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We study the properties of mixed states obtained from etge&s of many-body lattice Hamiltonians after
tracing out part of the lattice. Two scenarios emerge foregersystems: (i) the diagonal entropy becomes
equivalent to the thermodynamic entropy when a few sitesramed out (weak typicality); and (ii) the von
Neumann (entanglement) entropy becomes equivalent tdvéienbdynamic entropy when a large fraction of
the lattice is traced out (strong typicality). Remarkalie results for few-body observables obtained with the
reduced, diagonal, and canonical density matrices aresirilar to each other, no matter which fraction of the
lattice is traced out. Hence, for all physical quantitiagigtd here, the results in the diagonal ensemble match
the thermal predictions.

PACS numbers: 05.70.Ln, 05.30.-d, 05.45.Mt, 02.30.lk

Despite advances, the emergence of thermodynamics frotion present in the off-diagonal elements of the reduced den
guantum mechanics is still a subject under debate. How tsity matrix, which is not contained in the thermodynamic en-
derive, from first principles, proper ensembles leadindhto t semble. When a large fraction of the original system is tlace
basic thermodynamic relations is not yet entirely clear- Ac out, the equivalence betweéipy andSsc is expected (canon-
cording to the concept of canonical typicality [1], the redd  ical typicality). However, up to our knowledge, it has notehe
density matrix of a subsystem of most pure states of manydemonstrated for realistic systems.
particle systems is canonical. The proof of this statementr  Now suppose that instead of tracing out the environment,
quires a partition of the original system into a small “syste  we physically cut it off and let the remaining system relax to
and a large “environment”. However, for example, supposequilibrium. We can then ask how much one needs to cut for
that our universe is in a pure state and that we trace out only the entropy of the reduced system to become equivaléigdo
finite number of degrees of freedom. Can we describe the regif ever). After relaxation, this system is described bydies-
of the universe using statistical mechanics? How much onenal ensemble [4, 5] obtained by writing the reduced density
needs to trace out, how well the notion of canonical typigali matrix (5s) in the energy eigenbasis. The proper thermody-
works in finite systems, and which quantities will be more ornamic entropy in this case has been argued to be the diagonal
less affected by the fraction of the original system traced o entropy [6, 7], defined as
are questions that have received little attention. Theytlaze
more pressing given the progress made in experiments with Sq=— ann In(pnn), (2)
ultracold gases [2]. n

We can discuss these issues in the context of entropy. If one

. . oo herep,,, are the diagonal elements of the density matrix.
takes an eigenstate of a generic many-body Hamiltonian ang counts logarithmically the number of energy eigenstates
traces out the “environment&(, the grand canonical (GC) d 9 y gy €9

) . . which are occupied i5. Unlike Sy, Sy is extensive in the
ensemble is the appropriate ensemble to describe the system . : .

: 2 ° System size even if we trace a very small environment, e.g.,
(S) that is left, where the total energy and number of particles

fluctuate. One immediately realizes that the GC-entrSpy, 2 Sulir\l/%llee r?tigr;esf;;;edﬁg.ch;?tt?:qt?ongct:stce)rtlxgosnr:t?arr]r: !;
must be different from the von Neumann entrofy, if only q d ! Y

a small fraction of the original system is traced out. In this(n_onexten_swe) energy uncertaintfs. This uncertainty m-
: o . . . lies that if all the eigenstates of the subsystem Hamétoni
case,Sy is extensive in the size of the environment, instead”

of in the size of the system &#&c. This follows from the fact Hs within the window-£0 Es are occupied with roughly the
that, for a composite systef+ £ in a pure statg¢ = |U) (¥|,

same weights, the§; ~ logQ(FEs)dEs, whereQ(Es) is
the reduced von Neumann entropy is defined as the density of states i§. Up to subextensive correction$y

would then coincide with the thermodynamic entropySof

In this Letter, we study the properties of mixed states ob-
tained from eigenstates of a many-body lattice Hamiltonian
where the Boltzmann constant is set to unity and the reducealfter tracing out or cutting off an increasingly large eowir
density matrixps = Trgp and similarlype = Trsp. Sun ment. One of our goals is to understand the structure of the
has been widely used to measure the entanglement in b@partitemaining reduced density matrix and if it ever becomes ther
systems [3]. If the pure state is separalles ps ® pg, then  mal, which we monitor usingy, Scc, andS,. We find that,
Sun = 0, while maximum entanglement leadsSgy = In D, for nonintegrable systems§; approachessc after cutting
whereD is the smallest dimension of the two subsystems. Theff a few (possibly one) sites, i.e., our hypothesis above is
source of the disparity betweefyy and Sec is the informa-  verified. Syn, on the other hand, remains different frasp

S = —Trs [psIn ps] = —Tre [pe In pe] 1)



and Sgc until a large fraction of the lattice is traced out [8].
This motivates us to distinguish between the conventiarral (
strong) typicalitySyn =2 Sq = Sec and a weaker typicality in
the sense that,y # Sq = Sgc. The latter implies thabnly
the diagonal part of the density matrix of the reduced syste
in the energy eigenbasis exhibits a thermal structure.

Our results then show that the diagonal entropy satisfies 1
key thermodynamic relation:

0Ss 05 1

0Es 0Eg T’
whereFEs andE; are the energies of the subsystems. This fo
lows from the fact that,; coincides with the thermodynamic
entropy forS and& simultaneously. In contrassy,y cannot

3)

satisfy this equality, as one can see by considefing S. In
this case,Syn = Ss = Sg is proportional to the size af,
while E¢ is proportional to the size &, s0dSg/IFs — 0.

FIG. 1: (Color online) (a),(b) Entropies per site vs tempem for
R = L/3. (c),(d) Entropies per site VB for a fixed temperature;
T = 4. (a),(c)t' = V' = 0 (integrable); (b),(d}’ = V' = 0.32

Another of our main goals in this work is to understand the(chaotic). All panelsiZ = 18.
description of few-body observables in the mixed states ob-
tained by the two procedures mentioned before. For that, we . ) .
study their expectation values as given by the reducedtjrensicorreSpon_dlng to an effective tempera_tﬂ?e Slnc_eS\,N -
matrix, the diagonal ensemble, and the GC ensemble. Tl“rg‘_i = 0, this can be seen as the most distant choice for a state
results for the first two are similar even if very few sites areWIth a thermodynamic entropy. We then trace out a certain

traced out and the system sizes are small. This suggests tHHfg‘berdOf i'teSR < _2L/3' gn ;he ”gglt S'd? Ohf thedchalg,
either tracing out part of the original system or removing th and study the entropies and observables of the reduced sys-

same number of sites and waiting for the reduced system t_tc?m‘ The reduc_ed denslty matrh describing the_remam-
relax leads to the same results, up to non-extensive bound!d System consists of different subspaces each with a numbe

ary terms. For all practical purposes both procedures are th N €
equivalent. The agreement with the GC expectation values is
also good and improves with increasing system size. Thisim

plies that, for few-body observables, only weak typicality
needed to observe thermal behavior in experiments.

[max(L/3 — R,0), L/3] of particles.
Entropies.-The von Neumann, diagonal, and GC entropies
are given by Eq. (1), Eq. (2), and

Es — uNs

Sec=In=+
GC Tao

(®)

System.We study hard-core bosons in a one-dimensional

lattice with open-boundary conditions described by

(4)

) (7o -3)]
{_y (Bbisz+ ) + V7 <n - %) <n+ - %)] |

where,t andt’ [V and V'] are nearest-neighbor (NN) and
next-nearest-neighbor (NNN) hopping [interactioh]js the

{—t (ISIISM + H.c.) +V (nl -

respectively. In Eq. (5)F = 3, e#Nn—En)/Tec s the grand
partition function,Tsc is the GC temperaturg, is the chem-
ical potential, andZs = Tr[Hsjs] andNs = Tr[Nsps] are,
respectively, the average energy and number of particlibein
remaining subsysteis.

Results.4n Fig. 1, we show results fa,y, S4, andSgcin
the integrable [(a),(c)] and chaotic [(b),(d)] domains.rdgex
fluctuations are seen in Figs. 1(a) and 1(c) as characteoisti
the integrable regime. Figs. 1(a) and 1(b) show the entsopie
vs different eigenstates, which are increasingly away fitoen
ground state[’ increases), when 1/3 of the sites are traced
out. In the chaotic regime, and for all states selected, ane ¢

chain size, and standard notation has been used [9]. Symmsee thatS, is close toSgc, while Sy is quite far. This hints
tries, and therefore degeneracies, are avoided by coirgider a thermal structure in the diagonal part of the reduced densi

1/3-filling and by placing an impuritye(# 0) on the first site.
In what follows,t = V' = 1 sets the energy scale,= 1/5,
andt’ = V'. Whent’ = V' = 0, the model is integrable [10].

matrix in the energy eigenbasis.
In Figs. 1(c) and 1(d) we show results for a fixE@s an in-
creasingly larger fraction of the original system is tracedl

As the ratio between NNN and NN couplings increases, th@ne can see again that in the chaotic liiitis much closer
system transitions to the chaotic domain [9]. The results beto Sgc than toS,n, even when very few sites are traced out.
low depend on the regime (integrable vs nonintegrable), buowever, in both regimes, all entropies approach each agher

not on specific values of the parameters. R
For our calculations, we select an eigenstatg of H (4),
with energyE; closest toE = Y Eje= /T /3 e~ E/T

the fraction of sites traced out increases. For the latioess
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the-den
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T ¥/ n(k =0)vsR; L = 18; T = 4. (a),(c)t’ = V' = 0 (integrable);

FIG. 2: (Color online) (a)—(d) Entropies per site VgL for 7 —  (P)(d)t" =V’ = 0.32 (chaotic).

4 and a fixed ratioR/L (indicated). (e),(f) Full (empty) symbols:
Sec — Sa (Sme — Sq) per site vsl /L for R = 1, 2, and 3. (a),(c),(e)
t' = V' = 0 (integrable); (b),(d),(f) = V' = 0.32 (chaotic). and the results depend dnand the values of , V'. Fluc-

tuations in the integrable regime are understandable. dn th
chaotic regime (and away from the edges of the spectrum) all
sity matrix to become irrelevant ifi,n, leading this entropy elg_en_states of the Hamiltonian that are close in engrgy@)&ve
; a similar structure, as reflected by the inverse participata-
to finally approactt; andSec. . ) ) e y
s _ tio and information entropy in different bases [9], andttiir-

The results preseqted in Fig. 1 were obtamed[fo& 18, _mal expectation values of few-body observables [4, 5, 1p, 16
the Iargest_ systgm Slze thaF We can stgdy with full ex‘?‘(_:t dIHowever, this is not the case close to integrability wherstmo
agonalization. Figure 2 depicts the scaling of the ent®pie 2 niities fluctuate wildly between eigenstates close émgyn
both domains, mtegr_able [(@),(c)]and nonlntegrab_le,(d)}, [4,5,9, 16], and this is affecting our results here.
and ffcr)rT = (;L In Figs. 2(? ang 2(:)' wheh/3 sites are Observables.An important question we are left to address
cut off, S and:Sec approach each other dsincreases, Upt0 g\ hether the extra information carried by the off-diagata
a possible non-extensllve porrectlon. ThIS t.rend is seealfor ements of the reduced density matrix is of relevance to quan-
systems we havg studied in the_‘ chaotic regime [1,3]’ and OP€liRies measured experimentally. We focus our analysisan fe
up & new question: could cutting off an infinitesimal part of body observables. Their expectation values from the retjuce

the origine_ll system Ieaﬂd and Sc to be equal in the th_er- diagonal, and grand canonical density matrices are given by
modynamic limit? In Figs. 2(e) and 2(f), we show the differ-

ence betweeSgc andSy per site vs system size_when _tracing Ow = Tr[Oﬁg], Oy = Z PrnOnms (6)
out one, two, or three sites. In the chaotic regime [Fig.]2(f) "

the results are consistent with a vanishing difference @& th 1

thermodynamic limit (even when cutting one site [13]). This Occ = = Z OpeHNn=En)/ T (7)
finding is reinforced with the empty symbols, which show the Ton
difference between the microcanonical entrofyd) and.S;.

In this case, finite size effects are significantly reduceal
ing to a much better agreement between the two entropie
which further improves withl, [14]. Hence, one could ar-
gue that single eigenstates of many-body Hamiltonians have L—R-1 L—R_2
a thermodynamic entropy [8]. Close to the integrable point — _; Z (l;;rl;iﬂ + H.c.) _y Z (525i+2 T H.c.) :
[Figs. 2(a), 2(c), and 2(e)], large fluctuations are obs&foe =1 -

respectively. HereQ,,, = (1,|O|i,) and|i,)’s are the
gigenstates of the Hamiltonian in the reduced system.
' Results.-Figure 3 shows results for the kinetic energy

1=

different values ofl" and#’, V’, which makes it difficult to (8)
draw general conclusions. and the momentum distribution function,

In Figs. 2(a) and 2(b), one can also see thatffor L/3, I-R
the von Neumann entropy (per site) saturates to a different k) = 1 Z ei%(.ﬁ—z)gtg}l 9)
value fromS,; andSgc (per site), as the lattice size increases. L-R 7

j,l=1
As shown in Figs. 2(c) and 2(d), it is only whéh> L /2 that !

the three entropies become comparable. However, for our sy$or an increasingly large fraction of sites traced out. Tée r
tem sizes, this happens only in the chaotic regime. As one apsults obtained with the three density matrices are comparab
proaches the integrable point, we again find large fluctnatio independently of the regime, the number of sites traced out,



andT (see [13]). In particular, the fact that,y and _Od are Or @ ' tv=b.00 op ®) V=032
so close demonstrates that both procedures, tracing sites o-0.09- --0.05- .
or cutting off part of the original system and then measurin < 0.1F aacc \A‘ d o4k ./ a
the observables after relaxation, lead to similar outcofme. 015 ol Jod ]
information contained in the off-diagonal elements of the r —_l— —_—l—

duced density matrix, which generates discrepancies leetwe _ 0(')55.'(0) t,V'=0.00 ] 0655'- (d) £,V'=0.327]

Syn andSy = Scq, is therefore irrelevant to few-body ob- T M

o : . . X 045 AAGC 4 0.45- .
servables. Our findings also open the interesting questio € o.af = 1 o4t E
which experimentally measurable quantities (if any) coul e , 1.4 1
distinguish between tracing sites out or cutting them off? >

2
We note that, in the chaotic regime, the GC results for bot 15k 15k @ R:'2L/3_
observables depart from those obtained with the reduced a 5, ik | S ]
diagonal density matrices d@sincreases. This is understand- > | i % 1
. 0.5 0.5f -
able because the GC results are obtained for a system w ok . . o L e T

L — R sites and open boundary conditions, while the othe 0 005 .. 01 0 005 0.1
two are obtained for a system withsites from whichR sites
are either traced out or cut off. Hence, the.more sites orge cl (©).(h Ratio between the grand-canonical temperaturetiadem-
off (the larger the value of?), the smaller is the system re- perature vs/L. (Black) Plus: ¢’ — V' — 0.04; (red) cross:
maining. Finite size effects are then expected to be stmnge; — v — (0s; (blue) star:¢' = V' = 0.16; (green) diamond:
in particular as the values ¢f V' increase. Itis also expected ¢ = v/ = 0.32; (purple) down-triangle’ = V' = 0.64. In all
that they should vanish in the thermodynamic limit. panels:T = 4.
In Figs. 4(a)-4(d), we show the scaling behavior of the two
observables from Fig. 3fdk = L/3. Itis apparentthat, in the
chaotic regime [Figs. 4(b) and 4(d)], the observables ealcu We also studied experimentally measurable few-body ob-
lated in the three ensembles approach each other with sicreaservables as determined from the reduced, diagonal, and
ing system size. (Results for other temperatures and obsergrand-canonical density matrices. We find that they all tead
ables in the chaotic domain are presented in Ref. [13]).dn ththe same results as the system size increases, no matter how
integrable limit [Figs. 4(a) and 4(c)], large fluctuation®p many sites are traced out. This demonstrates that the extra
vent us from reaching general conclusions. This is a regimiformation contained in the off-diagonal elements of the r
that needs to be studied by other means, which may allow onguced density matrix is irrelevant to those observablesrdh
to do a proper extrapolation to the thermodynamic limit. fore, it is plausible to conjecture that the expectatiomgalof
A final important property of the mixed states studied herephysicalobservables in subsystems of any size obtained from
is that their effective thermodynamic temperatufed) is the  generic many-body eigenstates can be entirely obtained fro
same as the effective temperati®f the many-body eigen- standard statistical ensembles. Our results show that even
state from which they are obtained. This is shown in Figs). 4(ein relatively small systems, both procedures, tracing bat t
and 4(f), where we pldfgc/T vs1/Lfor R = L/3[4(e)]and  “bath” or cutting it off and letting the subsystem thermaliz
R = 2L/3 [4(f)], and for different values of , VV'. The two lead to the same outcome.
temperatures are close (except for the smallest systees)siz  This work was supported by the NSF under grant DMR-
and further approach each otherigd. decreases, which is 1147430 (L.F.S.), the Office of Naval Research (M.R.), the
consistent with the idea of eigenstate thermalization wlder NSE under grant DMR-0907039, the AFOSR under grant
single eigenstate exhibits thermal behavior [4, 15]. FA9550-10-1-0110, and the Sloan Foundation (A.P.). We
Conclusions.We have found that, away from integrability, thank J. Deutsch for useful discussions.
the diagonal and grand canonical entropies are very close t0 Note added.—After completion of this work, we have
each other, even when a small portion (probably an infinitestearned that the strong (canonical) typicality has beeerrtyg

each other with increasing system size. In contrasiiaSyn
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