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Swarms of self-propelled particles exhibit complex behavior that can arise from simple models,
with large changes in swarm behavior resulting from small changes in model parameters. We inves-
tigate the steady-state swarms formed by self-propelled Morse particles in three dimensions using
molecular dynamics simulations optimized for GPUs. We find a variety of swarms of different overall
shape assemble spontaneously and that for certain Morse potential parameters at most two com-
peting structures are observed. We report a rich “phase diagram” of athermal swarm structures
observed across a broad range of interaction parameters. Unlike the structures formed in equilib-
rium self-assembly, we find that the probability of forming a self-propelled swarm can be biased by
the choice of initial conditions. We investigate how thermal noise influences swarm formation and
demonstrate ways it can be exploited to reconfigure one swarm into another. Our findings validate
and extend previous observations of self-propelled Morse swarms and highlight open questions for
predictive theories of nonequilibrium self-assembly.

I. INTRODUCTION

The emergence of ordered swarms from a collection of
autonomous self-propelled agents is a ubiquitous natural
phenomenon. In biology, swarming is a common feature
of social organisms, and flocks of birds, schools of fish,
and herds of buffalo have been described by simple mod-
els [1–5]. Non-biological systems of self-propelled par-
ticles, including rotating magnetic disks[6] and microdi-
odes [7], also exhibit of steady-state swarms [4, 8–11], and
recent work has elucidated many ways the interactions
between particles can influence swarm structure [1, 12–
24], primarily in two dimensions.
Understanding how the interactions between agents re-

sults in swarms of a particular shape has a wide range
of applications, including the distributed control of un-
manned vehicles [24], assembly of mobile sensor net-
works [25], and microscale mixing [7]. Interaction poten-
tials that are qualitatively similar to the potentials that
describe nanoparticle interactions but scaled to larger
lengths have been utilized to control and reconfigure mo-
bile vehicles flocks that would otherwise require com-
plex and costly centralized control systems to achieve the
same task[24, 25]. Self-propelled microsensors powered
by alternating electric fields have demonstrated mixing
within microchannels [7]. Creating a swarm that per-
forms a preprogrammed task, whether within a microchip
or between cities, depends on our ability to robustly con-
trol the structure of a swarm through the manipulation
of the interactions between agents.
One inter-particle interaction that has received consid-

erable attention is the generalized Morse potential, first
introduced for modeling swarms by Levine et al. [14]. In
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two dimensions, D’Orsogna et al. [16] discovered rings,
vortex-like swarms, and circular clumps in systems of
self-propelled particles interacting via a Morse potential
and showed how the swarm stability varies with swarm
size. The Morse potential has been used to demonstrate
the control of swarming vehicles [24], and in three dimen-
sions was used to model systems of toroidal swarms whose
translational motion was tuned with thermal noise [26].
The structural diversity observed for 2D Morse swarms
is impressive and it is natural to ask what other sorts of
3D swarms might be stable and how robust their stability
is to thermal fluctuations. Unfortunately, no predictive
theory for swarm stability currently exists and the pa-
rameter space from which 3D Morse swarms can be cho-
sen is enormous. With four Morse parameters and three
independent thermodynamic parameters (volume, parti-
cle number, and temperature), we rely on computer sim-
ulations as the primary tool for predicting the conditions
under which swarms are stable, and the structural and
dynamical character of potentially achievable swarms.

Here we perform computer simulations of self-propelled
Morse particles using graphics processing unit (GPU) op-
timized software [27] to explore the formation of 3D sta-
ble swarms in both thermal and athermal environments
and gain insights on their dynamics and stability. Our
simulation code allows for sampling of vast regions of pa-
rameter space where we observe swarms including tori,
hollow shells, and two-dimensional rings. The “phase
diagram” we report as a function of Morse potential pa-
rameters is richly diverse, with large regions where one
swarm is stable over all others, but other regions where
swarms are observed over only narrow parameter ranges.
We observe notable deviations from equilibrium pattern
formation in this far-from-equilibrium system, including
assembly of competing swarms at a given state point,
and we demonstrate that initial conditions can be cho-
sen to bias the formation of one structure over another.
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We observe that thermal noise can influence the stability
of one structure over another and we demonstrate how
noise can be used to reproducibly and repeatedly switch
between different swarms. Beyond these new findings,
our work highlights the need for efficient computational
tools and predictive analytical techniques for the study of
swarm formation, and demonstrates the precise control
over swarm morphology that can be accomplished with
a model system.
This paper is organized as follows. In Section II we

describe the pairwise interaction parameters and “ac-
tive” particles that define our model, the methods we em-
ploy to perform simulations on graphics processing units
(GPUs), and the quantities we calculate to characterize
swarms and their structure. In Section III we present
the results of our extensive simulations. These results
include a “phase diagram” that summarizes the swarms
we find in the absence of thermal noise, two case stud-
ies for structural transitions induced by thermal noise,
and an evaluation of swarm structure sensitivity to ini-
tial conditions. In Section IV we discuss similarities and
differences of the swarm self-assembly as compared to
equilibrium self-assembly. In SectionV we conclude with
a summary of our work and highlight future possible ex-
tensions.

II. MODEL AND METHOD

A. Model

We consider particles interacting via the generalized
two-body Morse potential [14]

U(rij) = Cr exp

(

−rij
lr

)

− Ca exp

(

−rij
la

)

(1)

where rij is the distance between two particles i and j, Ca

is the attraction strength, Cr is the repulsion strength,
la is the attraction length scale, and lr is the repulsion
length scale. These parameters can be chosen to model
a wide range of interaction types, from purely repulsive
and/or long-range attractive, to particles that can over-
lap but have an energetic barrier to doing so. To model
the motion of self-propelled Morse particles in a thermal
bath, we update particle positions using the Langevin
equation of motion [28]

mi

∂~vi
∂t

= ~FC
i + ~FR

i + ~FD
i . (2)

Here,mi and vi are the mass and velocity of particle i, t

is time, and ~FC
i , ~FR

i , and ~FD
i represent the conservative,

random, and drag forces, respectively. The conservative
force between two particles is the usual negative gradient
of the potential summed over all neighbors

~FC
i =

∑

i6=j

−∇U(rij). (3)

The random force and drag force are related through the
fluctuation-dissipation theorem,

〈 ~FR
i 〉 = 0 (4)

〈 ~FR
i (t) ~FR

i (t′)〉 = 6γT ∗δijδ(t− t′) (5)

where γ is proportional to fluid viscosity, T ∗ is the dimen-
sionless temperature, δij is the Kronecker delta function
and δ(t) is the Dirac delta function. We model particle
self-propulsion as in Refs. [16, 26] with a modified drag
force

~FD
i = (α − γ − β|~vi|

2)~vi (6)

where α − γ determines the net propulsion strength
and β determines the amplitude of the non-linear drag
force. The propulsion and drag forces act parallel to a
particle’s velocity vector and define an optimal velocity

v∗ =
√

α−γ
β

towards which particles are driven.

B. Method

We implement the above model in HOOMD-blue, an
open-source GPU-based Molecular Dynamics package de-
veloped by our group, which we have extended with pack-
ages for calculating and applying self-propulsion forces
and the Morse potential via CUDA kernels executed on
NVIDIA Tesla S1070 graphics cards[27]. The Morse
potential (Eq. 1) is truncated and shifted to zero at
rij = 5σ, which avoids the potential energy drift that can
occur with an un-shifted potential. We employ generic
units of distance σ, particle mass m and energy ǫ. The
Morse potential energy at rij = 0 is equal to 1ǫ for
Cr = 2, Ca = 1, lr = 1, la = 1. The “temperature”
of the system is a thermal energy related to real tem-
perature by T ∗ = kBTreal in units of ǫ. The value of
kB is uniquely determined by the choice of real units
for energy, distance and mass. The time unit τ is de-

rived from τ =
√

mσ2

ǫ
. We update particle velocities and

positions using the two-step velocity Verlet integration
scheme [29] with dt = 0.001 or dt = 0.005. Generally we
find dt = 0.005 to be sufficiently small for reliable integra-
tion of the Langevin equation, except for very low values
of C and large values of l, where swarm artifacts can ap-
pear for dt > 0.002. For N = 600 point particles in a 20σ
cubic simulation box with periodic boundary conditions,
a simulation of 2×106 time steps with dt = 0.005 requires
about an hour on a single GPU. The 4000 simulations re-
quired to create Fig. 2 were completed in three days, and
would have required two to three months if performed
with LAMMPS [30, 31] on a parallel CPU cluster.
A typical trial run begins with N = 600 particles ini-

tialized randomly within a 5σ cubic region (cell) centered
within the larger 20σ cubic simulation box. Initializing
particles within the 5σ cell ensures one swarm is formed
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from all particles and avoids finite-size effects that could
be imposed by having a simulation volume commensu-
rate with the interaction potential length scale. Each
component of the particle velocities are initialized ran-
domly from a Gaussian distribution with mean T ∗ = 1.0
and standard deviation δT ∗ = 1.0. Henceforth, when
we refer to “random initial velocities” we mean they are
drawn from this distribution. We typically set α = 2.0,
γ = 1.0, and β = 0.5, and perform 2×106 time steps with
a step size of dt = 0.005. Simulation runs that differ from
these initial conditions are noted and explained. Differ-
ent system densities result in the same overall swarm
morphologies at a given state point, but where the num-
ber of swarms observed per simulation and the size of a
given swarm can vary from run to run.
The simulation times of 2 × 106 time steps are chosen

to allow for sufficient sampling of steady state structures
after transient swarms die out. Generally, we find that
transients have disappeared after 1× 106 time steps. We
define a steady state swarm for a simulation run if there
exists a structure or collection of structures that persist
over the final 1 × 106 time steps with a well-defined av-
erage and standard deviation for their total energy. We
distinguish among different swarms by calculating rela-
tive eigenvalues of their moment of inertia tensors and
comparing them with the corresponding values that are
characteristic to symmetric, circular structures such as
spherical shells and rings. If the values match within an
allowable tolerance of 10%, the structure is identified as
a swarm.
To distinguish between swarms where particles travel

about a fixed central point (e.g. a shell - Fig. 1b) and
swarms where particles travel about a fixed central axis
(e.g. a ring - Fig. 1c) we define the alignment order rela-
tive to particle i

Ai = 2

(

∑N
j=1|

~Mi · ~Mj |
∑N

j=1|
~Mi|| ~Mj |

− 0.5

)

(7)

where

~Mi = ~ri × ~vi (8)

is the angular momentum for particle i traveling at a
velocity vi located at position ri relative to its swarm
center of mass. In practice we select A to be the maxi-
mum value of Ai from the N measurements for a swarm,
indicating the correlations in angular momentum about
the axis where they are most correlated. When A = 0
particles move in circles whose axes have no average cor-
relation, as is the case for the shell (Fig. 1b). When
A = 1.0 the circular paths traveled by all particles share
the same axis, as is the case for the ring (Fig. 1c). In
addition to distinguishing between shells and rings, we
show that A is useful in characterizing the velocity cor-
relations for the other swarms studied in this work. A
metric similar to Eq. 7 is used to distinguish 2D vortexes
and flocks in Ref. [23].

FIG. 1. Three-dimensional self-propelled swarms of N = 600
Morse particles at T ∗ = 0, α = 2, γ = 1, and β = 0.5.
Steady state swarms are observed in MD simulations after
2 × 106 time steps have evolved for particles within a 20σ
simulation box with periodic boundary conditions. Particles
are initialized with random velocities and are randomly dis-
tributed within a 5σ cubic region inside the simulation box.
Blue arrows indicate particle velocities. Orange spheres rep-
resent particle positions, but the sphere diameters to not cor-
respond to particle size. Scale bars are shown in the upper
right and alignment order A is shown in the lower left of each
swarm. Swarm radii range from 0.06σ to 0.3σ (ball). (a) Ball
(C = 1.5, l = 0.5) composed of concentric spherical layers of
particles and identical velocities. (b) Stationary hollow shell
(C = 0.5, l = 0.5) composed of particles that travel in circular
orbits. (c) Stationary ring (C = 0.5, l = 0.5) with all particles
traveling in the same circular orbit. (d) Stationary spherical
swarm (C = 0.6, l = 0.5) with clumps of particles that travel
in circular orbits. (e) Stationary cylindrical swarm (C = 0.6,
l = 0.5) composed of clumps of particles traveling about the
same circular orbit. The particles within the clumps move
in a cylindrical fashion, but follow a complex path such that
the cross-sectional shape of the cylinder appears to be time
dependent. (f) Torus (C = 0.6, l = 0.3) composed of particles
that travel in circular orbits of different radii, but share an
axis of rotation. Particle paths within the torus span the en-
tire volume: a particle that is near the hole eventually moves
to the outer part and back again. See Supplemental Material
videos 1-6 for movies of these swarms.

III. RESULTS AND DISCUSSION

We perform 4000 MD simulations using HOOMD-
Blue to determine the athermal steady-state swarms that
emerge for Morse particles in 3D in Section III A. We
validate our approach by confirming previously reported
swarm behavior from Refs. [16] and [26] and report new
swarms and new behaviors including swarm coexistence.
In Section III B we perform 1760 MD simulations of dif-
ferent initial conditions and find that correlations in an-
gular momentum largely determine the trajectory of a
swarm and can influence the steady state swarm observed
in coexistence regions. We perform 950 MD simulations
of thermal systems and find random thermal fluctuations
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can influence structural stability and provide a means to
switch between different swarms.

A. 3D Swarms

We observe the morphology of 3D Morse swarms de-
pends upon the shape of the interaction potential, as has
been demonstrated in detail for 2D systems [14, 16, 22,
23]. We perform 10 independent simulations at each of
400 different combinations of two reduced interacting po-
tential parameters l = lr

la
and C = Cr

Ca

, with lr = 1,
Cr = 1, and T ∗ = 0. Henceforth when we specify values
of C or l without specifying Ca or la, we take Ca = 1
and la = 1. Simulations are initialized with N = 600
particles randomly distributed in a 5σ cubic region with
random velocities, within a 20σ simulation box with pe-
riodic boundary conditions. For most values of l and C
in the range 0.1 ≤ l ≤ 2.0 and 0.1 ≤ C ≤ 2.0 we observe
one of six distinguishable swarms: balls, shells, rings,
spherical clumps, cylindrical clumps, and tori (Fig. 1).
We summarize the relationship between observed swarm
morphologies and Morse potential parameters in Fig. 2.
There are three primary types of observations summa-
rized in the phase diagram; regions where one swarm
always self-assembles, regions where two swarms coexist
(e.g., “Torus-Ball” and “Shell-Ring”), and regions where
no coherent swarms emerge (“Mixture” and “Random”
in Fig. 2). In the Random region the repulsion portion
of the Morse potential dominates, precluding swarm coa-
lescence. In the Mixture region there is an energy barrier
to particle agglomeration, but occasionally small (N = 2
to N = 10) translating clusters appear.
A large portion of Fig. 2 is represented by the ball

structure (Fig. 1a). The ball structure is only found for
potentials that are repulsive when particle separation is
small and attractive when separation is large, similar to
the Lennard-Jones potential. All particles in a steady-
state ball travel with an identical linear trajectory with
speed v̄B = 2.0 ± 0.0. The structure of the particles
within the ball, concentric spherical shells, is a mini-
mum for the potential energy function 1. Another signif-
icant portion of Fig. 2 is represented by the shell swarm
(Fig. 1b). The shell swarm is hollow, with individual par-
ticles traveling in circular paths on the surface of a sphere
and with no correlation between particle orbits. Shells
are formed when the attraction between particles is large,
and have average velocity v̄S = 1.993 ± 0.003. Between
the shell and ball regions of Fig. 2 we finds regions where
rings (Fig. 1c), clumps (Fig. 1d,e), and tori (Fig. 1f) are
observed. Rings have average velocity v̄R = 1.994±0.003,
and differ from shells in that all of the particles share an
axis of rotation. Tori (v̄T = 1.89 ± 0.410) differ from
rings in that not all particles travel in a circular orbit of
the same radius. Cylindrical clumps (v̄CC = 1.96± 0.28)
are similar to tori, but particles are clumped and not
uniformly distributed as they are in the torus. Spherical
clumps (v̄SC = 1.93±0.36) are similar to shells in that all

0.0
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FIG. 2. “Phase diagram” for 3D stable structures assembled
at values of 0.1 ≤ l ≤ 2.0 and 0.1 ≤ C ≤ 2.0, T ∗ = 0, α = 2,
γ = 1, and β = 0.5. The ratio of repulsion to attraction
strength C = Cr

Ca

and the ratio of repulsion to attraction

length scales l = lr

la
determine the shape of the interaction

potential and the swarms observed at steady state. In the
upper right quadrant (l > 1, C > 1) repulsion dominates
the potential, preventing organized clusters from assembling.
In the lower right quadrant (l < 1, C > 1) the repulsion is
short-ranged and the attraction is long-ranged, resulting in
translating spherical balls. In the lower left quadrant (l <
1, C < 1) attraction dominates the potential and the phase
diagram is most complex, with shells, rings, tori, balls, and
clumps all stabilized within narrow ranges of l and C. In
the top left quadrant (l > 1, C < 1) particles are attractive,
but the repulsive length scale dominates, giving rise to hollow
shells.

particles travel in circular orbits of the same radius, but
the particles are not uniformly distributed. The average
velocities we report above correspond to the state points
indicated in Fig. 1 and, except for the ball swarms, can
differ slightly for different state points.
The 3D phase diagram we report in Fig. 2 is qualita-

tively similar to the 2D phase diagram calculated ana-
lytically in D’Orsogna et al.[16]. Both phase diagrams
have regions of instability in the upper right quadrant
and show the richest swarm diversity along the l/C = 1
line. We check our implementation reproduces 2D re-
sults from Ref. [16] and find the expected swarms at cor-
responding state points: Clumps (N = 100, α = 1.0,
β = 0.5, lr = 0.5, la = 1, Cr = 0.6, Ca = 1), ring clump-
ing (N = 100, α = 1.0, β = 0.5, lr = 0.5, la = 1.2,
Cr = 0.6, Ca = 1), rings (N = 100, α = 1.0, β = 0.5,
lr = 0.5, la = 1, Cr = 0.5, Ca = 1), and vortexes
(N = 300, α = 1.0, β = 0.5, lr = 0.5, la = 2, Cr = 1.0,
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Ca = 0.5). Some of the structures we report here are
analogues of the two-dimensional swarms predicted in
Ref. [14, 16, 22, 23]. The 3D ball is similar to the 2D co-
herent flock state reported in Ref. [23], in which particles
travel at identical velocities and reside in their potential
minima. The 3D hollow spherical shell corresponds to the
2D ring [14, 16, 22, 23], and the 3D spherical clumps are
analogous to the circular swarm of clumps in 2D [16, 23].
We also observe some differences between our 3D

swarms and Morse swarms reported in other work. At
C = 1 and l = 0.2, conditions where a vortex is formed
in 2D, we expect to observe its 3D analogue, the torus.
In our MD simulations we observe the torus as an initial
transient, but find that it eventually transforms into a
ball. When not confined to a 2D plane, particles are able
to reconfigure into a potential energy minimizing sphere
and achieve v∗ simultaneously at this state point. These
findings are consistent with Strefler et al.[26], where tran-
sitions between torus and ball swarms are reported when
the Morse potential is tuned to have a repulsion at small
rij .
It is not obvious that we should observe 2D rings in

our 3D simulations and that they should be stable across
many (l, C) values, as seen in Fig. 2. We observe coexis-
tence of shells and rings at l = 0.9 and C = 0.9, which is
interesting because swarm coexistence is not reported in
previous Morse swarm work. In a departure from equilib-
rium statistical mechanics, we find that in the regions of
swarm coexistence the probability of forming one swarm
can be biased by choice of initial conditions, which we
discuss in detail in the following section.

B. Initial Conditions

Here we consider three points on the phase diagram
and investigate ways in which initial conditions can be
chosen to bias swarm formation. First we show that al-
though swarms may not assemble spontaneously in the
Random region of Fig. 2, a pre-assembled swarm can be
maintained there. Second we show in a region of torus-
ball coexistence that swarm formation is not sensitive
to initial conditions. Third, we show that while either
initial velocity correlations or initial spatial arrangement
can bias swarm formation at the shell-ring coexistence
point (l = 0.5, C = 0.5), a metric that combines these
measurements (alignment order A, Eq. 7) is a good pre-
dictor for the final steady state.
At l = 1.7 and C = 1.2 we observe no ordered structure

assembling from particles initialized randomly within a
5σ cubic region centered within a 20σ simulation box
with periodic boundary conditions. If we instead initial-
ize particles as a small shell that fits within the attraction
region of the potential, we observe that the shell shrinks
or expands, depending on its initial size, to another shell
that becomes stable for the remainder of 1×106 time step
simulations. The necessary condition for shell formation
is that particles are initialized within the attraction re-

gion and have sufficiently low kinetic energy that they
will not escape to the repulsive regime of the Morse po-
tential. Indeed, we also find shells stabilized in the Ran-
dom region by initializing particles on a single point with
random initial velocities. By initializing the system as a
shell, we find shells are stable within the region (l = 1.7,
C ≤ 1.5), which spans the Mixture region as well as the
Random region.

Next we consider l = 0.8 and C = 1.0, where the ball
and torus coexist in our simulations. We perform simu-
lations initialized as a ball, as a cylinder, and randomly
distributed within a 5σ cube, with 100 independent runs
with different random initial velocities. At these parame-
ters, we find the probability of observing a toroidal swarm
to be 6% for all three initial conditions. In all cases that
the torus does not form, a spherical ball forms instead
and translates through the simulation box.

Finally, we consider ring and shell coexistence at l =
0.5 and C = 0.5. We note that whenever we observe
a ring, we also observe that it is preceded by a hollow
shell which then transforms into a ring. The shell-to-
ring transition occurs over 4 × 104 time steps, and can
occur as many as 4 × 104 time steps after the shell has
self-assembled. We perform simulations in which particle
positions are initialized as a shell, sphere, cylinder, and
randomly distributed within a 5σ cube to investigate sen-
sitivity to initial conditions at this state point. For each
initial condition we perform 100 runs with random initial
velocities and record the structure observed after 1× 106

time steps (Fig. 3). When initialized as a shell, only
2% of swarms transition into rings, a substantially lower
percentage than the 98% of swarms that form rings from
spatially randomized initial conditions, all of which pass
through a hollow shell transition state. For each of the
100 runs initialized as a cylinder, all transition into rings.
For the runs initialized as balls, 12% transition into rings.

The sensitivity of swarm morphology to initial condi-
tions we report is similar to that reported in Ref. [6],
in which magnetic, millimeter-sized disks are driven by
an external rotating permanent magnet to self-assemble
ordered patterns on a liquid-air interface. A variety of
ordered patterns are formed as a result of competing
magnetic attraction and hydrodynamics repulsion as the
disks spin in the fluid. The authors demonstrate that,
depending on initial conditions, a system of one large
and nine small disks self-assembles into two different sta-
ble configurations. Another similarity between our ring-
shell coexistence and the swarm coexistence in Ref. [6]
is that swarm size can be increased as self-propulsion is
increased. In the system of 10 equally-sized disks from
Ref. [6], two different ordered patterns can self-assemble
and interconvert. While we observe transitions from
shells to rings, we never observe the reverse transition.
The one-way conversion we observe is interesting because
the ring has neither a lower potential energy nor higher
entropy than the shell, though the particles are traveling
at slightly more constant velocities. The smaller energy
dissipation in the ring associated with more constant ve-
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FIG. 3. Four initial conditions and their probabilities of tran-
sitioning to a ring. The shell and cylinder initial conditions
have radii of 0.062. The ball has a radius of 1.35 and the ran-
dom configuration is distributed randomly in cubic box with
side length of 5. Ring transition probabilities are calculated
from 100 independent runs performed for each of the indi-
cated initial condition with T ∗ = 0, α = 1, γ = 1, β = 0.5,
Cr = 0.5, lr = 0.5, Ca = 1, la = 1, and N = 600 with random
initial velocities.

locities is consistent with the hypothesis of Grzybowski et
al. [6] where lower dissipation enhances swarm stability.

We find as a shell transforms into a ring the axes of
rotation for the individual particles gradually align, re-
sulting in cylindrical bands, the subsequent alignment of
which results in a ring. See Supplemental Material video
3 to view this transition. To investigate the alignment
of angular momenta further, we initialize 1000 random
shells with random initial velocities and run for 1 × 106

time steps. We record the initial alignment order A and
the final steady state swarm, and summarize the corre-
lation between the two in Fig. 4. The more the parti-
cle angular momenta are initially aligned, the higher the
probability that the shell would transform to a ring. In
particular, Fig. 4 shows that if a shell experiences an in-
stantaneous A greater than 0.15 we would expect it to
transition into a ring.

We perform additional simulations with three different
spatial initializations and two velocity distributions and
observe the initial A trajectories in detail. Simulations
are initialized as the random, ball, or shell arrangements
from Fig. 3 with either a random Gaussian velocities of
mean 2 and standard deviation 1, or velocities drawn
from a ring swarm (velocities parallel with mean 1.994
and standard deviation 0.003). We then run 10 indepen-
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FIG. 4. Probability of a random shell transforming into a
ring as a function of alignment order A (Eq. 7) at T ∗ = 0,
α = 1, γ = 1, β = 0.5, Cr = 0.5, lr = 0.5, Ca = 1, la = 1,
and N = 600. The blue line is drawn as a guide to the
eye. Inset are representative alignment order trajectories for
swarms that form a shell (red) and ring (blue).

dent 0.5-million-step simulations for each of the six cases
and record the number of rings formed. The average A
over initial 1×104 step trajectories for these six cases are
shown in Fig. 5. We see here that the combined choice of
spatial arrangement and velocity distribution determine
the initial A trajectory, which can predispose a swarm to
give rise to a ring vs. a shell. In all cases where the A tra-
jectory has a positive slope after 2000 steps, A increases
past 0.15 and rings result. If the initial A trajectory is
sufficiently low, as was the case for one random initial
condition initialized with velocities from a ring, the A
trajectory can begin above 0.15, but dip below and stay
below, resulting in a shell. The three instances of Ball
initial conditions with random velocities resulting in a
ring have slightly positive A slopes that eventually cross
A = 0.15 after a few hundred-thousand steps.

In summary, the sensitivity of steady state swarm mor-
phology to initial conditions is not uniform across the
state space sampled in Fig. 2. In some regions we find
swarm formation to be robust to initial conditions, while
in others we find both spatial correlations and velocity
correlations can have an impact on the rates of swarm
formation. For the case of the shell-ring coexistence in
particular we find that alignment order A, a metric that
combines velocity and spatial correlations in its measure-
ment of angular momentum correlations, provides pre-
dictive capabilities between the two competing swarms.
The combined choice of initial positions and velocities
determine whether A shall increase or decrease initially,
and whether this trajectory stabilizes above or below 0.15
determines the proportion of rings observed. In regions
where we observe sensitivity to initial conditions, we also
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FIG. 5. Initial time evolution of the alignment order A aver-
aged over 10 independent runs for six different combinations
of initial arrangements and initial velocities. The particles
are spatially initialized either randomly within a 5σ cube,
within a 2.7σ ball, or on a 0.062σ shell within a 20σ cubic
simulation box with periodic boundary conditions. Veloci-
ties are initialized from a Gaussian distribution with mean 2
and standard deviation 1 (random ~v) or drawn from the ring
velocity distribution with mean 2, standard deviation 0.15,
and z-component = 0 (parallel ~v). The number of observed
rings after 1×106 time steps are shown in parentheses. Error
bars are plotted every 2000 steps and denote one standard
deviation.

expect to observe sensitivity to random noise, which we
explore in the next section.

C. Noise

In this subsection we perform simulations at T ∗ > 0
to investigate how thermal fluctuations can influence
the formation of swarms. We find in general that for
T ∗ > 0.20 the attractive forces between particles are not
large enough to stabilize ordered swarms anywhere in
the (l, C) range reported in Fig. 2. The highest temper-
ature at which a swarm can be assembled at a particular
state point (the order-disorder transition temperature)
depends upon the shape of the interaction potential and
the initial conditions for self-propelled particles, and is
an interesting area of future study. Here we focus on
the torus/ball and ring/shell coexistence regions and find
that increasing temperature stabilizes one swarm over the
other, as long as T ∗ is below the order-disorder transition
temperature.
At Cr = 0.9, lr = 0.6, Ca = 1, and la = 1, a parameter

combination at which tori are found, increasing temper-
ature can transform a torus swarm into a swarm shaped
like a bumpy sphere. We begin with a pre-assembled
N = 600 torus and gradually increase the noise intensity
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FIG. 6. Probability of shell (red) and ring (blue) formation
as a function of T ∗ at α = 2, γ = 1, β = 0.5, Cr = 0.5,
lr = 0.5, Ca = 1, la = 1, and N = 600. 100 independent
runs are performed at each noise level, with particles initially
randomized in a 5σ cube within a 20σ cubic simulation box
and are evolved for 1× 106 time steps. Error bars denote one
standard deviation.

from 0 to 0.08 and then reduce the intensity back to zero
with a change of δT ∗ = 0.01 every 1 million time steps.
We find that when T ∗ > 0.03 the torus transforms into
a bumpy sphere, which translates randomly throughout
the simulation box. As the noise intensity is reduced to
zero, the bumpy sphere transitions back to a torus. This
noise-induced transition from stationary swarm to mobile
swarm and back again is qualitatively similar to the tran-
sition reported in Strefler et al. [26]. As in Ref. [26] we
find the velocity of the translating bumpy sphere scales
with T ∗. Our observations of torus stability differ slightly
from those of Strefler et al., where stable tori are found
at Cr = Ca = lr = 0.5, la = 2, and T ∗ = 0. At that state
point we find the torus always transitions into a ball after
4× 105 steps.

To investigate the sensitivity of ring/shell formation
to thermal fluctuations we perform 100 independent MD
simulations at each temperature from T ∗ = 0 to T ∗ =
0.008 at increments of δT ∗ = 0.001. Here, α = 2, γ = 1,
β = 0.5, l = 0.5, and C = 0.5. Particles are initialized
randomly within a 5σ cubic region within the 20σ simu-
lation box with periodic boundary conditions and simu-
lated for 1× 106 time steps. We find that the probability
of assembling a ring decreases as T ∗ increases (Fig. 6),
undergoing a sharp transition at T ∗ = 0.003, above which
shell self-assembly is enhanced.

We also observe the rings formed at T ∗ > 0 are no
longer flat, but cylindrical. We perform additional sim-
ulations initialized from a ring configuration and ramp
temperature from T ∗ = 0 to T ∗ = 0.008 by a step in-
crease in temperature of δT ∗ = 0.001 every 1× 106 time
steps, followed by a reverse ramping back to T ∗ = 0, for
a total of 16 × 106 time steps. We perform these simu-
lations for swarms of size N = 100, N = 200, N = 400,
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FIG. 7. Normalized cylinder height Λ as a function of dimen-
sionless temperature T ∗ and number of particles N . Particles
are initialized as a ring with random velocities. α = 2, γ = 1,
β = 0.5, Cr = 0.5, lr = 0.5, Ca = 1, and la = 1. Λ are
averaged over 10 simulation snapshots and over 10 indepen-
dent simulation runs, where the snapshots are the last 10 at
1 × 104time step increments. The standard deviations of Λ
are less than 3% of the mean values and are not shown.

and N = 600 and find that cylinder height increases lin-
early with T ∗ from T ∗ = 0.001 to T ∗ = 0.007 (Fig. 7).
Furthermore, we find that by normalizing the cylinder
height by the cylinder diameter, this trend is indepen-
dent of swarm size (Fig. 7). When T ∗ > 0.007, cylinders
transition into hollow shells. This transition can be used
as part of a reversible sequence of steps to convert rings
into cylinders into shells and back into rings (Fig. 8). We
find that by dropping the temperature from T ∗ = 0.008
to T ∗ < 0.007, a shell will transform into a ring or cylin-
der (depending on the temperature) if its instantaneous
alignment order A is sufficiently large (Fig. 4).

IV. DRIVING FORCES

Swarm formation in self-propelled particles can be con-
sidered as a perturbation to equilibrium self-assembly. In
the limit that α → 0 and β → 0, Eq. 2 becomes the
traditional Langevin equation modeling Brownian mo-
tion, from which equilibrium distributions of configura-
tions can easily be sampled. From the systems studied
here with nonzero α and β, we observe the formation of
swarms over a wide range of Morse potential shapes, but
for which the variational principle controlling structure
formation is not simply minimization of a traditional (e.g.
Helmholtz) free energy. In fact, the question of what
general variational principles governing the behaviors of
driven systems is a challenging and unanswered one [32].
Here we discuss how the swarms studied in this work
are both similar to and different from structures formed
via equilibrium self-assembly as a possible step towards
answering this question.

FIG. 8. Mechanisms of structural transitions among shells,
rings, and cylinders. Increasing the temperature of a ring
causes it to transition into a cylinder of increasing height.
At large enough T ∗, cylinders transition into hollow shells.
The transformation of a hollow shell into a cylinder or ring
requires not only that the temperature be decreased below
T ∗ = 0.007, but also that an instantaneous fluctuation in
alignment order is sufficiently large to initiate the transition.
The transition involves the shell polarizing into cylindrical
bands, which align eventually turning into a cylinder with
noise-dependent height or a ring if the noise is zero.

The two most relevant driving forces for steady-
state swarm formation are the balance of conservative
forces between neighboring particles and the simulta-
neous achievement of the optimal velocity. All of the
swarms we observe are comprised of particles traveling
at, or nearly at, v∗. In the case of ball swarms, these driv-
ing forces are relatively decoupled, with a potential en-
ergy minimizing structure that is stationary in reference
frame moving at v∗. In the case of ring, shell, clumps,
and tori the two driving forces are not so cleanly decou-
pled, and particles in these swarms have velocities that
vary over time with averages near v∗. For these swarms
with stationary centers of mass, the centripetal forces
from particle rotation are balanced by the conservative
forces between particles. It is straightforward to predict
the size of the shell and ring swarms by equating these
forces.

If these structures were emerging in non-dissipative
equilibrium systems we would expect structures with
lower free energy (lower potential energy and higher en-
tropy) to be more stable. Energetically, the ring and
shell have nearly identical potential energy (Uring =
−88010.46, Ushell = −88012.56). Entropically, there are
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more ways to arrange particles on a shell than there are
ways to arrange particles around a ring of the same di-
ameter. Considering only the free energy of a swarm we
would expect shells to be more stable than rings, which is
inconsistent with our observation that rings never trans-
form into shells. Perhaps there exists an “extended”
free energy that can be written for self-propelled swarms
that provides predictive capabilities. Previous work by
Schweitzer et al.[21] provides a promising direction for
such a development. The free energy would be extended
in the sense that it adds additional non-equilibrium driv-
ing forces to a well-known equilibrium ensemble free en-
ergy. For the systems we study here, it seems natural that
this extended free energy should include α, β, and γ, as
these parameters provide the deviation from a standard
equilibrium simulation. Because these terms describe the
work put into the swarms and the dissipation of energy
to the surrounding bath it follows that the free energy
extension should incorporate dissipation.

Derivations for the functional form and demonstration
of such an extended free energy are beyond the scope of
the current work, but are an exciting challenge with im-
portant implications for theories of non-equilibrium self-
assembly. Regions of parameter space in which structures
coexist provide test-cases for points at which extended
free energies should equate, therefore models such as the
propelled Morse particles studied here are ideal candi-
dates for theory development. The co-existing states in
experimental systems such as in Ref. [6] can be used to
compare and validate the theory.

V. CONCLUSIONS

We have performed extensive GPU-enabled simula-
tions of self-propelled swarming particles, characteriz-
ing the structures that can be assembled over a wide
range of parameters that tune the Morse interaction po-
tential in three spatial dimensions. The diversity of the
swarms stabilized in this system, their coexistence re-
gions, and their sensitivity to thermal fluctuations (noise)
highlights the need for efficient computer simulations
with which parameter space can be explored and de-
tailed experiments performed. We observe behaviors that
are marked deviations from equilibrium self-assembly, in-
cluding swarm coexistence and sensitivity to initial condi-
tions, but our results suggest that modifications to equi-
librium statistical mechanics approaches may have pre-
dictive capabilities. We propose a way forward, combin-
ing the swarms found in regions of coexistence as test
cases for extended free energy development. Finally, the
diversity of structures we observe here and the demon-
strated control over their morphology may have immedi-
ate implications in the exploitation of swarms of practical
interest.
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