angle θ is non-monotonic
as it decreases due to defect coalescence but increases
again while approaching the great circle conformations.
On the other hand, the angle between great circles φ has
a smooth decreasing behavior.

We have also explored the effect of rod length and sys-
tem size at various surface densities at u/kBT = 1.33.
We perform a large number of simulations by changing
the rod length and surface density. Results for defect lo-
cations in these cases are summarized in Fig. 6, where the
angles are plotted against the dimensionless ratio l/R. As
with the case of temperature variations, changes in num-
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FIG. 7: (Color online) Comparison of simulation and varia-
tional results: (a) Polar angle (θ) as functions of ǫ. (b) Great
circle angle (φ) as functions of ǫ. (c) Energy contribution
from ǫ and non-ǫ term. The total energy is plotted as a solid
line.

ber density, length of the rod, and colloid size all modify
the effective elastic constants. Here, the increments in
density lead to stronger anisotropy in agreement with
the previous report [25], and we again observe the flow
from tetrahedral to coalescing to the great circle confor-
mations. We note that trajectories depend on the specific
realization of the nematic, though always follow the same
general pattern.

V. HARMONIC FIELD APPROXIMATION

As we have seen, the variation of several physical pa-
rameters induces a change in defect positions that can
be consistently interpreted as a change in the effective
elastic constants. For further insight into the change of
defect positions with elastic constants we now turn to
a variational approach [23]. We construct a set of ana-
lytically described textures and select among these the
one with lowest free energy. If the texture space is large
enough, the texture with minimum energy has properties
similar to those of the true ground state of the Frank en-
ergy. We write Fo for this ground state energy and Fh

for a generic harmonic texture. The minimum among the
generic textures is Fmh. It is always true that the ground
state is lower than or equal to this restricted minimum:

Fo ≤ Fmh ≤ Fh. (4)

Our restriction to the space of harmonic textures has
several advantages. It makes the minimization problem
tractable in computational demands, it provides the pos-
sibility of heuristic insight, it allows us to use the de-
fect positions as meaningful variables, it gives us upper
bounds for the ground state, and it allows us to recover
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the known exact result at the isotropic point ǫ = 0. With
these textures on hand it is also possible to consider gen-
eralizations of the method to non-harmonic configura-
tions, though we will not consider these extensions in
this article.
Here we use a modified version of the conformal map-

ping technique employed in Ref. [4] to create textures
with prescribed defect locations. The sphere is mapped
onto the complex plane by the standard holographic pro-
jection. In the complex plane, a potential Ω(z), analyt-
ical away from discrete singularities, is used to describe
a planar texture. The angle of the nematic director α
with respect to the real axis is obtained from the relation
exp (−iα) = Ω′(z)/|Ω′(z)|. This director field is mapped
back onto the sphere with the inverse holographic projec-
tion. Instead of presenting the potential, it is simplest to
write down its derivative. We can show that the family
of potentials with

Ω′(z) =
eiδ

√

(z − z1)(z − z2)(z − z3)(z − z4)
(5)

lead to well defined smooth nematic textures on the
sphere with four 1/2 defects at locations that project
onto the poles zi. The phase factor exp(iδ) adds an ad-
ditional rotation of magnitude δ to the local field. This
angle can be connected to the previously described γ an-
gle describing the orientation of the defects. Connections
between this and other texture descriptions are presented
in the appendix. With these textures on hand, we can
evaluate the Frank energy and determine, among them,
the preferred location of the defects as a function of the
anisotropy. Our explicit evaluations of the energy ex-
clude a circle around defect cores of radius 0.02, for a
unit sphere.
It has been shown before that in the absence of

anisotropy, ǫ = 0, the minimum energy corresponds to
the tetrahedral arrangement of defects [1, 2, 4]. We find,
in our variational approach, that the defect locations can
always be organized into two pairs. As with our analysis
of simulations, each pair defines a great circle. We ar-
range the intersections of the two circles to coincide with
the north and south pole. One of the pairs is closer to the
north pole and the second is near the south pole. In this
construction, each of the defects is located at an angle
θ from the respective pole. It turns out that the global
rotation angle δ is always such that the directors of the
defects are aligned with their great circle but point away
from the pole. Thus, for each value of the anisotropy, the
texture is easily described in terms of the cross angle φ
and the polar displacement θ. This characteristic of the
variational texture is clearly present in our simulations
and justifies the use of the reduced set of parameters for
the description of the defect conformations. The depen-
dence of these angles on the anisotropy are presented in
Fig. 7(a) and (b), where they are also contrasted with
results from the simulations. While the variational ap-
proach selects configurations in which the nearest neigh-
bors align their directors along the great circle, pointing

towards the poles, we find in simulations that the nearest
defect directors are also antiparallel but do not align with
the great circle. It can be shown that that at ǫ = 0 the
energy is degenerate with respect to the global director
rotations induced by the parameter δ, but at non-zero
anisotropy the alignment with the great circles is always
observed. On the other hand, it is also known that at
ǫ = 1, the true ground state consists of four +1/2 defects
with arbitrary locations along a single great circle [5, 6].
Our approach can describe only one of those configura-
tions, namely, one with coinciding locations for each of
the pairs, i.e., they coalesce into two +1 defects. Thus,
this method recovers the first process of coalescence but
it is unable to fully reproduce the last process of align-
ment along the great circle. The nematic textures corre-
sponding to the minimum free energy are plotted in Fig.
8. It clearly demonstrates the defect evolution presented
above.
The variational calculation also offers further insight

into the forces driving the defect flow. To get better
insight into the driving forces between the defect inter-
action, we split the free energy into an ǫ-term and a non-
ǫ-term. The numerical results are shown in Fig. 7(c). It
is clear that a tetrahedral configuration arises from net
repulsive interactions between the defects. Increasing the
ǫ towards positive values simply increases the attraction
between the pair of defects on the same hemisphere, and
hence leads to the coalescing pair for ǫ = 1.0. The overall
evolution of the defect position with elastic anisotropy is
illustrated in the animation the Supporting Information.
The variational approach we develop here has a num-

ber of limitations. First, we ignore the microscopic de-
tail around a defect core which becomes important for
a larger value of epsilon. Second, we assume that the
defect structure can be always described with only three
relevant variables, the angels (θ, φ, γ). This approxima-
tion breaks down when splay becomes highly dominant
and the system texture presents four defects in a great
circle and the positions of the defects can be arbitrary.
This limitation is minor, however, as this occurs only in
a very small range of the parameter space. On the other
hand, we note that the variational method can be in prin-
ciple extended to obtain more precise results that can
match simulation and experimental observations. For
this goal it would be necessary to modify the textures
used. For example, it is possible to consider different
functional forms for the behavior of the texture near the
defect cores.

VI. CONCLUSION

In summary, we present a comprehensive description
of the defect structure in spherical morphologies with
surface crystalline order using two different approaches,
Monte Carlo simulations and a variational calculation.
The results show a continuous evolution of the defect
structure from a tetrahedral configuration to pair coa-
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a. b. c. d.

FIG. 8: (Color online) Harmonic nematic textures that minimize the free energy for different ǫ: (a) ǫ = 0.06, (b) ǫ = 0.30,
(c) ǫ = 0.60, and (d) ǫ = 0.90. The top row shows their projection on the complex plane while the bottom row shows their
realization in the sphere. The small spheres indicate the position of the defects, and their directors are marked as red rods.

lescence to a great circle arrangement upon increasing
the ratio of splay to bend elastic constants of nematic.
Our results clearly show how a perturbation in elastic
constants can be realized by changing temperature, sur-
face density, system size, and rod length. Our study of
texture and defect structure in spherical nematics em-
phasizes their description by means of three angular pa-
rameters (θ, φ, γ). These parameters are sufficient to
capture the defects arrangement. Additionally, we are
able to directly map simulated textures to specific values
of anisotropy by matching the known asymptotic shape
of the textures to those that appear in the simulation. To
complement this work, we show how textures described
analytically can be used to approximate those observed
in simulations. These analytic textures also permit the
estimation of energies in the system, and can in principle
be further refined for better agreement. In addition to
providing a fuller picture of a very geometry-rich system,
the techniques we develop here can be valuable in the
study of defect structures in other geometries, for exam-
ple, on elliptical surfaces. The analytical approach devel-
oped here can also be useful in the study of dynamical
processes involving textures in diverse geometries such
as the faceted tetrahedra induced by the defects in the
tetrahedral configuration in deformable membranes with
surface liquid crystalline order [26].
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Appendix A: Harmonic field and nematic texture

In this Appendix, we provide the details for various
useful representations of the nematic textures and their
energies. We consider two-dimensional vector representa-
tions of the nematic field and demonstrate the construc-
tion of families of textures using complex fields. The
energy of the textures is written in the form of squares of
curvatures as well as in terms of the complex derivatives
of an angle variable.
Locally, a nematic texture can be described by a nor-

malized three-dimensional vector field n, with n · n = 1.
Globally, this field has discontinuities at defect sites and
at seams where the vector inverts its direction. It is use-
ful to introduce a conjugate field m, obtained by rotating
the field n by an angle π/2 at each point about the corre-
sponding normal. As the nematic molecules are confined
on the spherical surface with a strong tangential anchor-
ing, we can introduce a two-dimensional representation
for them. In a two-dimensional representation, the vec-
tor n is described by two components ni, i = 1, 2. If
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the surface is parametrized by the coordinates xi, we can
define a set of basis vectors as ei = ∂X/∂xi, where X

is the three-dimensional position vector on the surface
of a sphere. With these definitions, the metric of the
surface is defined as gij = ei · ej. Associated with this
metric, we have a covariant derivative ∇i that projects
the usual gradient in three-dimensional space onto the
surface. This covariant derivative is the same as the
one used in writing the Frank free energy in Eq. (1),
but here we wish to stress its intrinsic form as an op-
erator in a two-dimensional manifold. The components
of the covariant derivative of a vector field are defined
as: ∇iv

j = ∂iv
j + Γj

ikv
k,where Γj

ik are the Christoffel
symbols for the metric.
We now proceed to write the nematic free energy us-

ing the two-dimensional representation of the nematic
field. As noted, for example, in Ref. [2], the two com-
ponents of the Frank free energy can be described by
terms quadratic on the curvatures of the field lines and
equipotential curves associated with a texture. We first
construct these two curvatures, κb and κs in terms of the
vector field n. If we follow the field n along the stream-
lines it defines, we can find its rate of change, tangent
to surface, as ni∇in

j . This vector must have the same
direction as the conjugate field mi since nini = 1 and
nk∇k(n

ini) = 2nink∇kni = 0. Thus, the magnitude of
the derivative gives us the curvature of the streamlines
along the surface κb = ±mj(n

i∇in
j). Since, nimi = 0,

we can write κb = ∓ni(nj∇jmi).
Since the derivative of mi has no component along mi

itself, we can add a null term to the curvature expres-
sion and write κb = ∓(ninj+mimj)∇jmi. We note that
we have the equality gij = ninj + mimj , which can be
checked by direct evaluation in a given set of coordinates.
For example, at a point where coordinates are orthonor-
mal, it is easy to check that both tensors are equal to
the identity matrix, and are therefore equal in any other
system of coordinates. This observation reduces our ex-
pression to κb = ∓∇im

i. The respective term in the
Frank free energy is proportional to the square of this
curvature, i.e.,

1

2
K33κ

2
b =

1

2
K33(∇im

i)2. (A1)

To obtain the second curvature, we note that the splay
of a vector field is associated with distortions of the field
ni as we travel along the transverse direction mi. That
is, we should evaluate the directional derivative mk∇kn

i.
This expression has also an interpretation as the curva-
ture κs of the streamlines of the field mi. As in the pre-
vious case, we contract with the transversal direction to
obtain its magnitude κs = ±mim

k∇kn
i and after adding

null terms proportional to ninj we obtain κs = ±∇ini.
Hence, we can write

1

2
K11κ

2
s =

1

2
K11(∇in

i)2. (A2)

The total free energy has therefore the alternative repre-

sentation

F =

∫

d2x
√
g
1

2

[

K11(∇in
i)2 +K33(∇im

i)2
]

. (A3)

Next, we connect this representation of the energy
with a description of the field by means of a complex
potential. As the sphere is two-dimensional, it is pos-
sible to use a single complex coordinate z to label its
points, at least locally. The complex representation we
will use, the holographic projection, has some unique
properties, such as being conformal with respect to the
metric of the sphere. Conformal metrics take the form
gijdx

idxj = f(z, z̄)dzdz̄ in complex coordinates. The
holographic projection maps a point in the unit sphere to
the intersection between the plane tangent to the south
pole and a chord passing through the north pole and
the given point. A point on the sphere with coordi-
nates (θ, φ) is then mapped to the complex plane position
z = 2 cot(θ/2)eiφ. The coordinate z and its conjugate z̄
define a basis ez = ∂zX, ez̄ = ∂z̄X. A vector expressed in
this basis is real if its components are related as vz = vz̄.
When using these coordinates, we replace the tensor in-
dices i = 1, 2 with i = z, z̄. In these coordinates the
metric of the sphere is

gij =
8

(4 + zz̄)

(

1 0
0 1

)

. (A4)

Using this metric, we obtain the Christoffel symbols
needed for the covariant derivative. We have:

Γz
zz = −1

2

z̄

(4 + zz̄)
. (A5)

and Γz̄
z̄z̄ = Γz

zz. The symbols are equal to zero for all
other combination of indices.
In the main text of this article, we have presented

the nematic field in terms of an angle α with re-
spect to the x- axis of the holographic projection as
exp (−iα) = Ω′(z)/|Ω′(z)|. We can construct an ex-
plicit representation of the vector as follows. We note
that, in the holographic projection plane, the vector field
(Nx, Ny) = (cos(α), sin(α)) has the correct direction but
is not normalized. Using the complex variables (z, z̄) in
this plane, the vector has a representation proportional
to (exp (iα), exp (−iα)), which has a norm

√
2gzz̄. We

can then write

ni =
1√
2gzz̄

(exp(iα), exp (−iα)) (A6)

=
1√
2gzz̄





√

Ω′(z)

Ω′(z)
,

√

Ω′(z)

Ω′(z)



 . (A7)

The conjugate field is

mi =
1√
2gzz̄

(i exp(iα),−i exp (−iα)) (A8)

=
1√
2gzz̄



i

√

Ω′(z)

Ω′(z)
,−i

√

Ω′(z)

Ω′(z)



 . (A9)
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The covariant derivatives of these fields involve three
types of terms, a partial derivative of the angle, ∂zα
or ∂z̄α, the Christoffel term proportional to Γz

zz or its
conjugate, and the derivative of the normalizing factor,
∂z(2gzz̄)

−1/2 or its conjugate. The last derivative, how-
ever, is proportional to the Christoffel symbol, and it is
then possible to write the components of the covariant
derivatives as

∇zn
z =

1√
2gzz̄

exp (iα)(∂zα+Hz) (A10)

∇z̄n
z̄ =

1√
2gzz̄

exp (−iα)(∂zα+Hz̄), (A11)

where the effective connection terms Hz are equal to half
the corresponding Christoffel symbols, Hz = (1/2)Γz

zz.
In the main text we introduced a potential of the form

Ω′(z) =
eiδ

√

(z − z1)(z − z2)(z − z3)(z − z4)
. (A12)

This potential differs from the one used in Ref. [2]. Their
selection adds a factor so as to have an angle measured
from the meridians of the sphere while the angle we use
is measured with respect to the x-axis in the plane. In
the format we offer, the positions of the defects are more
clearly identified.
The free energy of the texture can be evaluated using

known expressions in terms of the local angle or by using
the constructions presented above. It is useful to split
the free energy into two contributions, one independent
of ǫ, and one linear in this parameter. We first write

f =
1

2
K33(∇in

i)
2
+

1

2
K11(∇im

i)
2

(A13)

=
1

2
K33(∇zn

z +∇z̄n
z̄)2

−1

2
K11(∇zn

z −∇z̄n
z̄)2. (A14)

We split the terms in the last expression, using coeffi-
cients fǫ and fh for the terms dependent and independent
of ǫ, respectively. We can evaluate them, for example, in
terms of the angle α

f = (K11 +K33) [fh + ǫfǫ] , (A15)

fh = (∂zα∂z̄α+Hz̄∂zα+Hz∂z̄α+Hz̄Hz), (A16)

fǫ = Re
[

e2iα(∂zα+Hz)
2
]

, (A17)

where the operator Re[] extracts the real part of the ex-
pression.
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