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Universidad de Salamanca, E-37008 Salamanca, Spain

(Dated: July 10, 2012)

Abstract

The figure of merit for refrigerators performing finite-time Carnot-like cycles between two reser-

voirs at temperature Th and Tc (< Th) is optimized. It is found that the coefficient of performance

at maximum figure of merit is bounded between 0 and (
√
9 + 8εc − 3)/2 for the low-dissipation

refrigerators, where εc = Tc/(Th −Tc) is the Carnot coefficient of performance for reversible refrig-

erators. These bounds can be reached for extremely asymmetric low-dissipation cases when the

ratio between the dissipation constants of the processes in contact with the cold and hot reservoirs

approaches to zero or infinity, respectively. The observed coefficients of performance for real refrig-

erators are located in the region between the lower and upper bounds, which is in good agreement

with our theoretical estimation.
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I. INTRODUCTION

The issue of efficiency at maximum power output has attracted much attention since

the seminal achievements made by Yvon [1], Novikov [2], Chambadal [3], Curzon and

Ahlborn [4], which gives rise to finite-time thermodynamics, a new branch of non-equilibrium

thermodynamics, and opens open new avenues to the perspective of establishing more real-

istic theoretical bounds for real heat engines as well as refrigerators [5–8].

Previous reported works on this subject show that different model systems exhibit various

kinds of behaviors at large relative temperature difference between two thermal reservoirs at

temperatures Th and Tc (< Th), in spite that they show certain universal behavior at small

relative temperature difference [9–17] leading to recent discussions on the bounds of efficiency

at maximum power output for Carnot-like heat engines [18–23]. In particular, Esposito et al.

investigated low-dissipation Carnot-like engines by assuming that the irreversible entropy

production in each isothermal process is inversely proportional to the time required for

completing that process [19]. Furthermore, they obtained that the efficiency at maximum

power output for low-dissipation engines is bounded between η− ≡ ηC/2 and η+ ≡ ηC/(2−
ηC) [19], where ηC = 1 − Tc/Th is the Carnot efficiency of reversible heat engines. Besides,

Ma [24] proposed the per-unit-time efficiency to be another criterion, which can be viewed

as a compromise between the efficiency and the speed of the whole cycle. Two of present

authors and their coworkers [25] proved that the efficiency of endoreversible heat engines

performing at maximum per-unit-time efficiency is bounded between ηC/2 and 1−√
1− ηC .

However, it is relatively difficult to define an optimal criterion and obtain its correspond-

ing coefficient of performance (COP) for refrigerators [26–35] in the way as we address the

issue of efficiency at maximum power for heat engines provided that minimum power input

is not an appropriate figure of merit in Carnot-like refrigerators. Velasco et al. [26] adopted

the per-unit-time COP as an target function and proved εCA ≡
√
εc + 1 − 1 to be the up-

per bound of COP for endoreversible refrigerators operating at the maximum per-unit-time

COP, being εc = Tc/(Th − Tc) the Carnot COP for reversible refrigerators. Allahverdyan

et al. [27] investigated a quantum model which consists of two n-level systems interacting

via a pulsed external field and took εQc as the target function, where ε and Qc are the

COP of refrigerators and the heat absorbed from the cold reservoir, respectively. They also

proved that the COP of this model is bounded between εCA and εc at the small relative
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temperature difference. Chen and Yan [28] suggested to take χ = εQc/tcycle as the target

function, where tcycle is the time for completing the whole Carnot-like cycle. Recently, de

Tomás and two of present authors [29] optimized χ for symmetric low-dissipation refrigera-

tors and derived the COP at maximum χ to be εCA =
√
1 + εc − 1. The above results give

rise to two straightforward questions: (i) What target function could be appropriate as the

figure of merit for refrigerators? (ii) Can we derive the bounds of COP at maximum figure

of merit for general low-dissipation refrigerators as a counterpart to the bounds of efficiency

at maximum power output for heat engines? We will address these problems in this work.

We select χ = εQc/tcycle as the figure of merit and derive that the COP at maximum figure

of merit is bounded between 0 and (
√
9 + 8εc − 3)/2 for low-dissipation refrigerators. Our

theoretical prediction is in good agreement with the observed data from real refrigerators,

which suggests χ = εQc/tcycle is appropriate as the figure of merit for refrigerators.

II. MODEL AND OPTIMIZATION

In this section, we propose a theoretical model and optimize the figure of merit for

refrigerators.

A. Model

The refrigerator that we consider performs a Carnot-like cycle consisting of two isothermal

processes and two adiabatic steps as follows. It must be noted that the word “isothermal”

in this work also merely indicates that the working fluid is in contact with a reservoir at

constant temperature. Here we do not introduce the effective temperature of working fluid

because the effective temperature might not be well-defined in many cases [23].

Isothermal expansion. The working substance is in contact with a cold reservoir at tem-

perature Tc and the constraint on the system is loosened according to the external controlled

parameter λc(τ) during the time interval 0 < τ < tc, where τ is a time variable. It is in

the sense of loosening the constraint that this step is called an expansion process. A certain

amount of heat Qc is absorbed from the cold reservoir. Then the variation of entropy in this

process can be expressed as

∆Sc = Qc/Tc +∆Sir
c , (1)
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where ∆Sir
c ≥ 0 is the irreversible entropy production. We adopt the convention that the

heat absorbed by the refrigerator is positive, so ∆Sir
c ≤ ∆Sc.

Adiabatic compression. This step is idealized as the working substance suddenly decouples

from the cold reservoir and then comes into contact with the hot reservoir instantaneously

at time tc. During this transition, the controlled parameter is switched from λc(tc) to λh(th)

[> λc(tc)], that is, the constraint on the system is enhanced. It is in the sense of enhancing

the constraint that this step is called a compression process. There is no heat exchange in

this transition, i.e. Q2 = 0. The distribution function of molecules of working substance is

unchanged. Thus there is no entropy production in this transition, i.e. ∆S2 = 0.

Isothermal compression. The working substance is in contact with a hot reservoir at

temperature Th and the constraint on the system is further enhanced according to the

external controlled parameter λh(τ) during the time interval tc < τ < tc + th. A certain

amount of heat Qh is released to the hot reservoir Th. Thus the total variation of entropy

in this process is

∆Sh = −Qh/Th +∆Sir
h , (2)

where ∆Sir
h ≥ 0 is the irreversible entropy production.

Adiabatic expansion. Similar to the adiabatic compression process, the working substance

suddenly decouples from the hot reservoir and then comes into contact with the cold reservoir

instantaneously at time tc + th. During this transition, the controlled parameter is switched

from λh(tc + th) to λc(0) [< λh(tc + th)], that is, the constraint on the system is loosened.

In this transition, both the heat exchange and the entropy production are vanishing, i.e.

Q4 = 0 and ∆S4 = 0.

Here we emphasize the two following points on the adiabatic steps. On the one hand, the

entropy productions for both adiabatic steps are presumed to be zero in our model as it was

done in almost all existing models [5–23, 26–35] for Carnot-like heat engines or refrigerators.

On the other hand, the time for completing the adiabatic steps is neglected because the adi-

abatic steps are usually much faster than the isothermal ones. This convention of adiabatic

transitions has been widely adopted in many microscopic models of heat engines such as

the stochastic engines proposed by Schmiedl and Seifert [12], the quantum-dot engines[18]

and low dissipation engines [19] proposed by Esposito and his coworkers. It was proved

that the vanishing entropy productions can indeed be realized by instantaneously adiabatic

transitions for microscopic models [12, 18] because the distribution function of particles in
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the microscopic models is unchanged during instantaneous transitions. This might not be

always true for all macroscopic models. However, we still expect the entropy productions

in adiabatic steps to be much smaller than those in isothermal processes so that to some

extent we can reasonably neglect their contributions.

B. Optimizing the figure of merit

Having undergone a whole cycle, the system recovers its initial state. Thus the change of

entropy is vanishing for the whole cycle, from which we can easily derive that the variations

of entropy in two “isothermal” processes satisfy ∆Sc = −∆Sh ≡ ∆S > 0. Similarly, the

total energy also remains unchanged for the whole cycle, thus the work input in the cycle

can be expressed as W = Qh −Qc, and then the COP of refrigerators is reduced to

ε = Qc/(Qh −Qc). (3)

Considering Eqs. (1)–(3) and tcycle = tc+th, the figure of merit χ ≡ εQc/tcycle is transformed

into

χ =
T 2
c (∆S −∆Sir

c )
2

[(Th − Tc)∆S + Tc∆Sir
c + Th∆Sir

h ](th + tc)
. (4)

The variation of entropy ∆S is a state variable only depending on the initial and final

states of the isothermal processes while ∆Sir
c and ∆Sir

h are process variables relying on the

detailed protocols λ(τ). In addition, ∆Sir
c < ∆S according to Eq. (1). Thus Eq. (4) implies

that the maximum of the figure of merit corresponds to minimizing irreversible entropy

production ∆Sir
c and ∆Sir

h with respect to the protocols for given time intervals tc and th,

which is equivalent to that obtained for Carnot-like heat engines working at maximum power

output.

To continue our analysis, we denote the minimum irreversible entropy production with

the optimized protocols as min{∆Sir
c } ≡ Lc(tc) and min{∆Sir

h } ≡ Lh(th). Intuitively, Lc(tc)

and Lh(th) are the monotonous decreasing functions of tc and th, respectively, because the

larger time for completing the isothermal steps, the closer these steps are to quasistatic

processes so that the irreversible entropy production ∆Sir
c and ∆Sir

h become much smaller.

In particular, ∆Sir
c and ∆Sir

h should vanish in the long-time limit tc → ∞ and th → ∞. For

convenience, we can make a variable transformation xc = 1/tc and xh = 1/th. If we consider
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Eqs. (1) and (2), the heat Qc and Qh can be expressed as

Qc = Tc[∆S − Lc(xc)], (5)

and

Qh = Th[∆S + Lh(xh)]. (6)

Substituting Eqs. (5) and (6) into (3), we derive the COP of refrigerators to be

ε =
Qc

Qh −Qc
=

Tc(∆S − Lc)

(Th − Tc)∆S + TcLc + ThLh
. (7)

Considering tcycle = tc + th = 1/xc + 1/xh and the above equations (5)–(7), we optimize

the figure of merit χ = εQc/tcycle with respect to xh and xc and derive the following two

equations:

(Qh −Qc)xh = (2Qh/Qc − 1)TcL
′

cxc(xh + xc), (8)

(Qh −Qc)xc = ThL
′

hxh(xh + xc), (9)

where L′

c ≡ dLc/dxc and L′

h ≡ dLh/dxh.

Considering Eqs. (5)–(7) and then dividing Eq. (8) by Eq. (9), we can derive that the

COP at maximum figure of merit satisfies

ε∗ThL
′

hx
2
h = (ε∗ + 2)TcL

′

cx
2
c . (10)

Similarly, adding Eq. (8) and Eq. (9), we can derive

1

ε∗
=

1

εc
+

1

Nε∗ + (2εc − ε∗)M/(1 + εc)
(11)

with reducing parameters N = (L′

cxc + L′

hxh)/(Lc + Lh), M = L′

cxc/(Lc + Lh) and εc =

Tc/(Th − Tc).

III. BOUNDS OF COP AT MAXIMUM FIGURE OF MERIT

In this section, we turn to the low-dissipation refrigerators by assuming that L′

c = Σc and

L′

h = Σh are two dissipation constants as Esposito et al. [19] proposed for low-dissipation

heat engines. In this case, N = 1 and M = Σcxc/(Σcxc +Σhxh). Particularly, Σc = Σh = Σ

for the symmetric low-dissipation cases investigated by de Tomás et al. [29], it is not hard

for us to recover its COP at maximum maximum figure of merit to be εCA =
√
1 + εc − 1
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FIG. 1. (Color online) Schematic diagrams of function. The dashed line is the diagram of f(y) =

2εcy
2 − 3y − 1 while the solid lines correspond to diagram of g(y) = α(1 + 2y)1/2 with different

values of α. The points of intersection represent the solutions to Eq. (14) for different values of α.

y0 is the solution to f(y) = 2εcy
2 − 3y − 1 = 0.

from Eqs. (10) and (11). However, for the asymmetric low-dissipation cases where Σc 6= Σh,

it is more difficult to obtain a concise analytic expression of ε∗ than the symmetric case.

But we can still estimate its bounds from Eq. (11). According to this equation, we have

ε∗ =
εc[

√

1 + 8(1 + εc)/M − 3]

2[(1 + εc)/M − 1]
, (12)

which is the key equation in the present work. Because εc > 0 and 0 ≤ M ≤ 1, it is easy

to prove that ε∗ is a monotonous increasing function of M . As a main result, from Eq. (12)

we obtain the wished bounds as:

0 ≤ ε∗ ≤ (
√
9 + 8εc − 3)/2. (13)

It is noted that M is also constrained by Eq. (10), which pushes us to further discuss

the accessibility of the lower bound ε− ≡ 0 and the upper bound ε+ ≡ (
√
9 + 8εc − 3)/2.

Eliminating xc/xh from Eqs. (10) and (11), we have

2εcy
2 − 3y − 1 = α(1 + 2y)1/2, (14)

where y = 1/ε∗ and α =
√

ThΣh/TcΣc. In Fig. 1, we schematically plot the function

f(y) = 2εcy
2 − 3y − 1 (dashed line) and g(y) = α(1 + 2y)1/2 for different values of α (solid

lines). The points of intersection between the dashed line and solid lines correspond to the

solutions to Eq. (14) for different values of α. It follows that the solutions to Eq. (14) increase
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with the increasing value of α. On the other hand, the values of α can be taken from 0 to

∞. Therefore we infer that the solutions to Eq. (14) are between y0 = (
√
9 + 8εc + 3)/4εc

[solution to Eq. (14) for α = 0, i.e. Σc/Σh → ∞] and ∞ [solution to Eq. (14) for α → ∞, i.e.

Σc/Σh → 0]. Noting that y = 1/ε∗, we arrive at 0 ≤ ε∗ ≤ 1/y0 = (
√
9 + 8εc − 3)/2 which

is exactly the same as inequality (13). Simultaneously, we obtain the condition for reaching

the lower and upper bounds: ε∗ → 0 when Σc/Σh → 0 and ε∗ → (
√
9 + 8εc − 3)/2 when

Σc/Σh → ∞. That is, the lower and upper bounds of COP at maximum figure of merit

can be reached for extremely asymmetric low-dissipation refrigerators. Although the lower

and upper bounds of efficiency at maximum power output can also be reached for extremely

asymmetric low-dissipation heat engines [19], the subtle difference is that the lower bound

can be reached when Σc/Σh → ∞ while the upper one can be reached when Σc/Σh → 0,

which is in the inverse situation with respect to the refrigerators. However, this difference

is quite reasonable because refrigerators need the input work to pump heat from the cold

reservoir while heat engines utilize heat from the hot source to generate work.

0 5 10 15 20 25
0

2

4

6

c/ h=10
-5

c/ h=10
-2

c/ h=10
-1

c/ h=1

c/ h=10
2+

*

c

FIG. 2. (Color online) Numerical solutions to Eq. (14). The used values of parameter Σc/Σh are

marked nearby each curves.

The numerical solutions to Eq. (14) can also be calculated by setting different values

of ratio Σc/Σh. The corresponding values of ε∗ = 1/y are shown in Fig. 2, from which

we find that the COP at maximum figure of merit indeed reaches the upper bound ε+ =

(
√
9 + 8εc − 3)/2 when the ratio Σc/Σh is relatively large while it approaches the lower

bound ε− ≡ 0 when the ratio Σc/Σh is small enough. In addition, the curve with parameter

Σc/Σh = 1 corresponds to εCA =
√
1 + εc − 1, which is also located in the region bounded

between ε− and ε+.
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FIG. 3. (Color online) Comparison between theoretical prediction and the observed COPs of

refrigerators. The circles represent the relationship between observed COPs and the Carnot COPs

calculated according to the working temperature region for the reciprocating chiller with nominal

cooling rate 1172 kw while the squares represent that for the water cooled reciprocating chiller

with nominal cooling rate 10.5 kw [36]. The solid line represents the theoretical upper bound

ε+ = (
√
9 + 8εc − 3)/2.

IV. CONCLUSION AND DISCUSSION

Now we compare our prediction with the observed COPs of some real refrigerators. The

circles and squares in Fig. 3 respectively show the relationship between the observed COPs

of two different kinds of real refrigerators working in different temperature regions and the

corresponding Carnot COPs calculated according to the working temperatures. The raw

data are adapted from Tables 6.1 and 10.1 in Ref. [36]. We stress from this figure that all data

are located between the optimized COPs at Σc/Σh → ∞ (the solid line) and Σc/Σh = 0.01

(the dotted line), which reveals the capability of the low-dissipation assumption and the

bounds of the optimized COP in order to reasonably estimate the experimental results for

real refrigerators. Additionally, we also plot εCA =
√
1 + εc − 1 as the dashed line in Fig. 3,

from which we see that εCA is neither the upper bound nor lower bound of observed COPs.

This result suggests that χ = εQc/tcycle is indeed a very valuable figure of merit in comparing

with experimental refrigerators data.

The issue of COP at maximum figure of merit for Carnot-like refrigerators is addressed.

We obtain the universal lower and upper bounds of COP at maximum figure of merit for low-

dissipation Carnot-like refrigerators. These bounds can be reached for extremely asymmetric
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dissipation cases. We compare our prediction with the observed COPs of real refrigerators

and find that all measured COPs are located in between the prediction model. From a

theoretical point of view, these results for low-dissipation refrigerators can be regarded as a

counterpart of the bounds of efficiency at maximum power output obtained by Esposito et

al. [19] for low-dissipation heat engines. In the future work, we will extend our discussions

to the refrigerators working out of the low-dissipation regime based on the key equation (12)

and our previous investigation on heat engines [37].
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