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Abstract

We have recently devised organizing principles to obtain maximally dense packings of the Platonic

and Archimedean solids, and certain smoothly-shaped convex nonspherical particles [Torquato

and Jiao, Phys. Rev. E 81, 041310 (2010)]. Here we generalize them in order to guide one to

ascertain the densest packings of other convex nonspherical particles as well as concave shapes. Our

generalized organizing principles are explicitly stated as four distinct propositions. We apply and

test all of these organizing principles to the most comprehensive set of both convex and concave

particle shapes to date, including Catalan solids, prisms, antiprisms, cylinders, dimers of spheres

and various concave polyhedra. We demonstrate that all of the densest known packings associated

with this wide spectrum of nonspherical particles are consistent with our propositions. Among

other applications, our general organizing principles enable us to construct analytically the densest

known packings of certain convex nonspherical particles, including spherocylinders, “lens-shaped”

particles, square pyramids and rhombic pyramids. Moreover, we show how to apply these principles

to infer the high-density equilibrium crystalline phases of hard convex and concave particles. We

also discuss the unique packing attributes of maximally random jammed packings of nonspherical

particles.
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I. INTRODUCTION

Dense packings of hard particles have served as useful models to understand the structure

of low-temperature states of matter, such as liquids, glasses, and crystals [1–3], granular

media [4], heterogeneous materials [5], and biological systems (e.g., tissue structure, cell

membranes, and phyllotaxis) [6–9]. Much of what we know about dense packings concerns

particles of spherical shape [9–14], and hence it is useful to summarize key aspects of the

geometric-structure classification of sphere packings [9] in order to place our results for dense

packings of nonspherical particles in their proper context.

The geometric-structure classification naturally emphasizes that there is a great diversity

in the types of attainable jammed sphere packings with varying magnitudes of overall order

(characterized by scalar order metric ψ that lies in the interval [0, 1]), packing fraction φ, and

other intensive parameters (e.g, mean contact number) [9, 15, 16]. The notions of “order

maps” [15] in combination with mathematically precise “jamming categories” [17] enable

one to view and characterize well-known packing states, such as the densest sphere packing

(Kepler’s conjecture) [12] and maximally random jammed (MRJ) packings as extremal states

in the order map for a given jamming category [9]. Indeed, this picture encompasses not

only these special jammed states, but an uncountably infinite number of other packings,

some of which have only recently been identified as physically significant, e.g., the jamming-

threshold states (least dense jammed packings) [18] as well as extremal states between these

and the MRJ point [16]. Figure 1 shows a schematic order map for frictionless spheres in

the φ-ψ plane [19] based on our latest knowledge [9, 16].

In recent years, scientific attention has broadened from the study of dense packings of

spheres (the simplest shape that does not tile Euclidean space) [12] to dense packings of

disordered [20–32] and ordered [33–54] nonspherical particles. The focus of the present pa-

per is on the densest packings of congruent nonspherical particles, both convex and concave

shapes. We will show that both the symmetry and local principal curvatures of the particle

surface play a crucial role in how the rotational degrees of freedom couple with the transla-

tional degrees of freedom to determine the maximal density configurations. Thus, different

particle shapes will possess maximal density configurations with generally different packing

characteristics. We have recently devised organizing principles (in the form of conjectures)

to obtain maximally dense packings of a certain class of convex nonspherical hard particles
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FIG. 1: (Color online) Schematic order map in the density-order φ-ψ plane for strictly jammed

(mechanically stable) packings [17] of frictionless identical spheres in three dimensions (adapted

from Ref. [9]). White and blue (or light gray in print version) regions contain the attainable

packings, blue regions (or light gray in print version) represent the jammed subspaces, and the

dark gray region contains no packings. The locus of points A-A′ correspond to the lowest-density

jammed packings (thought to be “tunneled crystals” with contact number per particle of exactly 7

[18]). The locus of points B-B′ correspond to the densest jammed packings with contact number

per particle of exactly 12. Point MRJ represents degenerate maximally random jammed states with

a mean contact number per particle Z = 6, i.e., the most disordered states subject to the jamming

constraint. Although much less is known about the corresponding order maps for nonspherical

particles, our current understanding of some of the extremal points shows that they can be quite

distinct from their sphere counterparts, as discussed in Secs. III-V.

[41, 42, 45]. Interestingly, our conjecture for certain centrally symmetric polyhedra have

been confirmed experimentally very recently [54]. Here we generalize these organizing prin-

ciples to other convex particles as well as concave shapes [55]. The principles for concave

shapes were implicitly given in Ref. [36, 45] and were explicitly stated (without elaboration)

elsewhere [55]. Tunability capability via particle shape provides a means to design novel

crystal, liquid and glassy states of matter that are richer than can be achieved with spheres

(see Fig. 2). While it is seen that hard spheres exhibit entropically driven disorder-order

transitions, metastable disordered states, glassy jammed states, and ordered jammed states

with maximal density, the corresponding phase diagram for hard nonspherical particles will
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generally be considerably richer in complexity due to the rotational degrees of freedom and

smoothness of the particle surface (see Sec. IV for further details).

FIG. 2: (Color online) The isothermal phase behavior of three-dimensional hard-sphere model

in the pressure-packing fraction plane, adapted from Refs. [5, 9, 56]. Three different isothermal

densification paths by which a hard-sphere liquid may jam are shown. An infinitesimal compression

rate of the liquid traces out the thermodynamic equilibrium path (shown in yellow or light gray

in print version), including a discontinuity resulting from the first-order freezing transition to a

crystal branch. Rapid compressions of the liquid while suppressing some degree of local order

(curves shown in blue or dark gray in print version) can avoid crystal nucleation (on short time

scales) and produce a range of amorphous metastable extensions of the liquid branch (shown in

black) that jam only at the their associated terminal densities. The corresponding phase diagrams

for nonspherical particles will generally be considerably more complex (see Sec. IV for further

details).

Although the focus of the present paper will be the development of organizing principles

to obtain dense packings of nonspherical particles in three-dimensional Euclidean space

R
3, it is useful to note that such principles have been put forth for two-dimensional convex

particles [57–59]. In particular, Fejes-Tóth [57] showed that the densest packing of a centrally

symmetric particle in two-dimensional Euclidean space R2 can be obtained by circumscribing

the particle with the minimal centrally symmetric hexagon, which tiles R
2. This leads to
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a Bravais-lattice packing (defined in Sec. II) of the centrally symmetric particle under

consideration. A key element in his argument is the fact that local optimality is consistent

with the global optimality in two dimensions (e.g., a centrally symmetric hexagon can always

tessellate the space), which unfortunately generally does not hold in three dimensions. For

convex particles in R
2 without central symmetry, Kuperberg and Kuperberg [58] showed that

dense packings of a specific particle can be obtained by constructing a double-lattice packing

of the particle, i.e., a packing composed of a Bravais-lattice packing of the particle itself

and a lattice packing of the center-inversion image of the particle. They showed that the

maximal-density double-lattice packing of a specific shape can be obtained by minimizing

the area of certain parallelogram associated with the packing [60]. We note that the double-

lattice packing amounts to a Bravais-lattice packing of a centrally symmetric dimer (i.e.,

pair) of the original particles.

Generalizing the aforementioned organizing principles to three-dimensional Euclidean

space R
3, which is fundamentally different from R

2, is highly nontrivial. In R
2, obtaining

the maximally dense packing of a specific particle shape can usually be reduced to a local

problem, because the densest local clusters of the particles are frequently consistent with

the globally densest packing. However, this principle generally does not apply in R
3, since

the densest local packing clusters are usually “geometrically frustrated” [12] and, hence,

inconsistent with the globally densest packing. For example, the densest local packing of

congruent two-dimensional circles corresponds to an equilateral triangle, which can tessellate

R
2. This enables one to easily show that the maximally dense packing of circles in R

2 is

the triangular-lattice packing [10]. In R
3, the densest local packing of congruent spheres

corresponds to a regular tetrahedron, which cannot completely fill space [40, 61]. This

was one reason why it was extremely difficult to prove (taking nearly 400 years) that the

maximally dense packings of congruent spheres is achieved by the face-centered-cubic lattice

packing (Kepler’s conjecture) and its stacking variants [12]. For nonspherical particles in R
3,

the situation is even more complex [13] and any proofs establishing the densest packings of

nonspherical particles will be considerably more challenging than for spheres. For example,

in the densest known packing of regular tetrahedra, the centrally symmetric fundamental

packing unit is composed of four tetrahedra [44–46], instead of two as in a double-lattice

packing in R
2. It is therefore extremely useful if general organizing principles can be devised

to lead one to obtain dense packings of nonspherical particles.
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In this paper, we generalize the organizing principles devised for obtaining the maximally

dense packings of the Platonic and Archimedean solids and certain smoothly-shaped convex

particles (e.g., superballs) to guide one to find the densest packings of other convex nonspher-

ical particles as well as to concave shapes. We explicitly state our generalized organizing

principles as four distinct propositions, which are applied and tested to the most compre-

hensive set of both convex and concave particle shapes to date, including Catalan solids,

prisms, antiprisms, cylinders, dimers of spheres and various concave polyhedra. All of the

densest known packings associated with the aforementioned large set of nonspherical parti-

cles are consistent with our propositions. Moreover, we show that how they can be applied

to construct analytically the densest known packings of certain convex nonspherical parti-

cles, including spherocylinders and “lens-shaped” particles that are centrally symmetric, as

well as square pyramids and rhombic pyramids that lack central symmetry. Although we

do not provide rigorous mathematical proofs for our propositions here, we expect that they

will either ultimately lead to strict proofs or at least provide crucial guidance in obtaining

such proofs for some nonspherical shapes.

Moreover, we show how to apply our organizing principles to infer the high-density equilib-

rium crystalline phases of hard convex and concave particles. The unique packing attributes

of maximally random jammed packings of nonspherical particles are also discussed, which

can be used to categorize and characterize MRJ packings according to the particle shapes

and symmetries.

The rest of the paper is organized as follows: In Sec. II, we provide preliminaries and

basic definitions pertinent to packing problems. In Sec. III, we formulate general organiz-

ing principles for dense packings of nonspherical hard particles in the form of four different

propositions and test them against the most comprehensive set of the densest known packing

constructions of both convex and concave nonspherical particles known to date. In Sec. IV,

we present and discuss additional applications of our general organizing principles. Specif-

ically, we construct the densest known packings of centrally symmetric spherocylinders,

“lens-shaped” particles, as well as non-centrally symmetric square and rhombic pyramids.

We also discuss the expected high-density equilibrium crystal phases of a variety of non-

spherical particles as predicted by our propositions. In Sec. V, we make concluding remarks

and briefly discuss the unique characteristics of MRJ packings.

7



II. PRELIMINARIES AND DEFINITIONS

In this section, we provide some basic definitions concerning packings, which closely

follow those given in Ref. [9]. A packing P is a collection of nonoverlapping solid objects

or particles in d-dimensional Euclidean space R
d. Packings can be defined in other spaces

(e.g., hyperbolic spaces and compact spaces, such as the surface of a d-dimensional sphere),

but our primary focus in this review is Rd. A saturated packing is one in which there is no

space available to add another particle of the same kind to the packing. A uniform packing

has a symmetry operation (e.g., a point inversion-symmetric transformation) that takes any

particle into another.

(a) (b)

FIG. 3: (Color online) (a) A portion of a lattice packing of congruent nonspherical particles. Each

fundamental cell (depicted as a rhombus here) has exactly one particle centroid. Each particle in

the packing must have the same orientation. (b) A portion of a periodic non-lattice packing of

congruent nonspherical particles. The fundamental cell contains multiple nonspherical particles

with arbitrary positions and orientations within the cell subject to the nonoverlap constraint.

A lattice Λ in R
d is a subgroup consisting of the integer linear combinations of vectors

that constitute a basis for Rd. In the physical sciences and engineering, this is referred to

as a Bravais lattice. Unless otherwise stated, the term “lattice” will refer here to a Bravais

lattice only. A lattice packing PL is one in which the centroids of the nonoverlapping identical

particles are located at the points of Λ, and all particles have a common orientation. The

set of lattice packings is a subset of all possible packings in R
d. In a lattice packing, the

space Rd can be geometrically divided into identical regions F called fundamental cells, each

of which contains the centroid of just one particle. Thus, the density of a lattice packing is

8



given by

φ =
v1

Vol(F )
, (1)

where v1 is the volume of a single d-dimensional particle and Vol(F ) is the d-dimensional

volume of the fundamental cell. For example, the volume v1(R) of a d-dimensional spherical

particle of radius R is given explicitly by

v1(R) =
πd/2Rd

Γ(1 + d/2)
, (2)

where Γ(x) is the Euler gamma function. Figure 3(a) depicts lattice packings of congruent

spheres and congruent nonspherical particles.

A more general notion than a lattice packing is a periodic packing. A periodic packing

of congruent particles is obtained by placing a fixed configuration of N particles (where

N ≥ 1) with arbitrary nonoverlapping orientations in one fundamental cell of a lattice Λ,

which is then periodically replicated without overlaps. Thus, the packing is still periodic

under translations by Λ, but the N particles can occur anywhere in the chosen fundamental

cell subject to the overall nonoverlap condition. The packing density of a periodic packing

is given by

φ =
Nv1

Vol(F )
= ρv1, (3)

where ρ = N/Vol(F ) is the number density, i.e., the number of particles per unit volume.

Figure 3(b) depicts a periodic non-lattice packing of congruent spheres and congruent non-

spherical particles. Note that the particle orientations within a fundamental cell in the latter

case are generally not identical to one another.

We will see subsequently that certain characteristics of particle shape, e.g., whether

it possesses central symmetry and equivalent principal axes, play a fundamental role in

determining its dense packing configurations. A d-dimensional particle is centrally symmetric

if it has a center C that bisects every chord through C connecting any two boundary points

of the particle, i.e., the center is a point of inversion symmetry. Examples of centrally

symmetric particles in R
d include spheres, ellipsoids and superballs (see Ref. [9] for definitions

of these shapes). A triangle and tetrahedron are examples of non-centrally symmetric two-

and three-dimensional particles, respectively. Figure 4 depicts examples of centrally and

non-centrally symmetric two-dimensional particles. A d-dimensional centrally symmetric

particle for d ≥ 2 is said to possess d equivalent principal (orthogonal) axes (directions)
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(a) (b) (c)

FIG. 4: (Color online) (a) A “superdisk” is centrally symmetric and possesses two equivalent

principal axes. (b) An ellipse is centrally symmetric but does not possess two equivalent principal

axes. (c) A triangle is not centrally symmetric.

associated with the moment of inertia tensor if those directions are two-fold rotational

symmetry axes such that the d chords along those directions and connecting the respective

pair of particle-boundary points are equal. (For d = 2, the two-fold (out-of-plane) rotation

along an orthogonal axis brings the shape to itself, implying the rotation axis is a “mirror

image” axis.) Whereas a d-dimensional superball has d equivalent directions, a d-dimensional

ellipsoid generally does not (see Fig. 4).

III. GENERAL ORGANIZING PRINCIPLES

We have formulated several organizing principles in the form of three conjectures for

convex polyhedra as well as other nonspherical convex shapes [41, 42, 45, 49]. In this

section, we generalize them in order to guide one to ascertain the densest packings of other

convex nonspherical particles as well as concave shapes based on the characteristics of the

particle shape (e.g., symmetry, principal axes and local principal curvature). The generalized

organizing principles are explicitly stated as four distinct propositions. We apply and test

all of these organizing principles to the most comprehensive set of both convex and concave

particle shapes to date, including Catalan solids, prisms, antiprisms, cylinders, dimers of

spheres and various concave polyhedra. We demonstrate that all of the densest known

packings associated with this wide spectrum of nonspherical particles are consistent with

our propositions. In Sec. IV, we will apply our propositions to construct analytically the

densest known packings of other nonspherical particles, including spherocylinders and “lens-

10



shaped” particles that are centrally symmetric, as well as square and rhombic pyramids that

lack central symmetry. We also apply the organizing principles to infer the high-density

equilibrium crystalline phases of hard convex and concave particles in Sec. IV.

A. Organizing Principles for Convex Particles

(a) (b) (c)

FIG. 5: (Color online) Dense packings of nonspherical particles. (a) A portion of the densest

lattice packing of dodecahedra, which possess central symmetry. (b) A portion of the densest

known packing of truncated tetrahedra without central symmetry. In the packing, the truncated

tetrahedra form centrally symmetric dimers and the dimers pack on a lattice. (c) A portion of

the densest known packing of oblate ellipsoids, which contains two ellipsoids perpendicular to one

another in the fundamental cell.

For the centrally symmetric Platonic and Archimedean solids, our simulations and theo-

retical analysis lead us to the following conjecture [41, 42]:

Conjecture 1: The densest packings of the centrally symmetric Platonic and Archimedean

solids are given by their corresponding optimal Bravais lattice packings.

Remarks: The centrally symmetric Platonic and Archimedean solids are polyhedra with

three equivalent principal axes. For packings of polyhedra, face-to-face contacts are favored

over other types of contacts (e.g., face-to-edge, face-to-vertex, edge-to-edge etc.), since the

former allow the particle centroids to get closer to one another and thus, to achieve higher

packing densities. For centrally symmetric polyhedra, aligning the particles (i.e., all in the

same orientation) enable a larger number of face-to-face contacts. For example, a particle
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with F faces, possesses F/2 families of axes that go through the centroid of the particle and

intersect the centrally-symmetric face pairs such that the particles (in the same orientation)

with their centroids arranged on these axes can form face-to-face contacts. The requirement

that the particles have the same orientation is globally consistent with a (Bravais) lattice

packing. Indeed, in the optimal lattice packings of the centrally symmetric Platonic and

Archimedean solids, each particle has the maximum number of face-to-face contacts that

could possibly be obtained without violating the nonoverlapping conditions. It is highly

unlikely that such particles possessing three equivalent principal axes and aligned in the

same direction could form a more complicated non-lattice periodic packings with densities

that are larger than the optimal lattice packings.

Conjecture 1 is the analog of Kepler’s sphere conjecture for the centrally symmetric

Platonic and Archimedean solids. In this sense, such solids behave similarly to spheres in that

their densest packings are lattice arrangements and (except for the cube) are geometrically

frustrated like spheres. This conjecture was strongly supported by our original simulations

of the Platonic solids [41, 42], which used multiple-particle configurations in the fundamental

cell and only produce the optimal lattice packings. More recently, dense packings of other

polyhedra have been numerically investigated, including the Archimedean solids [49, 52],

Catalan solids [52], Johnson solids [52], prisms and antiprisms [52], and a family of truncated

tetrahedra [50]. Among this large set of polyhedra, it has been found that for centrally

symmetric shapes, numerical simulations with multiple particles in the fundamental cell

always converge to dense lattice packings, which possess higher densities than all other

periodic packing configurations. These finding support Conjecture 1. Certain characteristics

of densest known packings of a subset of the aforementioned polyhedra are provided in

Table I and Table II, including the type of the packing structure (lattice or periodic) and

the packing density (both numerical value and analytical value if known).

In addition to the strong numerical evidence for Conjecture 1, we have derived a simple

analytical upper bound on the maximal density φmax of a packing of congruent nonspherical

particles of volume vp in any Euclidean space dimension d in terms of the maximal density

of a d-dimensional packing of congruent spheres of volume vs, which is the volume of the

largest sphere than can be inscribed in the nonspherical particle. Here, for simplicity, we

state that upper bound for three-dimensions:
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TABLE I: Characteristics of dense packings of Platonic and Archimedean solids, including whether

the particle possesses central symmetry, whether the packing is a Bravais lattice packing, the

number of basis particles in the fundamental cell if the packing is a non-Bravais-lattice periodic

packing, the numerically obtained packing density φ∗ [41, 42, 52], the analytically obtained density

φmax [39], and the upper bound on the density φUmax [41, 42].

Polyhedron Cen. Sym. Structure φ∗ φmax φUmax

Tetrahedron No Periodic, 4-particle basis 0.8560 0.856347 1

Icosahedron Yes Bravais Lattice 0.8361 0.836357 0.893417

Dodecahedron Yes Bravais Lattice 0.9042 0.904508 0.981162

Octahedron Yes Bravais Lattice 0.9471 0.947368 1

Cube Yes Bravais Lattice 0.9999 1 1

Truncated Tetrahedron No Periodic, 2-particle basis 0.9885 0.995192 1

Truncated Icosahedron Yes Bravais Lattice 0.7849 0.784987 0.838563

Snub Cube No Bravais Lattice 0.7876 0.787699 0.934921

Snub Dodecahedron No Bravais Lattice 0.7874 0.788640 0.855474

Rhombicicosidodecahedron Yes Bravais Lattice 0.8047 0.804708 0.835964

Truncated Icosidodecahedron Yes Bravais Lattice 0.8269 0.827213 0.897316

Truncated Cuboctahedron Yes Bravais Lattice 0.8489 0.849373 0.875805

Icosidodecahedron Yes Bravais Lattice 0.8644 0.864720 0.938002

Rhombicuboctahedron Yes Bravais Lattice 0.8758 0.875805 1

Truncated Dodecahedron Yes Bravais Lattice 0.8976 0.897787 0.973871

Cuboctahedron Yes Bravais Lattice 0.9182 0.918367 1

Truncated Cube Yes Bravais Lattice 0.9722 0.973747 1

Truncated Octahedron Yes Bravais Lattice 0.9999 1 1

Lemma: The maximal density of a packing of congruent nonspherical particles is bounded

from above according to the following bound [41, 42]

φmax ≤ min

[

vp
vs

π√
18
, 1

]

, (4)

where min[x, y] denotes the minimum of x and y.

The upper bound values for a subset of the aforementioned polyhedra are give in Table I

13



TABLE II: Characteristics of dense packings of Catalan solids and certain prisms, including whether

the particle possesses central symmetry, whether the packing is a Bravais lattice packing, the

number of basis particles in the fundamental cell if the packing is a non-Bravais-lattice periodic

packing [52], the numerically obtained packing density φ∗ [52], and the upper bound on the density

φUmax [52].

Polyhedron Cen. Sym. Structure φ∗ φUmax

Pentagonal Hexecontrahedron No Bravais Lattice 0.741075 0.782834

Pentagonal Icositetrahedron No Periodic, 2-particle basis 0.743639 0.848563

Pentakis Dodecahedron Yes Bravais Lattice 0.757552 0.787991

Disdyakis Triacontrahedron Yes Bravais Lattice 0.765496 0.773134

Deltoidal Hexecontrahedron Yes Bravais Lattice 0.77155 0.782871

Disdyakis Dodecahedon Yes Bravais Lattice 0.793288 0.813656

Deltoidal Icositetrahedron Yes Bravais Lattice 0.796934 0.851348

Triakis Tetrahedron No Periodic, 4-particle basis 0.798868 1

Rhombic Triacontrahedron Yes Bravais Lattice 0.801741 0.834626

Triakis Icosahedron Yes Bravais Lattice 0.804796 0.818047

Tetrakis Hexahedron Yes Bravais Lattice 0.814019 0.878410

Small Triakis Octahedron Yes Bravais Lattice 0.876016 0.937283

Rhombic Dodecahedron Yes Bravais Lattice 1 1

Heptaprism No Periodic, 2-particle basis 0.896 1

Pentaprism No Periodic, 2-particle basis 0.921 1

and Table II. As noted in Ref. [42], the upper bound (4) is generally not sharp, i.e., it

generally can not be realized, except for certain space-filling shapes. Therefore, a small

difference between the actual packing density and the corresponding upper bound value

strongly suggests the optimality of the packing. It can be seen from Tables I and II that

the difference is indeed small for centrally symmetric polyhedra with equivalent principal

axes. Together with the numerical evidence, this leads us to the following more general

proposition:

Proposition 1: Dense packings of centrally symmetric convex, congruent polyhedra with
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three equivalent axes are given by their corresponding densest lattice packings, providing a

tight density lower bound that may be optimal.

Remarks: This proposition is the three-dimensional analog of the Fejes-Tóth theorem for

two-dimensional centrally symmetric shapes [57]. Note that whenever Proposition 1 leads

to an optimal packing, one can immediately obtain an upper bound on φmax that improves

upon inequality (4). Namely, for a general nonspherical particle of volume vp, instead of

inscribing into the particle the largest possible sphere, one can inscribe the largest possible

polyhedron with known maximal packing density, i.e.,

φmax ≤ min

[

vp
v0
φ0

max, 1

]

, (5)

where v0 denotes the volume of the largest centrally symmetric convex particle with three

equivalent axes that can be inscribed in the nonspherical particle of interest and φ0

max is its

associated maximal density. In the case that φ0

max can be proven to be optimal, (5) is a

rigorous upper bound. Otherwise, it provides an estimate of φmax.

As an application of inequality (5), consider inscribing a truncated dodecahedron into

a dodecahedron. Assuming that φ0

max = 0.897787 for the optimal truncated dodecahedron

packing leads to an estimate of φ∗ = 0.904508 for the densest dodecahedron packing, which is

identical to the actual value φmax = 0.904508 for the densest lattice packing of dodecahedra.

In general, the inscribed polyhedron should be chosen carefully in order to get a nontrivial

upper bound. In the case that the optimality of the packing of the inscribed polyhedron can

be proven, this could lead to tight upper bound on φmax for nonspherical particles improved

over the simple sphere bound (4).

Note that the space-filling polyhedra in the aforementioned three families of shapes, i.e.,

the cube, the truncated octahedron (one of the Archimedean solids) and the rhombic dodec-

ahedron (dual of the Catalan cuboctahedron) are respectively the Voronoi cells associated

with the simple cubic, body-centered cubic and face-centered cubic lattices [5]. The densest

packings of cubes can be achieved by an uncountably infinite number of non-lattice packings

corresponding to sliding layers or chains of cubes in their simple cubic lattice packing [42].

By contrast, we note here that the densest Bravais-lattice packings of the truncated octa-

hedron and the rhombic dodecahedron are the unique densest packings of the two shapes.

In contrast to the densest lattice packing of cubes, in the densest lattice packings of the

truncated octahedron and the rhombic dodecahedron, no chains or layers of particles can
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slide relative to one another. Thus, there are no collective motions within the densest pack-

ings [48] of the truncated octahedron and the rhombic dodecahedron that can lead to other

non-lattice packings of the two shapes that can completely fill space.

We also note that both simulations [37, 38] and analytical constructions [37] suggest that

the optimal packings of superballs, a rich family of smoothly-shaped centrally symmetric

particles with both octahedral and cubic symmetry including a three-dimensional cross limit,

are their densest Bravais lattice packings. This suggests that Conjecture 1 can be generalized

not only to polyhedral particles but also to certain smoothly-shaped particles. A major

distinction between a smoothly-shaped particle and a polyhedron is that the surface of the

former possesses non-trivial local principal curvatures, which are either zero or infinity. We

note that a complete understanding of the role of curvature in determining dense packing

configurations is currently lacking, although it has been shown that curvature is crucial for

stabilized disordered packings of nonspherical particles [20, 22].

For convex polyhedral particles that lack central symmetry, we have made the following

conjecture concerning their densest packing configurations [41, 42]:

Conjecture 2: The densest packing of any convex, congruent polyhedron without central

symmetry generally is not a Bravais lattice packing, i.e., set of such polyhedra whose optimal

packing is not a Bravais lattice is overwhelmingly larger than the set whose optimal packing

is a Bravais lattice.

Remarks: In other words, Conjecture 2 states that the set of non-centrally symmetric poly-

hedra whose optimal packing is not a lattice is overwhelmingly larger than the set whose

optimal packing is a lattice. As shown in Table I and Table II, the fact that the regular

tetrahedron and truncated tetrahedron lack central symmetry and that dense packings of

such objects favor face-to-face contacts immediately eliminates the possibility that lattice

packings (in which particles must have the same orientations and thus, have face-to-vertex

contacts) are optimal. Similarly, it is very plausible that dense packings of most convex,

congruent polyhedra without central symmetry are facilitated by face-to-face contacts by

exploring their rotational degrees of freedom and hence the optimal packings are generally

not lattice packings. This reasoning immediately leads us to the following more general

proposition concerning dense packings of polyhedra without central symmetry:

Proposition 2: Dense packings of convex, congruent polyhedra without central symmetry
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are composed of centrally symmetric compound units of the polyhedra with the inversion-

symmetric points lying on the densest lattice associated with the compound units, providing

a tight density lower bound that may be optimal.

(a) (b)

FIG. 6: (Color online) Portions of two packing configurations of pentagons obtained by cutting

off a corner (isosceles triangle with a right angle) of a square (adapted from Ref. [42]). (a) The

optimal lattice packing and (b) a two-particle basis periodic packing that tiles the plane. Let side

length of the square be 1 and the lengths of the equal sides of the isosceles triangle be β ∈ (0, 1).

The lattice vectors of the optimal lattice packing are eL
1
= i− β

2
j, eL

2
= (1− β

2
)i+ (1− β)j and the

lattice vectors of the periodic packing are eP
1
= i+ βj, eP

2
= (1 − β)i + (2 − β)j with one particle

at origin and the other at b1 = (1 − β)i + (1 − β)j, where i, j are the unit vectors along the two

orthogonal coordinate directions, coinciding with two orthogonal sides of the square. The density

(covering fraction) of the optimal lattice packing is φLmax = (1 − β2

2
)/(1 − β2

4
) and the density of

the periodic packing is φPmax = 1. It can be seen that for all 0 < β < 1, φLmax is always smaller

than φPmax.

Remarks: Application of this proposition can be very well illustrated by the “truncated

square” example originally given in Ref. [42]. We note that although this specific example

involves polygons in two dimensions, the general idea that lacking central symmetry enables

the full exploration of the rotational degrees of freedom associated with a nonspherical

particle in obtaining the densest packing also applies in three dimensions. Specifically,

consider a square with one missing corner, i.e., an isosceles triangle with a right angle (see

Fig. 6). At first glance, one might surmise that if the missing piece is sufficiently small, a
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lattice packing which is close to the original square lattice packing should still be optimal

(see Fig. 6a), since lattice packings are optimal for squares. However, no matter how small

the missing piece may be, a periodic packing in which the fundamental cell contains two

truncated squares can be constructed that tile the plane (see Fig. 6b). This is done by

taking advantage of the asymmetry of the particle to maximize possible face-to-face contacts.

Thus, we see from this counterintuitive example that if the particle does not possess central

symmetry, it is possible to exploit its rotational degrees of freedom to yield a periodic packing

with a complex basis that are generally denser than the optimal lattice packing. We also

note that Proposition 2 can be considered as the three-dimensional analog of Kuperberg-

Kuperberg double-lattice packing constructions for two-dimensional convex shapes lacking

central symmetry [58].

On the other hand, there are special cases where the lattice will be optimal for particles

lacking central symmetry. One such example in three dimensions is the rhombic dodecahe-

dron that has one corner clipped [12, 42]. Another one involves the Archimedean snub cube

and snub dodecahedron, which are chiral shapes (and therefore, non-centrally symmetric)

[52]. However, these chiral polyhedra still possess pairs of parallel faces as a centrally sym-

metric particle, which allows the maximum number of face-to-face contact when aligned.

Nonetheless, these special cases are overwhelmed in number by the set of those whose op-

timal packings are not lattices. We also note that if Conjecture 2 is valid, it also applies

to nonspherical particles derived by smoothing the vertices, edges and faces of polyhedra

provided that the local curvature at face-to-face contacts is sufficiently small.

Finally, we note that for certain centrally symmetric particles that do not possess three

equivalent principal axes (e.g., ellipsoids [35]), the rotational degrees of freedom of the

particle can be explored, resulting in dense non-Bravais-lattice packings. This observation

had led us to the following conjecture [45]:

Conjecture 3: The densest packings of congruent, centrally symmetric particles that do

not possesses three equivalent principle axes (e.g., ellipsoids) can be non-Bravais lattices.

Remarks: For a general smoothly-shaped particle, the local principal curvature of the par-

ticle surface plays an important role in determining their densest packing configurations.

This is to contrast polyhedral particles with flat faces, whose dense packings are determined

solely by maximizing face-to-face contacts. For ellipsoids, the local principal curvature at
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any point on the surface possesses non-trivial values. Bezdek and Kuperberg were the first

to show that the densest packings of very elongated ellipsoids cannot be Bravais lattice pack-

ings [33]. In particular, by inserting very elongated ellipsoids into cylindrical void channels

passing through the “ellipsoidal” analogs of the face-centered-cubic sphere packing (affinely

deformed face-centered-cubic packings of spheres), Bezdek and Kuperberg constructed con-

gruent ellipsoid packings whose density exceeds π/
√
18 and approaches 0.7459 in the limit

of infinitely thin prolate spheroids (i.e., the “needle” limit). Later, Wills [34] showed that

similar constructions can be obtained by inserting needle-like ellipsoids into cylindrical void

channels passing through an affinely deformed hexagonal-close-packed lattice of spheres,

leading to an improved density of 0.7585. More recently, Donev et al. [35] found a family of

unusually dense non-Bravais-lattice packings of ellipsoids with arbitrary aspect ratio. The

packings in this family have two ellipsoids per fundamental cell, rotated by π/2 relative to

one another, and possess packing densities as high as 0.7707 when the maximal aspect ratio

is larger than
√
3, which is close to the sphere shape.

Finally, we note that non-Bravais lattice packings of elliptical cylinders (i.e., cylinders

with an elliptical basal face) that are denser than the corresponding optimal lattice packings

have been constructed [33]. This result supports our Conjecture 3.

B. Organizing Principles for Concave Particles

As pointed in the previous section, dense packings of convex polyhedra favor a large num-

ber of face-to-face contacts between neighboring particles, which can be achieved by either

a lattice packing or a periodic one depending on the particle characteristics. It should not

go unnoticed that our arguments leading to our conjectures and propositions thus far do not

rely on the convexity of the particle shape and hence does not seem to be a strongly limit-

ing condition. Indeed, in this section, we generalize the propositions to obtain appropriate

propositions for concave polyhedron particles.

We state the generalization of Proposition 1 for concave particles as a proposition:

Proposition 3: Dense packings of centrally symmetric concave, congruent polyhedra are

given by their corresponding densest lattice packings, providing a tight density lower bound

that may be optimal.
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Similarly, the generalization of Proposition 2 is given by the following proposition:

Proposition 4: Dense packings of concave, congruent polyhedra without central symmetry

are composed of centrally symmetric compound units of the polyhedra with the inversion-

symmetric points lying on the densest lattice associated with the compound units, providing

a tight density lower bound that may be optimal.

Remarks: Due to the translational symmetry of a periodic packing, the centrally symmetric

compound unit can be located anywhere within the fundamental cell. In practice, it is

usually more convenient to place the centroid of an original polyhedron on the lattice points

than to place the inversion center of the compound unit on them. Note also that for concave

shapes, even the densest packing could possess a density that is much smaller than unity.

Therefore, the term “dense” in the above two propositions means that the packing possesses

a relatively high density compared to that of other packings of the same concave shape.

(a) (b)

FIG. 7: (Color online) (a) A centrally symmetric concave compound unit of tetrahedra, which is

composed of two contacting dimers of tetrahedra. (b) A portion of the densest known packing of

tetrahedra, which is a lattice packing of the centrally symmetric compound unit.

Our new propositions for concave shapes are in fact motivated by our investigation of

the densest known packings of regular tetrahedra, which are periodic packings with four

particles in the fundamental cell [44–46]. It was already noted in Ref. [45] that the 4-

particle compound object in the fundamental cell composed of two contacting dimers (i.e.,

two tetrahedra forming perfectly face-to-face contact) possesses center inversion symmetry
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and thus, it can be viewed as a centrally symmetric concave polyhedron, see Fig. 7. Hence,

the densest known packings of tetrahedra are in fact Bravais-lattice packings of such concave

compound polyhedra. Based on the same arguments leading to Propositions 1 and 2 [41, 42],

it is not surprising that dense Bravais-lattice packings of the centrally symmetric compound

polyhedra have a high density, since there are a large number of face-to-face contacts, which

are made possible due to the central symmetry of the compound polyhedron and bring the

centroids of the objects closer to each other, despite of the concave nature of the compound

polyhedron.

TABLE III: Characteristics of dense packings of certain concave polyhedral particles, including

whether the particle possesses central symmetry, whether the densest known packing is a Bravais

lattice packing, the number of basis particles in the fundamental cell if the packing is a non-Bravais-

lattice periodic packing [52], the numerically obtained density φ∗lat for the lattice packing [52], the

highest numerically obtained density φ∗ [52], and the upper bound on the density φUmax [52].

Polyhedron Cen. Sym. Structure φ∗lat φ∗ φUmax

Császár Polyhedron No Periodic, 4-particle basis 0.381 0.631 1

Szilassi Polyhedron No Periodic, 2-particle basis 0.331 0.519 1

Echidnahedron Yes Bravais Lattice 0.294 0.294 1

Escher’s Solid Yes Bravais Lattice 0.947 0.947 1

Great Rhombic Triacontahedron Yes Bravais Lattice 0.557 0.557 1

Jessen’s Orthogonal Icosahedron Yes Bravais Lattice 0.749 0.749 1

Rhombic Dodecahedron Stellation II Yes Bravais Lattice 0.599 0.599 1

Great Stellated Dodecahedron Yes Periodic, 2-particle basis 0.857 0.889 1

Rhombic Hexecontahedron Yes Periodic, 2-particle basis 0.529 0.556 1

Small Triambic Icosahedron Yes Periodic, 2-particle basis 0.688 0.695 0.977

Nanostar Yes Bravais Lattice 0.686 0.686 1

Octapod Yes Bravais Lattice 0.310 0.310 1

Tetrapod No Periodic, 2-particle basis 0.591 0.592 1

Very recently, de Graaf, van Roij and Dijkstra [52] numerically generated the densest

known packings of a variety of concave particles, including certain well-known concave poly-

hedra and approximations of real concave nanoparticles. In Table III, we provide certain
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packing characteristics of a subset of the concave polyhedra studied by these authors.

FIG. 8: (Color online) Densest known packings of concave particles (adapted from Ref. [52], image

courtesy of de Graaf, van Roij and Dijkstra). Upper panel: a centrally symmetric octapod (left)

and the corresponding densest known packing (right), which is a lattice packing of octapods. Lower

panel: a dimer of non-centrally symmetric tetrapods (left) and the corresponding densest known

packing (right), which is periodic packing with two tetrapods in the fundamental cell.

Despite the concavity of these particles, it can be clearly seen from Table III that for

centrally symmetric shapes, the densest lattice packings either correspond to the obtained

densest packings or provide a very tight lower bound on the densest packings, which are

consistent with our propositions. In fact, for the three centrally symmetric solids (great

stellated dodecahedron, rhombic hexecontahedron, and small triambic icosahedron) whose

densest packings obtained are not lattice packings, the difference in the packing density

between the obtained lattice packing and densest packing is very small (i.e., less than 3%).

Given the complexity of the particle shapes involved, it could be possible that the numerical

method was not able to obtain the corresponding optimal lattice packings. On the other

hand, for shapes lacking central symmetry, the densest packings always correspond to lattice

packings of the centrally symmetric compound objects composed of the original polyhedra,

and thus, are periodic packings of the original polyhedra. We note that due to the large

asphericity (i.e., the ratio of circumsphere radius over insphere radius of the particle [42])

associated with concave shapes, the upper bound (4) for many concave polyhedra gives trivial

value of unity, which is usually much larger than the highest packing densities obtained.

Nonetheless, the robustness of the numerical procedure for generating the dense packings

22



of concave particles has been verified by virtually producing the densest known packings of

the Platonic and Archimedean solids, among other shapes [52]. Therefore, it is reasonable

to believe that most of the numerical packings of the concave particles obtained from the

computer simulations in Ref. [52] are close to optimal. Nonetheless, all of the densest known

packings of the large set of the concave particles shown in Table III are consistent with

Propositions 3 and 4.

FIG. 9: (Color online) Dimers of spheres of radius R, with sphere center separation L. Left panel:

A dimer of spheres with aspect ratio L/R = 0.85. Right panel: A dimer of spheres with aspect

ratio L/R = 1.85, in which the two spheres just touch each other.

Finally, we note that our Propositions 3 and 4 should also apply for certain smoothly-

shaped concave particles. For example, consider the family of dimers formed by two spheres

in R
3 that can overlap to various degrees (see Fig. 9), whose volume is given by

V0 =
4π

3
R3

(

1 +
3

4

L

R
− 1

16

L3

R3

)

, (6)

where R is the radius of the spheres and L ∈ [0, 2R] is the separation between the sphere cen-

ters. This family of dimers of spheres includes the single-sphere case and the two-touching-

sphere case as extreme cases. Since such a dimer possesses central symmetry, the densest

packing of this shape can be expected to be a lattice packing according to Propositions 3.

Indeed, it has been shown that in both R
2 [63] and R

3 [64], the densest known dimer-sphere

packings are achieved by certain Bravais lattices.

IV. ADDITIONAL APPLICATIONS OF THE ORGANIZING PRINCIPLES

In this section, we illustrate how the general organizing principles formulated in the pre-

vious sections can be applied in practice. Specifically, Propositions 1-4 provide constructable

tight lower bounds on dense packings of both centrally symmetric polyhedra and the ones

lacking central symmetry. These organizing principles should enable one to construct dense

packings of a specific nonspherical shape, which are either optimal or close to optimal. We
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demonstrate this capability by finding the densest known packings of centrally symmet-

ric spherocylinders, and “lens-shaped” particles as well as non-centrally symmetric square

pyramids and rhombic pyramids. In addition, we show that analytically constructed dense

packing configurations as determined by our organizing principles can serve as the starting

point to study the equilibrium phase behavior of the corresponding particles at high densities

[49, 53, 65–69].

A. Dense packings of spherocylinders

FIG. 10: (Color online) Spherocylinders composed of cylinder with length L, caped at both ends

with hemispheres with radius R. Left panel: A spherocylinder with aspect ratio L/R = 1. Right

panel: A spherocylinder with aspect ratio L/R = 5.

Let us now consider the case of a spherocylinder. A spherocylinder consists of an cylinder

with length L and radius R capped at both ends by hemispheres with radius R (see Fig.

10), and therefore is a centrally-symmetric convex particle. Its volume is given by

V0 = πR2L+
4

3
πR3. (7)

At the limit L = 0, a spherocylinder reduces to a sphere with radius R.

For spherocylinders with L > 0, it appears that the optimal Bravais-lattice packing could

be the actual densest packing of the shape. This is because the local principal curvature of

the cylindrical surface is zero along the spherocylinder axis, and thus, spherocylinders can

have very dense lattice packings by aligning the cylinders along their axes. The density of

the optimal Bravais-lattice packing of spherocylinders is given by

φ =
π√
12

L+ 4

3
R

L+ 2
√
6

3
R
, (8)

where L is the length of the cylinder and R is the radius of the spherical caps [62]. However,

we note that there are a noncountably-infinite number of non-Bravais-lattice packings of
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spherocylinders with the same packing densities (8), associated with the infinite number of

different stackings of spherocylinder layers similar to the Barlow stackings of the spheres [9].

Thus, the set of dense non-lattice packings of spherocylinders is overwhelmingly larger than

that of the lattice packing. We emphasize that the role of the local principal curvature of

the particle surface in determining dense packing configurations is far from being completely

understood.

B. Dense packings of “lens-shaped” particles

FIG. 11: (Color online) “Lens-shaped” particles corresponding to the intersection regions of two

spheres with radius R separated by distance L. Left panel: A lens-shaped particle associated with

L/R = 0.8. Right panel: A lens-shaped particle associated with L/R = 1.6.

Let us also consider dense packings of “lens-shaped” particles, which correspond to the

intersection region of two congruent spheres, and therefore is a centrally-symmetric convex

particle. In particular, the volume of such a lens-shaped particle is given by

V0 =
4π

3
R3

(

1− 3

4

L

R
+

1

16

L3

R3

)

, (9)

where R is the radius of the spheres and L ∈ [0, 2R) is the separation distance between the

sphere centers.

Similar to the aforementioned case of spherocylinders, it appears that both the optimal

Bravais-lattice packing of such lens-shaped particles, corresponding to the FCC-like stacking

of the triangular-lattice layers of the particles, and the noncountably-infinite number of

Barlow-like stackings of the layers give the densest known packings, which possess densities

given by

φ =
8π√
3

1− 3

4

L
R
+ 1

16

L3

R3

(4− L2

R2 )[(24 +
3L2

R2 )
1

2 − 3L
R
]
. (10)
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Note that in the sphere limit (i.e., L = 0), one can obtain the optimal sphere-packing density

φ = π/
√
18. In the limit of infinitely thin “lenses” (L → 2), one has φ =

√
3π/8. However,

we do not exclude the possibility that there exist other Bravais-lattice or non-lattice packings

that are denser than our current constructions.

C. Dense packings of pyramids from octahedron packing

(a) (b) (c)

FIG. 12: (Color online) (a) A square pyramid with ℓ =
√
2h. (b) A stretched square pyramid with

ℓ <
√
2h. (c) A sheared pyramid with a rhombic basal plane.

Consider a square pyramid with height h and length ℓ of the basal square (see Fig. 12).

According to Proposition 2, the square pyramid lacks central symmetry and dense packings

of this shape should be lattice packings of a centrally symmetric compound object made

of the pyramids. We first consider the case when ℓ =
√
2h, so that a pair of the pyramids

that form a perfect contact through the square faces correspond to the regular octahedron

(see Fig. 13a). Therefore, a dense packing of this special pyramid can be immediately

obtained, which is exactly the densest lattice packing of octahedra with density φ = 18/19 =

0.974368 . . ..

For the square pyramid with ℓ 6=
√
2h, a centrally symmetric compound dimer can still be

constructed in a similar way, which corresponds to a octahedron that is stretched (ℓ <
√
2h)

or compressed (ℓ >
√
2h) along the direction of the height of the pyramids. To obtain

dense packings of such pyramids, one can apply an affine transformation to the densest

lattice packing of regular octahedron along one of its principal directions (see Fig. 13b),

which leaves the packing density unchanged. This leads to a dense packing of stretched
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(a) (b) (c)

FIG. 13: (Color online) (a) A portion of a dense periodic packing of the square pyramids with

ℓ =
√
2h, whose fundamental cell contains two pyramid forming a centrally symmetric octahedra.

(b) A portion of a dense periodic packing of the stretched square pyramids with ℓ <
√
2h, which

corresponds to an affine transformation of the densest packing of octahedra. (c) A portion of a dense

periodic packing of the sheared pyramids, which corresponds to a sheared packing of octahedra.

(compressed) square pyramids with φ = 18/19 = 0.974368 . . . Similarly, for pyramids whose

basal plane is a rhombus obtained by uniformly shearing the square, one can construct a

dense packing of such objects by uniformly shearing the densest regular octahedron packing

in the plane defined by a pair of the principal directions of an octahedra, resulting in the

same density (see Fig. 13c).

We note that the constructed packings of the various aforementioned pyramids may not

correspond to their associated densest packings, but these constructions should be close to

the optimal ones. Once a construction is obtained by applying the organizing principles, one

can perform various types of optimizations to improve the density by finding the (locally)

densest configuration [45].

D. Equilibrium High-Density Crystal Phases

At infinite pressure, the optimal (densest) packing of hard particles corresponds to the

thermodynamic equilibrium phase for these particles. In the case of identical hard spheres,

the face-centered-cubic lattice is the thermodynamically favored maximal density state; see

Fig. 2. Colloidal particles can synthesized to interact with effective hard-particle potentials
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[9], and thus, it is useful to see to what extent the solid phase associated with the densest

packing structure is stable under finite pressure by decompressing the packing using com-

puter simulations [70]. Therefore, our general organizing principles enable one to obtain the

equilibrium crystalline phase behavior of the hard particles at high densities. To illustrate

this application, we consider the decompression of the densest known packing of truncated

tetrahedra.

FIG. 14: (Color online) Pair correlation function g2(r) associated with the centroids of the trun-

cated tetrahedra at different densities in the range from 0.99 to 0.38 during the melting of the

highest-packing-fraction crystal [49]. Our simulation suggests that the melting process has two

stages, including a solid-solid transition at a high density and a solid-liquid transition at an inter-

mediate density [49]. At very high densities, g2(r) is a long-ranged function and the stable phase is

associated with the densest packing of truncated tetrahedra. At intermediate densities, the stable

phase is associated with a less dense packing of truncated tetrahedra with higher symmetry. Below

φ ≈ 0.53, g2(r) suddenly changes from a long-ranged function to an exponential decaying function,

indicating the occurrence of a first-order crystal-liquid transition.

For truncated tetrahedra, Monte-Carlo (MC) simulations have been carried out [49] to

“melt” the densest known packing structure via a decompression process. In particular, a

periodic simulation box containing N = 686 particles is employed, whose size and shape

are allowed to change [41, 42]. The volume of the simulation box is slowly increased to

decrease the pressure and density (i.e., packing fraction) of the system. At each density,

a total number of 10 million MC trial moves are applied to each particle and 100 000

trial volume-preserving deformations are applied to the simulation box to equilibrate the
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systems. Equilibrium structural characteristics, such as the pair-correlation function g2 (see

Fig. 14) and the number of dimers n2 of truncated tetrahedra, are collected. Such descriptors

are used to gauge the remaining crystalline order in the system during the decompression

process. It is found that above φ ≈ 0.68, the crystal configurations associated with the

optimal packing of truncated tetrahedra is the stable solid phase for these particles. When

0.53 < φ < 0.68, the crystal configurations associated with a packing with lower density but

higher symmetry [49] becomes the stable phase. This suggests that the melting process has

two stages, including a solid-solid transition a high density and a solid-liquid transition at an

intermediate density [49]. Whether the crystalline phases are indeed the ones that we have

identified via the decompression process must still be verified using other techniques [71].

Below φ ≈ 0.53, the correlation function g2 suddenly changes from a long-ranged function

to an exponential decaying function (see Fig. 14) and n2 quickly drops from N/2 to almost

zero, indicating the occurrence of a first-order crystal-liquid transition.

The wide range of stability for the crystal phases [φ ∈ (0.53, 0.995)] is due to the fact

that the dimers of truncated tetrahedra can fill space very efficiently, as can be seen from

the amazingly high packing density (i.e., 207/208 = 0.995 . . .; see Table I). This means that

the free volume associated with crystals of the truncated tetrahedra is readily maximized

in the dimer arrangement, leading to a lower free energy of the system. Since a dimer is

formed by a pair of truncated tetrahedra contacting through the a common large hexagonal

face, it is relative easy for such local clusters to form in a relatively dense liquid. Once such

dimers nucleate, the system is expected to crystallize easily upon further compression. We

note that the aforementioned decompression simulations can only provide estimates of the

phase transition densities, the exact coexistence range of φ and whether there are higher-

order solid-solid phase transitions can be precisely explored by carrying out free-energy

calculations.

Similar complex high-density phase behaviors have also been observed in other

nonspherical-hard-particle systems. For example, for ellipsoids with revolution at inter-

mediate and large aspect ratios, it has been shown from decompression simulations [67],

free-energy calculations [68] and replica exchange Monte Carlo simulations [69] that the

densest known 2-particle basis packings constructed by Donev et al. [35] correspond to the

stable high-density equilibrium phases. As the density decreases, nematic phases becomes

the stable phases and the system undergoes a solid-liquid-crystal phase transition [67, 69].
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For cube-like superballs, decompressing the densest known crystalline packings via molecu-

lar dynamics reveals the stability of the crystal phases associated with these packings and

a solid-liquid-crystal transition to cubatic phases [65]. More recent free-energy calculations

[38] also showed that the densest known packings of superballs correspond to the high-

density equilibrium phases, while at intermediate densities, instead of cubatic phases, the

FCC-plastic-crystal phases are stable.

The aforementioned complex melting processes associated with nonspherical particles are

much richer than for hard-sphere system in which there is one type of crystal all the way

down from the densest packing to the melting point. Because the rotational degrees of

freedom and symmetries of a hard nonspherical particle can result in a variety of different

high-density phases (as opposed to the simple case of identical spheres) [49, 53, 65, 66, 69],

one must be careful to extend our conjectures and propositions that apply to high densities

to predict equilibrium phases at intermediate densities (e.g., liquid-solid transitions).

V. CONCLUSIONS AND DISCUSSION

In this paper, we have provided general organizing principles for maximally dense packings

of nonspherical hard particles, based on the most comprehensive set of packings of both

convex and concave particles to date. For polyhedron particles, a general rule for achieving

high packing densities is form a large number of face-to-face contacts, allowing particle

centroids to be closer to one another. Therefore, despite whether the particle is convex

or concave, central symmetry plays an important role in determining the dense packing

structures. For centrally symmetric (convex or concave) particles, the densities of their

densest Bravais-lattice packings provide tight lower bounds on the corresponding maximal

packing densities that, according to Propositions 1 and 3, could be the optimal ones. This

is due to the fact that when all the particles are aligned in the same direction, the central

symmetry of the particle allows a large number of face-to-face contacts. For particles lacking

central symmetry, their densest lattice packing contains a large number of vertex-to-face

contacts which always leads to a low packing density. Instead, the densest lattice packing

of a centrally symmetric compound unit of the original particles (i.e., a periodic packing of

the original particles) provides a tight lower bound on the maximal packing density that,

according to Propositions 2 and 4, could be the optimal one.
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Organizing principles for certain smoothly-shaped particles, such as ellipsoids and super-

balls, have also been provided. A major difference between such smooth particles and a

polyhedron is that the former possesses nontrivial surface curvature. A rule to obtain dense

packings of particles with smooth surfaces, similar to that for polyhedra, is that the particles

form contacts at surface regions with small local principal curvature (i.e., relatively “flat” re-

gions). Thus, for centrally symmetric superballs, both numerical simulations and theoretical

analysis suggest that the densest lattice packing of these shapes would be optimal. However,

central symmetry alone does not seem to be sufficient to ensure that the densest packing

of smooth particles is given by the corresponding optimal lattice packing. For example, for

ellipsoids, which do not possess equivalent principal axes, periodic packings are constructed

that are evidently denser than the optimal lattice packings. It could be that the elongation

of an ellipsoid results in the local principal curvature that allows the rotational degrees of

freedom of the particles to be fully explored. As noted in Sec. III, the role of curvature in

determining dense packings for smoothly-shaped particles is still not very well understood.

Moreover, we have shown how our generalized organizing principles can be applied to

construct analytically the densest known packings of certain convex nonspherical particles

(e.g., centrally symmetric spherocylinders and “lens-shaped”, as well as non-centrally sym-

metric square pyramids and rhombic pyramids). We have also shown that these principles

can be profitably applied to infer the high-density crystalline phases of hard convex and

concave particles.

We emphasize that while the propositions that we have put forth concerning dense pack-

ings of congruent nonspherical packings in the present paper currently lack the rigor of strict

mathematical proofs, we expect that they will either ultimately lead to strict proofs or at

least provide crucial guidance in obtaining such proofs for some nonspherical shapes. For

example, in Ref. [42], we provided what we believe to be the major elements of a proof of

Conjecture 1.

Can general principles be established that can be used to categorize and characterize

disordered jammed packings according to the particle shapes and symmetries? This is in

general a notoriously difficult question to answer, since disordered packings are intrinsically

nonequilibrium states and can possess a wide spectrum of densities and degrees of disor-

der [9, 16]. Nonetheless, certain universal global structural features have begun to emerge

from recent studies of the maximally random jammed (MRJ) states (analogs of the MRJ
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state for spheres depicted in Fig. 1) of a wide class of nonspherical particles, regardless of

the particle shapes or relative sizes (see Table IV). It has been shown that the MRJ pack-

ings possess special particle number density or local volume fraction fluctuations [31, 32],

implying “hyperuniformity” of the packings over the large-scale structure and leading to

anomalous quasi-long-range (QLR) correlations. This “hyperuniformity” property can be

experimentally measured using standard scattering techniques and is manifested as a linear

small-wavenumber (i.e., small-k) behavior in the structure factor [72] or the power spectrum

[73]. It has been argued that the hyperuniform QLR correlations in MRJ packings arise from

the competition between the requirement of jamming and maximal disorder. Therefore, the

hyperuniform QLR correlations should be expected for a wide class of MRJ packings.

TABLE IV: Characteristics of MRJ packings of hard particles with different shapes, including

spheres [9], ellipsoids [20], superballs [22], superellipsoids [23] and the non-tiling Platonic solids

[31].

Particle Isostatic Hyperuniform QLR MRJ Packing Fraction

Sphere Yes Yes 0.642

Ellipsoid No (hypostatic) Yes 0.642 − 0.720

Superball No (hypostatic) Yes 0.642 − 0.674

Superellipsoid No (hypostatic) Yes 0.642 − 0.758

Octahedron Yes Yes 0.697

Icosahedron Yes Yes 0.707

Dodecahedron Yes Yes 0.716

Tetrahedron Yes Yes 0.763

In addition, recent studies of MRJ packings of polyhedra [28, 30, 31] suggest that the iso-

counting conjecture proposed for sphere packings (i.e., each particle in the packing possesses

2ndof constraints, where ndof is the number of degrees of freedom) is also true for polyhedra

(see Table IV). We note that for polyhedra, the number of constraints at each contact can

be exactly given [28, 30, 31]. On the other hand, for smoothly-shaped particles, it was found

that the MRJ packings are generally hypostatic, with each particle possessing a smaller

number of contacts than 2ndof [20–23, 25]; see Table IV. Moreover, it was shown that the

surface curvature at contact points play an important role in blocking the rotation of the

32



particles and thus, in jamming the packing. However, it is difficult to quantify the effective

number of constraints provided by each contact with different local principal curvatures. A

successful quantification of this effective counting of constraints could lead to the conclusion

that the iso-counting conjecture also holds for smoothly-shaped nonspherical particles.

Finally, we note that tunability capability via particle shape provides a means to design

novel crystal, liquid and glassy states of matter that are much richer than can be achieved

with spheres [9, 55]. For example, by introducing particle asphericity, a variety of optimal

crystalline packings [35–52], diverse disordered jammed packings [20–32] as well as a wide

spectrum of equilibrium phases [49, 53, 65–69, 74] have been obtained from computer sim-

ulations. On the experimental side, it has been recently shown [54] that silver polyhedral

nanoparticles (with central symmetry) can self assemble into our conjectured densest lattice

packings of such shapes [41, 42]. The resulting large-scale crystalline packings may facilitate

the design and fabrication of novel three-dimensional materials for sensing [75], nanopho-

tonics [76] and photocatalysis [77]. Our general organizing principles can clearly provide

valuable guidance for novel materials design, which we will systematically investigate in fu-

ture work. It will also be very useful to determine order maps for packings of nonspherical

particles that are the analogs of Fig. 1 for sphere packings.
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