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We study the properties of mixed states obtained from eigenstates of many-body lattice Hamiltonians after
tracing out part of the lattice. Two scenarios emerge for generic systems: (i) the diagonal entropy becomes
equivalent to the thermodynamic entropy when a few sites aretraced out (weak typicality); and (ii) the von
Neumann (entanglement) entropy becomes equivalent to the thermodynamic entropy when a large fraction of
the lattice is traced out (strong typicality). Remarkably,the results for few-body observables obtained with the
reduced, diagonal, and canonical density matrices are verysimilar to each other, no matter which fraction of the
lattice is traced out. Hence, for all physical quantities studied here, the results in the diagonal ensemble match
the thermal predictions.
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Despite advances, the emergence of thermodynamics from
quantum mechanics is still a subject under debate. How to
derive, from first principles, proper ensembles leading to the
basic thermodynamic relations is not yet entirely clear. Ac-
cording to the concept of canonical typicality [1], the reduced
density matrix of a subsystem of most pure states of many-
particle systems is canonical. The proof of this statement re-
quires a partition of the original system into a small “system”
and a large “environment”. However, for example, suppose
that our universe is in a pure state and that we trace out only a
finite number of degrees of freedom. Can we describe the rest
of the universe using statistical mechanics? How much one
needs to trace out, how well the notion of canonical typicality
works in finite systems, and which quantities will be more or
less affected by the fraction of the original system traced out
are questions that have received little attention. They arethe
more pressing given the progress made in experiments with
ultracold gases [2].

We can discuss these issues in the context of entropy. If one
takes an eigenstate of a generic many-body Hamiltonian and
traces out the “environment” (E), the grand canonical (GC)
ensemble is the appropriate ensemble to describe the system
(S) that is left, where the total energy and number of particles
fluctuate. One immediately realizes that the GC-entropy,SGC,
must be different from the von Neumann entropy,SvN, if only
a small fraction of the original system is traced out. In this
case,SvN is extensive in the size of the environment, instead
of in the size of the system asSGC. This follows from the fact
that, for a composite systemS + E in a pure statêρ = |Ψ〉〈Ψ|,
the reduced von Neumann entropy is defined as

SvN ≡ −TrS [ρ̂S ln ρ̂S ] ≡ −TrE [ρ̂E ln ρ̂E ] , (1)

where the Boltzmann constant is set to unity and the reduced
density matrixρ̂S = TrE ρ̂ and similarly ρ̂E = TrS ρ̂. SvN

has been widely used to measure the entanglement in bipartite
systems [3]. If the pure state is separable,ρ̂ = ρ̂S ⊗ ρ̂E , then
SvN = 0, while maximum entanglement leads toSvN = lnD,
whereD is the smallest dimension of the two subsystems. The
source of the disparity betweenSvN andSGC is the informa-

tion present in the off-diagonal elements of the reduced den-
sity matrix, which is not contained in the thermodynamic en-
semble. When a large fraction of the original system is traced
out, the equivalence betweenSvN andSGC is expected (canon-
ical typicality). However, up to our knowledge, it has not been
demonstrated for realistic systems.

Now suppose that instead of tracing out the environment,
we physically cut it off and let the remaining system relax to
equilibrium. We can then ask how much one needs to cut for
the entropy of the reduced system to become equivalent toSGC

(if ever). After relaxation, this system is described by thediag-
onal ensemble [4, 5] obtained by writing the reduced density
matrix (ρ̂S) in the energy eigenbasis. The proper thermody-
namic entropy in this case has been argued to be the diagonal
entropy [6, 7], defined as

Sd ≡ −
∑

n

ρnn ln(ρnn), (2)

whereρnn are the diagonal elements of the density matrix.
Sd counts logarithmically the number of energy eigenstates
which are occupied inS. Unlike SvN, Sd is extensive in the
system size even if we trace a very small environment, e.g.,
a single degree of freedom. Cutting off the environment is
equivalent to a sudden quench; it introduces to the system the
(nonextensive) energy uncertaintyδES . This uncertainty im-
plies that if all the eigenstates of the subsystem Hamiltonian
ĤS within the window±δES are occupied with roughly the
same weights, thenSd ≈ logΩ(ES)δES , whereΩ(ES) is
the density of states inS. Up to subextensive corrections,Sd

would then coincide with the thermodynamic entropy ofS.
In this Letter, we study the properties of mixed states ob-

tained from eigenstates of a many-body lattice Hamiltonian
after tracing out or cutting off an increasingly large environ-
ment. One of our goals is to understand the structure of the
remaining reduced density matrix and if it ever becomes ther-
mal, which we monitor usingSvN, SGC, andSd. We find that,
for nonintegrable systems,Sd approachesSGC after cutting
off a few (possibly one) sites, i.e., our hypothesis above is
verified. SvN, on the other hand, remains different fromSd
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andSGC until a large fraction of the lattice is traced out [8].
This motivates us to distinguish between the conventional (or
strong) typicalitySvN

∼= Sd
∼= SGC and a weaker typicality in

the sense thatSvN 6= Sd
∼= SGC. The latter implies thatonly

the diagonal part of the density matrix of the reduced system
in the energy eigenbasis exhibits a thermal structure.

Our results then show that the diagonal entropy satisfies the
key thermodynamic relation:

∂SS

∂ES

=
∂SE

∂EE

=
1

T
, (3)

whereES andEE are the energies of the subsystems. This fol-
lows from the fact thatSd coincides with the thermodynamic
entropy forS andE simultaneously. In contrast,SvN cannot
satisfy this equality, as one can see by consideringE ≫ S. In
this case,SvN = SS = SE is proportional to the size ofS,
whileEE is proportional to the size ofE , so∂SE/∂EE → 0.

Another of our main goals in this work is to understand the
description of few-body observables in the mixed states ob-
tained by the two procedures mentioned before. For that, we
study their expectation values as given by the reduced density
matrix, the diagonal ensemble, and the GC ensemble. The
results for the first two are similar even if very few sites are
traced out and the system sizes are small. This suggests that
either tracing out part of the original system or removing the
same number of sites and waiting for the reduced system to
relax leads to the same results, up to non-extensive bound-
ary terms. For all practical purposes both procedures are then
equivalent. The agreement with the GC expectation values is
also good and improves with increasing system size. This im-
plies that, for few-body observables, only weak typicalityis
needed to observe thermal behavior in experiments.

System.–We study hard-core bosons in a one-dimensional
lattice with open-boundary conditions described by

Ĥ = ǫ

(

n̂1 −
1

2

)

(4)

+

L−1
∑

i=1

[

−t
(

b̂†i b̂i+1 + H.c.
)

+ V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)]

+

L−2
∑

i=1

[

−t′
(

b̂†i b̂i+2 + H.c.
)

+ V ′

(

n̂i −
1

2

)(

n̂i+2 −
1

2

)]

,

where,t and t′ [V andV ′] are nearest-neighbor (NN) and
next-nearest-neighbor (NNN) hopping [interaction],L is the
chain size, and standard notation has been used [9]. Symme-
tries, and therefore degeneracies, are avoided by considering
1/3-filling and by placing an impurity (ǫ 6= 0) on the first site.
In what follows,t = V = 1 sets the energy scale,ǫ = 1/5,
andt′ = V ′. Whent′ = V ′ = 0, the model is integrable [10].
As the ratio between NNN and NN couplings increases, the
system transitions to the chaotic domain [9]. The results be-
low depend on the regime (integrable vs nonintegrable), but
not on specific values of the parameters.

For our calculations, we select an eigenstate|Ψj〉 of Ĥ (4),
with energyEj closest toE =

∑

j Eje
−Ej/T /

∑

j e
−Ej/T
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FIG. 1: (Color online) (a),(b) Entropies per site vs temperature for
R = L/3. (c),(d) Entropies per site vsR for a fixed temperature;
T = 4. (a),(c)t′ = V ′ = 0 (integrable); (b),(d)t′ = V ′ = 0.32
(chaotic). All panels:L = 18.

corresponding to an effective temperatureT . SinceSvN =
Sd = 0, this can be seen as the most distant choice for a state
with a thermodynamic entropy. We then trace out a certain
number of sitesR ≤ 2L/3, on the right side of the chain,
and study the entropies and observables of the reduced sys-
tem. The reduced density matrix̂ρS describing the remain-
ing system consists of different subspaces each with a number
N ∈ [max(L/3−R, 0), L/3] of particles.

Entropies.–The von Neumann, diagonal, and GC entropies
are given by Eq. (1), Eq. (2), and

SGC = lnΞ +
ES − µNS

TGC
, (5)

respectively. In Eq. (5),Ξ =
∑

n e
(µNn−En)/TGC is the grand

partition function,TGC is the GC temperature,µ is the chem-
ical potential, andES = Tr[ĤS ρ̂S ] andNS = Tr[N̂S ρ̂S ] are,
respectively, the average energy and number of particles inthe
remaining subsystemS.

Results.–In Fig. 1, we show results forSvN, Sd, andSGC in
the integrable [(a),(c)] and chaotic [(b),(d)] domains. Larger
fluctuations are seen in Figs. 1(a) and 1(c) as characteristic of
the integrable regime. Figs. 1(a) and 1(b) show the entropies
vs different eigenstates, which are increasingly away fromthe
ground state (T increases), when 1/3 of the sites are traced
out. In the chaotic regime, and for all states selected, one can
see thatSd is close toSGC, while SvN is quite far. This hints
a thermal structure in the diagonal part of the reduced density
matrix in the energy eigenbasis.

In Figs. 1(c) and 1(d) we show results for a fixedT as an in-
creasingly larger fraction of the original system is tracedout.
One can see again that in the chaotic limitSd is much closer
to SGC than toSvN, even when very few sites are traced out.
However, in both regimes, all entropies approach each otheras
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
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FIG. 2: (Color online) (a)–(d) Entropies per site vs1/L for T =
4 and a fixed ratioR/L (indicated). (e),(f) Full (empty) symbols:
SGC − Sd (Smc − Sd) per site vs1/L for R = 1, 2, and 3. (a),(c),(e)
t′ = V ′ = 0 (integrable); (b),(d),(f)t′ = V ′ = 0.32 (chaotic).

sity matrix to become irrelevant inSvN, leading this entropy
to finally approachSd andSGC.

The results presented in Fig. 1 were obtained forL = 18,
the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and forT = 4. In Figs. 2(a) and 2(b), whenL/3 sites are
cut off,Sd andSGC approach each other asL increases, up to
a possible non-extensive correction. This trend is seen forall
systems we have studied in the chaotic regime [13], and opens
up a new question: could cutting off an infinitesimal part of
the original system leadSd andSGC to be equal in the ther-
modynamic limit? In Figs. 2(e) and 2(f), we show the differ-
ence betweenSGC andSd per site vs system size when tracing
out one, two, or three sites. In the chaotic regime [Fig. 2(f)],
the results are consistent with a vanishing difference in the
thermodynamic limit (even when cutting one site [13]). This
finding is reinforced with the empty symbols, which show the
difference between the microcanonical entropy (Smc) andSd.
In this case, finite size effects are significantly reduced, lead-
ing to a much better agreement between the two entropies,
which further improves withL [14]. Hence, one could ar-
gue that single eigenstates of many-body Hamiltonians have
a thermodynamic entropy [8]. Close to the integrable point
[Figs. 2(a), 2(c), and 2(e)], large fluctuations are observed for
different values ofT and t′, V ′, which makes it difficult to
draw general conclusions.

In Figs. 2(a) and 2(b), one can also see that forR = L/3,
the von Neumann entropy (per site) saturates to a different
value fromSd andSGC (per site), as the lattice size increases.
As shown in Figs. 2(c) and 2(d), it is only whenR > L/2 that
the three entropies become comparable. However, for our sys-
tem sizes, this happens only in the chaotic regime. As one ap-
proaches the integrable point, we again find large fluctuations
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FIG. 3: (Color online) (a),(b) Kinetic energy per site and (c),(d)
n(k = 0) vsR; L = 18; T = 4. (a),(c)t′ = V ′ = 0 (integrable);
(b),(d)t′ = V ′ = 0.32 (chaotic).

and the results depend onT and the values oft′, V ′. Fluc-
tuations in the integrable regime are understandable. In the
chaotic regime (and away from the edges of the spectrum) all
eigenstates of the Hamiltonian that are close in energy have(i)
a similar structure, as reflected by the inverse participation ra-
tio and information entropy in different bases [9], and (ii)ther-
mal expectation values of few-body observables [4, 5, 15, 16].
However, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 9, 16], and this is affecting our results here.

Observables.–An important question we are left to address
is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑

n

ρnnOnn, (6)

OGC =
1

Ξ

∑

n

Onne
(µNn−En)/T , (7)

respectively. Here,Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.

Results.–Figure 3 shows results for the kinetic energy

K̂ = −t

L−R−1
∑

i=1

(

b̂†i b̂i+1 + H.c.
)

−t′
L−R−2
∑

i=1

(

b̂†i b̂i+2 + H.c.
)

,

(8)
and the momentum distribution function,

n̂(k) =
1

L−R

L−R
∑

j,l=1

ei
2πk
L−R

(j−l)b̂†j b̂l, (9)

for an increasingly large fraction of sites traced out. The re-
sults obtained with the three density matrices are comparable,
independently of the regime, the number of sites traced out,
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andT (see [13]). In particular, the fact thatOvN andOd are
so close demonstrates that both procedures, tracing sites out
or cutting off part of the original system and then measuring
the observables after relaxation, lead to similar outcome.The
information contained in the off-diagonal elements of the re-
duced density matrix, which generates discrepancies between
SvN andSd

∼= SCG, is therefore irrelevant to few-body ob-
servables. Our findings also open the interesting question:
which experimentally measurable quantities (if any) could
distinguish between tracing sites out or cutting them off?

We note that, in the chaotic regime, the GC results for both
observables depart from those obtained with the reduced and
diagonal density matrices asR increases. This is understand-
able because the GC results are obtained for a system with
L − R sites and open boundary conditions, while the other
two are obtained for a system withL sites from whichR sites
are either traced out or cut off. Hence, the more sites one cuts
off (the larger the value ofR), the smaller is the system re-
maining. Finite size effects are then expected to be stronger,
in particular as the values oft′, V ′ increase. It is also expected
that they should vanish in the thermodynamic limit.

In Figs. 4(a)–4(d), we show the scaling behavior of the two
observables from Fig. 3 forR = L/3. It is apparent that, in the
chaotic regime [Figs. 4(b) and 4(d)], the observables calcu-
lated in the three ensembles approach each other with increas-
ing system size. (Results for other temperatures and observ-
ables in the chaotic domain are presented in Ref. [13]). In the
integrable limit [Figs. 4(a) and 4(c)], large fluctuations pre-
vent us from reaching general conclusions. This is a regime
that needs to be studied by other means, which may allow one
to do a proper extrapolation to the thermodynamic limit.

A final important property of the mixed states studied here
is that their effective thermodynamic temperature (TGC) is the
same as the effective temperatureT of the many-body eigen-
state from which they are obtained. This is shown in Figs. 4(e)
and 4(f), where we plotTGC/T vs1/L forR = L/3 [4(e)] and
R = 2L/3 [4(f)], and for different values oft′, V ′. The two
temperatures are close (except for the smallest systems sizes)
and further approach each other as1/L decreases, which is
consistent with the idea of eigenstate thermalization where a
single eigenstate exhibits thermal behavior [4, 15].

Conclusions.–We have found that, away from integrability,
the diagonal and grand canonical entropies are very close to
each other, even when a small portion (probably an infinites-
imal fraction) of the lattice is cut off. They further approach
each other with increasing system size. In contrast toSd, SvN

only approachesSGC when a large part of the original system
is traced out. This behavior reflects the non-diagonal struc-
ture of the reduced density matrix when only small fractions
of the lattice are traced out. Led by these results, we identified
two different regimes: weak typicality, where the diagonalen-
semble develops a thermal structure, and strong (canonical)
typicality, where the density matrix of the reduced system is
thermal. Close to and at integrability further studies are nec-
essary. Our results exhibit large fluctuations depending onthe
state selected and the values oft′, V ′.
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FIG. 4: (Color online) (a)–(d) Observables vs1/L for R = L/3.
(e),(f) Ratio between the grand-canonical temperature andthe tem-
perature vs1/L. (Black) Plus: t′ = V ′ = 0.04; (red) cross:
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t′ = V ′ = 0.32; (purple) down-triangle:t′ = V ′ = 0.64. In all
panels:T = 4.

We also studied experimentally measurable few-body ob-
servables as determined from the reduced, diagonal, and
grand-canonical density matrices. We find that they all leadto
the same results as the system size increases, no matter how
many sites are traced out. This demonstrates that the extra
information contained in the off-diagonal elements of the re-
duced density matrix is irrelevant to those observables. There-
fore, it is plausible to conjecture that the expectation values of
physicalobservables in subsystems of any size obtained from
generic many-body eigenstates can be entirely obtained from
standard statistical ensembles. Our results show that even
in relatively small systems, both procedures, tracing out the
“bath” or cutting it off and letting the subsystem thermalize,
lead to the same outcome.
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Note added.—After completion of this work, we have
learned that the strong (canonical) typicality has been recently
verified in translationally invariant systems [17].
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