
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Derivation of quantum work equalities using a quantum
Feynman-Kac formula

Fei Liu
Phys. Rev. E 86, 010103 — Published  6 July 2012

DOI: 10.1103/PhysRevE.86.010103

http://dx.doi.org/10.1103/PhysRevE.86.010103


ENR1050

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Derivation of quantum work equalities using quantum

Feynman-Kac formula

Fei Liu1, ∗

1School of Physics and Nuclear Energy Engineering,

Beihang University, Beijing 100191, China

Abstract

On the basis of a quantum mechanical analogue of the famous Feynman-Kac formula and a new

picture, we present a novel method to derive nonequilibrium work equalities for isolated quantum

systems, which include the Jarzynski equality and Bochkov-Kuzovlev equality. Compared with

other methods in the literature, our method shows higher similarity in form to the method deriving

the fluctuation relations in the classical systems.
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Intrduction. Feynman-Kac (FK) formula originally found by Feynman in quantum me-

chanics [1] and extended by Kac [2] establishes an important connection between partial

differential equations and classical stochastic processes. Briefly, assuming that in a continu-

ous diffusion process the probability of a stochastic trajectory X started from a state x′ at

time t′ is P [X|x′, t′]. The solution u(x′, t′) of the following partial differential equation




∂t′u(x

′, t′) = −L+(x′, t′)u(x′, t′)− g(x′, t′)u(x′, t′),

u(x′, t′ = t) = q(x′)
(1)

has a concise path integral representation [3]:

u(x′, t′) =

∫
DXe

∫
t

t′
g(xτ ,τ)dτq(xt, t)P [X|x′, t′], (2)

where L+ is the Markovian generator of the diffusion process. This is the famous FK formula

in classical stochastic processes.

Recently, the FK formula was also found very useful in studying fluctuation

relations [4–9]. In the past two decades, these important relations have greatly deepened

our understanding about the second law of thermodynamics and nonequilibrium physics of

small systems [4, 10–20]. With the fluctuation relations clarified in the classical

systems, considerable research interest is turning to their quantum cases and

fruitful theoretical and experimental results [21–30] have been obtained. To

our best knowledge, however, there is no work explicitly using the FK formula. At first

glance, the reason is very obvious, because the classical trajectory picture on which the

FK is based is not available in quantum physics. Contrary to the intuition, in this Rapid

Communication we use an isolated quantum system as an example to show that there indeed

exists a quantum mechanical analogue of the classical FK formula and it is very useful

to derive the quantum nonequilibrium work relations including the Jarzynski [21, 23, 24]

and Bochkov-Kuzovlev equalities [29]. Additionally, we also demonstrate that the

involvement of the quantum FK formula is a consequence of the difference

between the original quantum system and its time reversal.

The Kolmogorov picture and backward invariable. We start by introducing essential no-

tations and a new picture that is a quantum-mechanical analogue of Kolmogorov’s idea [31]

in classical stochastic theory. Although the picture is virtually equivalent to other well-

known pictures, e.g. the Heisenberg picture, we will see later that it is very relevant with
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the time reversal concept. We assume that the closed quantum system is described by a

time-dependent Hamiltonian H(t). The system’s density operators ρ at two different times

t and t′ (< t) are connected by the time-evolution operators U at the two times as

ρ(t) = U(t)U †(t′)ρ(t′)U(t′)U †(t). (3)

Given an arbitrary observable F that does not depend explicitly on time, we define its

Kolmogorov picture as

F (t, t′) = U(t′)FH(t)U †(t′), (4)

where the superscript H denotes the Heisenberg picture: FH(t)=U †(t)FU(t). On the basis

of Eqs. (3) and (4), the expectation value 〈F 〉(t) at time t in the picture is

Tr[Fρ(t)] = Tr[F (t, t′)ρ(t′)], (5)

and the equation of motion for F (t, t′) with respect to the backward time t′ is simply




ih̄∂t′F (t, t′) = −[F (t, t′), H(t′)],

F (t, t′ = t) = F.
(6)

We see that it is a terminal condition rather than initial condition problem. It is worth

pointing out that Eq. (6) is very distinct from the equation of motion for the same F (t, t′)

with respect to the forward time t if the Hamiltonian explicitly depends on time.

Equation (5) has a trivial property: the derivatives on both sides with respect to t′ van-

ishes, or equivalently, Tr[F (t, t′)ρ(t′)] being a backward time invariable. The property is

very analogous to that of the Chapman-Kolmogorov equation in the classical diffusion the-

ory [32]. According to our previous experience which constructing a more general backward

time invariable may lead into the classical fluctuation relations [9], it would be very inter-

esting to explore whether the same idea is still true here. Imitating Eq. (5) in Ref. [8], we

find there is very analogous backward time invariable in the quantum case:

Tr[Fρ(t)] = Tr[F (t, t′)ρ(t′)], (7)

if the new operator F (t, t′) satisfies

ih̄∂t′F (t, t′) = −[F (t, t′), H(t′)]− F (t, t′)(ih̄∂t′ρ(t
′) + [ρ(t′), H(t′)])ρ−1(t′)

+([F (t, t′), A(t′)]B(t′) + F (t, t′)[B(t′), A(t′)])ρ−1(t′) (8)
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and its terminal condition at t is still assumed to be F , where the operators A(t′), B(t′) and

invertible density operator ρ(t′) are arbitrary. The proof of Eq. (7) is straightforward. The

meaning of the last two terms on the right hand side will appear when we chooses ρ(t′) to

be the system’s density operator ρ(t′), i.e. the term ih̄∂t′ρ + [ρ,H ] vanishing. The general

Eq. (8) seems uncommon in the quantum mechanics except a specific case:





ih̄∂t′F (t, t′) = −[F (t, t′), H(t′)]− F (t, t′)O(t′),

F (t, t′ = t) = F,
(9)

where O(t′) is an arbitrary operator. We may easily write down its solution given by

F (t, t′) = U(t′)FH(t)T+e
(ih̄)−1

∫
t

t′
dτU†(τ)O(τ)U(τ)U †(t′) (10)

= U(t′)FH(t)Q(t, t′)U †(t′), (11)

where T+ is the time-ordering operator. We simply name Eq. (10) quantum FK formula

because of its highly formal similarity to the classical FK formula (2). However, we must

remind the reader that the whole time-ordering term, which we specially denote it by a

operator Q(t, t′) for convenience, only indicates that the operator satisfies

ih̄∂t′Q(t, t′) = −Q(t, t′)[U †(t′)O(t′)U(t′)] (12)

with a terminal condition Q(t, t′=t)=1. So far, we mainly concentrate on a formal

development; the physical relevance of the quantum FK formula (10) and the backward

time invariable (7) is not obvious. In the following we show that these results would lead

into the quantum Jarzynski and Bochkov-Kuzovlev equalities if one chose specific ρ(t′),

A(t′), and B(t′).

Quantum Jarzynski equality. We assume that the closed quantum system is initially

in thermal equilibrium with a density operator ρeq(0)=e−βH(0)/Z(0), where the partition

function Z(0)=Tr[e−βH(0)]=e−βG(0), β is inverse temperature and G(0) is the initial free

energy. At later times the system evolutes under the time-dependent Hamiltonian H(t).

We choose A=B=0, ρ(t′) to be the instant equilibrium state ρeq(t
′)=e−βH(t′)/Z(t′) with the

instant partition function Z(t′)=Tr[e−βH(t′)]=e−βG(t′). Equation (8) then becomes

ih̄∂t′F (t, t′) = −[F (t, t′), H(t′)]− ih̄F (t, t′)∂t′ρeq(t
′)ρ−1

eq (t
′). (13)
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Obviously, the above equation follows the structure of Eq. (9) and especially

O(t′) = ih̄[∂t′e
−βH(t′)eβH(t′) + β∂t′G(t′)] (14)

when we substitute the expression of ρeq(t
′) into the “source” term of Eq. (13). Intriguingly,

in this case Eq. (12) in fact has a very simple analytical solution

Q(t, t′) = [U †(t)e−βH(t)U(t)]U †(t′)eβH(t′)U(t′)]eβ[G(t)−G(t′)]. (15)

Hence, on the basis of Eqs. (7), (10), and (15) we obtain

Tr[Fρeq(t)] = Tr[U(t′)FH(t)T+e
∫
t

t′
dτU†(τ)∂τρeq(τ)ρ

−1
eq (τ)U(τ)U †(t′)ρeq(t

′)] (16)

= Tr[FH(t)e−βHH(t)eβH
H(t′)U †(t′)ρeq(t

′)U(t′)] eβ[G(t)−G(t′)]. (17)

If F=1 and t′=0 Eq. (17) is just the quantum Jarzynski equality on the inclusive work [24]:

〈e−βHH(t)eβH(0)〉eq(0) = e−β∆G(t), (18)

where ∆G(t)=G(t) −G(0), and we have used 〈 〉eq(0) to denote an average over the initial

density operator ρeq(0). Additionally, Eq. (17) at t′=0 is also a specific case of the general

functional relation given by Andrieux and Gaspard earlier [26]; see Eq. (12) therein.

Bochkov-Kuzovlev equality. Here we consider a special realization of the time-dependent

Hamiltonian [33]: a dynamic perturbation H1(t) (t ≥ 0) is applied on a system that is

initially in thermal equilibrium with a time-independent H0, that is, the total Hamilto-

nian at later times is H(t)=H0+H1(t). Obviously, the system’s initial density operator is

ρ(0)=ρ0=e−βH0/Z0, where the partition function Z0=Tr[e−βH0 ]=e−βG0 . Choosing H(t′)=H0,

A(t′)=−H1(t
′), B(t′)=ρ(t′)=ρ0 in Eq. (8), we obtain the following equation

ih̄∂t′ F̃ (t, t′) = −[F̃ (t, t′), H0]− [F̃ (t, t′), H1(t
′)]− F̃ (t, t′)[ρ0, H1(t

′)]ρ−1
0

= −[F̃ (t, t′), H0(t
′)]− F̃ (t, t′)[ρ0, H1(t

′)]ρ−1
0 . (19)

We have used a new symbol F̃ to distinguish it from the previous F because they satisfy

different equations. We see that the above equation also follows the structure of Eq. (9) and

especially

O(t′) = [e−βH0 , H1(t
′)]eβH0 . (20)
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It would be interesting to check whether there is a simple analytical solution to Eq. (12)

under this circumstance. We find that it indeed has:

Q(t, t′) = [U †(t)e−βH0U(t)][U †(t′)eβH0U(t′)]. (21)

Using Eqs. (7), (10), and (21) we establish another equality given by

Tr[Fρ0] = Tr[U(t′)FH(t)T+e
(ih̄)−1

∫
t

t′
dτU†(τ)[ρ0,H1(τ)]ρ

−1
0 U(τ)U †(t′)ρ0] (22)

= Tr[FH(t)e−βHH
0 (t)eβH

H
0 (t′)U †(t′)ρ0U(t′)]. (23)

If F=1 and t′=0 Eq. (23) is the quantum Bochkov-Kuzovlev equality on the exclusive work

〈e−βHH
0 (t)eβH0〉0 = 1 (24)

that was proposed very recently in Ref. [29], where 〈 〉0 indicates an average over the initial

density operator ρ0.

Time reversal interpretation. In the remaining part we want to demonstrate that

Eqs. (13) and (19) arise from the equations of motion of two distinct time-

reversed density operators, which is necessary to understand the origin of these

equations and the physical meaning of the backward time t′. We use Eq. (13) as

an illustration. Multiplying its both sides with ρeq(t
′) and introducing a parameter s=t−t′

(0<s<t), we rewrite the equation into

ih̄∂s[F (t, t− s)ρeq(t− s)] = [F (t, t− s)ρeq(t− s), H(t− s)]. (25)

Noting this is an initial condition rather than the terminal condition problem. Equation (25)

seems very analogous to the equation of motion of a density operator, which is indeed true

if we multiply both sides of the equation by the antiunitary time-reversal operator Θ and

its conjugation to obtain

ih̄∂sρR(s) = [HR(s), ρR(s)], (26)

where the time-reversed density operator and time-reversed Hamiltonian are

ρR(s) =
1

Tr[Fρeq(t)]
ΘF (t, t− s)ρeq(t− s)Θ†, (27)

HR(s) = ΘH(t− s)Θ†, (28)
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respectively, and the coefficient is essential for the normalization of ρR(s). Hence, we may

interpret the minus of the backward time t′ to be the forward time of the time-

reversed system. Moreover, Eq. (27) also explains the backward time invariable

in the Jarzynski equality, because the trace of its left side is a t′-independent

constant. In fact, the same equation is equivalent to the key Lemma in Ref. [26] that was

used to prove a functional relation; see the Appendix. Doing very analogous calculations,

one can also prove that Eq. (19) is equivalent to the equation of motion of a different time-

reversed density operator ρ̃R(s) with a time-reversed Hamiltonian H̃R(s), which are

ρ̃R(s) =
1

Tr[Fρo]
ΘF̃ (t, t− s)ρ0Θ

†, (29)

H̃R(s) = ΘH(t− s)Θ† = H0 +ΘH1(t− s)Θ†, (30)

respectively. For a same dynamic perturbation problem, though the original and time-

reversed Hamiltonian for the quantum Jarzynski equality are the same to those for the

quantum Bochkov-Kuzovlev equality, respectively, their time-reversed density operators

are usually very distinct because of their different initial conditions, i.e., ρR(0)=ρeq(t) and

ρ̃R(0)=ρo.

Conclusions. In this work, we have used a quantum mechanical analogue of the

classical FK formula to derive known quantum nonequilibrium work relations in isolated

quantum systems. Compared with the previous methods in the literature, our method

shows highly similar in form to the method which we developed earlier to derive the

classical fluctuation relations [9]. We think that it is insightful because one may find the

backward time invariable first and then give its physical interpretation rather than vise

versa. Previous work has shown that direct defining nonequilibrium physical quantities was

very nontrivial in quantum case [28]. Extending our method into more complicated quan-

tum systems, e.g. the open quantum systems would be a challenge in our following researche.

This work was supported in part by the National Science Foundation of China under Grant

No. 11174025.
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I. APPENDIX

Equation (27) could be further simplified. the time reversed density operator at later

time s is connected with the initial condition by

ρR(s) = UR(s)ρR(0)U
†
R(s) =

1

Tr[Fρeq(t)]
UR(s)ΘFρeq(t)Θ

†U †
R(s), (31)

where UR(s) is the time-evolution operator for the time-reversed Hamiltonian HR(s). Sub-

stituting the above equation and the solution of Eq. (13)

F (t, t′) = U(t′)FH(t)e−βHH(t)eβH
H(t′)U †(t′)eβ[G(t)−G(t′)] (32)

into Eq. (27) and doing a simple calculation we obtain

UR(s) = ΘU(t− s)U †(t)Θ†. (33)
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