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Abstract

Large-scale particle-in-cell calculations of the plasma wake interactions of two nega-
tively charged grains smaller than the Debye length are carried out using the COPTIC
code over a wide range of subsonic plasma flow velocities. In plasmas with tempera-
ture ratio Te/Ti = 100, it is found that a single grain’s oscillatory wake disappears for
flow Mach numbers (M) less than approximately 0.3, which is the parameter regime
where Landau damping is expected to be strong. Neutral collisions suppress potential
oscillations above M = 0.3, but not the trailing attractive potential peak caused by
ion focussing. The transverse (grain-aligning) force on a downstream particle in the
wake of another is obtained rigorously from the code in three-dimensional simulations.
It shows general agreement with the force that would be deduced from the single-grain
wake potential gradient. Except for relatively large grains in the nonlinear collisional
regime, the grain-aligning force is very small for slow flow.

1 Introduction

The wake formed by plasma flow past a charged object is a phenomenon important for
solar-system plasma physics[1], space-craft interactions[2], and for understanding Langmuir
probes[3, 4]. It also controls the effective inter-grain interaction in dusty plasmas; and so the
objects embedded in the plasma will for consistency be called “grains” in this paper. The
force between grains in flowing plasmas is known to be anisotropic and non-reciprocal. This
character arises from the effect of the wake of one upon the other. It is widely found, for
example, that grains suspended by the balance of forces in a plasma sheath edge often align
themselves vertically[5, 6, 7, 8, 9, 10, 11, 12] because the downstream grain experiences an
attraction towards the flow axis of the upstream grain’s wake. The attraction arises from
focussing of ions (attracted by the negatively charged grain) enhancing the ion density in
the immediate downstream region. The flow velocity in these situations is approximately
equal to the sound speed.

Linear response formalism[13] has long been used to calculate the anticipated form of the
wake potential of a single point charge (grain)[14, 15, 16]. Dust grains in many experiments
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have large enough charge, however, that they are not well represented by a linearized calcu-
lation. Early non-linear calculations based upon fluid plasma representations (e.g. [17, 18])
omit kinetic phenomena, such as ion orbit-crossing and Landau damping, that are crucial to
the physics. Recent kinetic collisionless particle-in-cell calculations[19] agree with linear re-
sponse calculations in the linear regime, but have shown that the non-linearities substantially
suppress the wake amplitude at experimental parameters. They also have confirmed[20] (con-
tradicting some prior claims) that the intergrain force for sonic flow is fairly well represented
by the gradient of the single-grain wake potential acting on the charge of the downstream
grain.

As the flow velocity is reduced below the sound speed, the oscillatory wake does not
immediately disappear. Nevertheless, it must eventually disappear and revert to the spheri-
cally symmetric behavior of a zero-flow situation. The question then arises as to where and
how this transition takes place.

Experiments on dusty plasmas in micro-gravity conditions (e.g.[21]) have shown that
there appears to be a mechanism aligning chains of grains far from the sheath. And recent
analysis indicates this alignment occurs in situations where the ion flow velocity is much
smaller (by a factor of ten or more) than the sound speed[22]. These observations give extra
incentive to explore the behavior of the wake in low Mach-number flows. That is the purpose
of the present computational investigations.

2 Code Description

The present results are obtained with the Cartesian mesh, Oblique boundary, Particles and
Thermals in Cell (COPTIC) code. It is a hybrid PIC code in which the electron density is
presumed governed a simple thermal Boltzmann factor ne = ne∞ exp(φe/Te). The ions are
represented by particles moving according Newton’s 2nd law under the influence of the self-
consistently calculated electrostatic potential φ. Objects of various shapes can be embedded
in the three-dimensional cartesian computational mesh, and their boundaries are treated with
second order accuracy by the finite difference scheme even if their surfaces are oblique to the
mesh[23]. In addition, infinitesimal point-charge grains can be included using a PPPM[24]
scheme. And in the present work, only point grains are included. Prior studies have shown
that such calculations are fully representative of grains with radius up to one tenth of the
Debye length (rp ≤ 0.1λDe where λ2

De = ǫ0Te/nee
2). Fuller description of COPTIC has

already been published[19].
In the present work, calculations have been performed with and without charge-exchange

collisions. The collision implementation is the same as for the SCEPTIC code[25], consisting
of Poisson-statistically distributed collisions with a fixed (velocity independent) collision
frequency (inverse of collision time). After the collision the ion acquires a new velocity
distributed according to the supposed neutral distribution function, which is taken to be a
Maxwellian shifted by the same flow velocity as the external ion drift. In this situation no
external field is required to sustain the drift, and the external ion distribution is the same
shifted Maxwellian. Its temperature is Ti = Te/100, which is appropriate for approximately
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room temperature ions in a partially ionized plasma. The external drift velocity vd is in
the direction ẑ, and is expressed as a Mach number by dividing the velocity by the cold-ion

sound speed cs =
√

Te/mi: M = vd/cs.
Ions are continuously injected at the boundary at a rate and with a distribution cor-

responding to the external plasma density, temperature and flow. Ions are removed from
the simulation when they leave the computational box. Poisson’s equation for the potential
is solved for each time step with charge density determined by the self-consistent electron
and ion densities, assigned by the so-called cloud-in-cell[26] algorithm to the finite difference
lattice. The code is advanced in time by a leap-frog scheme till it converges to a steady state.
The boundary conditions on Poisson’s equation at the edge of the computational mesh are
designed to model a perturbed region within a wider unperturbed background. On the lead-
ing edge, the normal potential gradient is set to zero. On the sides of the box, to which the
external drift is tangential, the potential gradient is set to zero in the direction M ẑ+ r̂, where
r̂ is the direction of the cylindrical radius r =

√
x2 + y2. This oblique choice acts approxi-

mately as a non-reflecting boundary condition for the oblique perturbations of the wake. At
the trailing face, the potential boundary condition is equivalent to ∂2φ/∂z2 = −φ/(MλDe)
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which is non-reflecting for the dominant wavelength of perturbation. These choices minimize
the effects of the boundary proximity on the potential solution in the inner region, and hence
allow a relatively compact computational domain without significant boundary effects, as
has been confirmed by trials with larger box.

The force on a grain is obtained by surrounding it by a sphere across which the momentum
flux of ions, electrons, and fields (i.e. the Maxwell stress) is accumulated. When collisions are
present, they give rise to a bulk momentum source (or sink) within the sphere’s volume which
must also be accounted for. The way in which this is done has been explained elsewhere[27].
Then in steady state, the value obtained for the total momentum flux to the grain ought to
be independent of the size of the sphere — and it is!

The calculations presented here are for nominally point grains, which are known from
previous simulations[19] to give results very similar to finite-sized small grains. However,
especially for collisional cases included here, the code actually behaves as if a small absorbing
object were present at the point. Ions that happen to step very close to the point charge
experience an extremely large acceleration (which is evaluated directly in terms of Coulomb
force). The impulse they acquire in a single time step can then be sufficient to impart
(unphysically) a high velocity sufficient to move them directly out of the mesh on the next
step. Thus they are removed from the simulation, effectively as if they were absorbed
when approaching the grain too closely. For force calculations it is preferable simply to
drop them from the simulation when their single-step impulse exceeds 5mics, rather than
accumulating their big unphysical momentum impulse which enhances the noise level of the
force measurement. The removal of ions is thus equivalent to the presence of an absorbing
grain whose radius depends upon grain-charge and time-step duration. For the parameters
used here, this effective radius does not exceed approximately 0.02λDe.

A timestep of 0.025 is used in the simulations. It is equal to the distance (in Debye
lengths) travelled in one step at the sound speed. Therefore, orbits closer to the charges

3



than approximately this distance are incorrectly integrated at the standard timestep. A
scheme of automatic refinement of the timestep is used for the cases plotted. It keeps the
per-substep impulse below 2mics by taking multiple sub-steps shorter than the standard step
by a factor up to 8. This accuracy improvement reduces the ion loss caused by excessive
single-step impulse, but does not affect substantially the results other than reducing the
noise. The resulting ion self-force is negligible.

Calculations are performed in dimensionless units. The lengths reported here are all
normalized to the Debye length λDe, in figure labelling sometimes written abbreviated as λ.

3 Single-grain Wake

At sonic ion flow speeds, it has been shown by two-grain simulations with COPTIC[20] that
the transverse force on a grain in the collisionless wake of another is well approximated as
being given by the gradient of the potential of the wake of the upstream grain in the absence
of the downstream grain, acting on the downstream grain’s charge. In other words, the force
on the downstream grain can be derived directly from the upstream grain’s unperturbed
wake field. Although this identity has not prevously been established for deeply subsonic
flow speeds, it suggests that we should first examine what happens to the single-grain wake
potential as the Mach number is decreased. Prior calculations of the wake potential (e.g.[28,
29]) have rarely if ever systematically explored values less than M = 0.5, but linear response
calculations are being pursued[30].

(a) (b) (c)

Figure 1: (Color Online) Wake potential contours for single grain. (a)M = 0.6, (b) M = 0.4,
(c) M = 0.2. Collisionless plasma, non-linear regime: point charge Q̄ = −0.2.

In Fig. 1 are shown contour plots of the wake potential of a single grain. These are
in principle rotationally symmetric, i.e. functions only of r and z; so they are obtained by
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averaging the three-dimensional solutions of COPTIC over cylindrical angle θ. (This gives
a total r-extent up to

√
2 times the box half-width, but values beyond that half-width of 4

become increasingly subject to distortion by the boundary proximity.) Fig. 1(a) gives the
result for M = 0.6, plotting also the mirror image (at “negative r”) to emphasize the conical
structure of the wake oscillations. Figs. 1(b) and (c) show only the positive half, for M = 0.4
and M = 0.2 respectively, using the same contour values. By the time the Mach number
has been lowered to 0.2 all the oscillations in the wake have vanished, and one is left with
simply the potential well of the negatively charged grain.

(a) (b)

Figure 2: (Color Online) Wake axial potential profile for mach numbers M . Near-linear
regime: point charge Q̄ = −0.02. (a) Collisionless plasma, (b) Collisional plasma (collision
time 1.3λDe/cs).

In Figs. 2 and 3 are shown potential profiles along the axis of the simulation (x = 0,
y = 0). The value of normalized grain charge Q̄ ≡ Q/(4πǫ0λDeTe/e) (where Q is the
unnormalized grain charge) determines the strength of the interaction. For grains small
compared with λDe (the situation considered here), Q̄ ≈ (eφp/Te)(rp/λDe), where φp is the
grain’s surface potential. An isolated grain floats at a surface potential of roughly −2Te/e,
therefore Q̄ can be considered to represent the size of the grain relative to the Debye length:
rp ≈ λDe|Q̄|/2. When the charge is small, Q̄ = −0.02 as in Fig. 2, prior investigations
have shown the response to be nearly linear and to agree with linear response formalism[19].
But when it is ten times larger, Q̄ = −0.2, as in Fig. 3 there are already strong non-
linear modifications of the response even for sonic flow. Slower flow velocities, such as we are
investigating here, are expected to experience stronger non-linearities than prior calculations.
The modification is predominantly a suppression of the magnitude of the oscillatory potential
in the wake. This shows up when comparing Figs. 2 and 3, by the fact that the wake potential
peak normalized to Q̄ is roughly three times smaller for the non-linear case than the near-
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(a) (b)

Figure 3: (Color Online) Wake axial potential profile for mach numbers M . Non-linear
regime: point charge Q̄ = −0.2. (a) Collisionless plasma, (b) Collisional plasma (collision
time 1.3λDe/cs).

linear case. (Exact linearity would give equal normalized potential φ/Q̄.) We also compare
(a) collisionless plasmas with (b) plasmas in which substantial ion-neutral charge-exchange
collisions occur. Many experiments have sufficient background neutral pressure for collisions
to be important. The collision time chosen here is τ = 1.3λDe/cs giving rise to collision
length of approximately λDe for ions at the sound speed. This collisionality is a reasonable
approximation for Debye lengths somewhat less than a millimeter in Argon gas of pressure
a few tens of Pa, which is typical of some experimental conditions. (But it is not intended
to model experimental collision effects precisely since the physical collision frequency is not
independent of ion velocity.)

As the Mach number is decreased, for the collisionless plasma, the wavelength of the
potential oscillations in the collisionless wake continues to be rather well given by the ex-
pression 2πλDeM established for transonic flow. This value can be understood qualitatively
as a radial compressional ion oscillation of frequency ωpi (induced by the presence of the
grain) convected by the flow at speed Mcs. The oscillations persist for M ≥ 0.4 but disap-
pear rather abruptly for smaller drift velocity. In these plasmas with Ti/Te = 0.01, the ion

thermal velocity is
√

Ti/mi = 0.1cs. Therefore, disappearance of the oscillations at M = 0.3

(and below) occurs where linear Landau damping becomes strong, conventionally considered
to be at phase velocity three times the thermal velocity.

This interpretation is supported by other COPTIC calculations (not shown here) at tem-
perature ratio Ti/Te = 0.1, which show wake oscillations disappearing below approximately
M = 0.8 (2.5 times the thermal velocity). The trailing potential peak then disappears below
approximately M = 0.5, suggesting that it is less susceptible to Landau damping per se.
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Substantial charge-exchange collisionality, when collision time equals 1.3λDe/cs, has the
effect of suppressing the oscillatory wake. However, collisionality does not remove the large
positive potential peak that immediately follows the grain. It only reduces its height by up
to 40%. That peak is attractive to other negatively-charged grains, and is considered the
cause of vertical alignment of pairs of grains suspended in a sheath edge.

(a) (b)

Figure 4: (Color Online) Wake transverse potential profile at y = 0, z = 1. (a) Collisionless
plasma, (b) Collisional plasma. Near-linear regime: point charge Q̄ = −0.02.

This trailing attractive potential region disappears for both collisional and collisionless
plasmas when M decreases. A tiny vestige is left when M = 0.3 which essentially vanishes
for M ≤ 0.2. It is interesting to notice that this transition coincides with the filling in of
the potential depression at the upstream side of the grain. (Most noticeable for collisionless
plasmas.) This leading potential well has a scale-length of at least λDe for M > 0.4, but it
fills in, yielding an upstream scale-length much shorter for slower drifts. This is presumably a
reversion from electron-shielding to ion-shielding, the ion Debye length here being ten times
shorter than λDe.

Potential profiles in the direction transverse to the flow determine the transverse electric
field, which gives a force tending to align the grains. Examples are shown in Figs. 4 and
5 at a distance downstream of one Debye length (z = 1λDe, y = 0). We observe the rapid
transition from attractive (positive) potential to practically flat potential as M drops below
0.4. Actually in collisional cases, the potential becomes slightly negative (repelling) at the
lowest values of M .

The reason for the presence of the extended potential well in collisional plasmas, most
obvious in the non-linear case (Figs. 3(b) and 5(b)), is that the effective absorption of
ions at the grain causes an inflow of ions. Its magnitude is controlled effectively by the
collision rate and prescribed large grain-charge (and not by the somewhat ill-defined effective
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(a) (b)

Figure 5: (Color Online) Wake transverse potential profile at y = 0, z = 1. (a) Collisionless
plasma, (b) Collisional plasma. Non-linear regime: point charge Q̄ = −0.2.

Figure 6: (Color Online) Flow pattern for collisional case at low drift M = 0.1 (in direction
“axis-3”) in the vicinity of a large charge Q̄ = −0.2. Arrows indicate the magnitude and
direction of ion mean velocity in the plane x = constant through the origin. Ion velocity
converges to compensate for the effective loss to the grain. The ion density (relative to
ambient) in this plane is shown as a 3-D surface and as contours. It becomes extremely large
in the potential well because of trapped ions: as much as 200 times ambient.
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computational grain size). This inflow, which is illustrated in Fig. 6, becomes the dominant
effect on potential profile at low-M . Collisional trapping causes an enormous rise of the ion
density in the grain’s potential well: as much as a factor of 200. The physics is thus making
a transition at low Mach number to the spherically symmetric collisional collection, with
shielding dominated by ions, as studied in references [31, 25].

Summarizing the single-grain wake potential observations: for collisionless and collisional,
near-linear and non-linear plasmas, at Te/Ti = 100, the attractive wake potential peak
disappears (or at least is greatly reduced) for flow Mach numbers of about 0.3 and below.

4 Two-grain simulations

The full non-linear calculation of the force on the downstream grain requires a 3-dimensional
calculation with two grains. One is at the origin, and the second having the same charge for
these calculations is placed at z = 1, x = 0.5, y = 0 (in units of λDe). Comparison with Figs.
4 and 5 shows that this transverse position is near the maximum of the potential gradient,
thus giving a representative measure of the transverse, grain-aligning, force.

Figure 7: (Color Online) Wake potential for two grains at M = 0.6. The slice shown is on
the plane y = 0. Collisionless plasma, near-linear regime: point charge Q̄ = −0.02.

In Fig. 7 is shown the wake potential calculated by COPTIC on a domain of size
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(±4,±4,−4 → +8)λDe spanned by a mesh 64 × 64 × 100. The plasma drift velocity is
in the z-direction (along “axis-3”). The deep potential wells caused by the two charged
grains are cut off conveniently for viewing. Immediately behind them are two potential
peaks which are partly joined. For this M = 0.6 case, a combined oscillatory wake is present
beyond the two peaks, which does not look much different from a typical one-grain wake.

Figure 8: (Color Online) Wake potential for M = 0.3. The slice shown is on the plane y = 0.
Collisionless plasma, near-linear regime: point charge Q̄ = −0.02.

Fig. 8 shows the case M = 0.3, where the oscillatory wake damps out very quicky.
Therefore the plot is focussed on the inner region. (The full simulation domain is the same
as in Fig. 7 for all calculations in this paper.) The result shows only the vestiges of the
trailing positive potential peaks and negligible oscillations. Fig. 9 is for M = 0.1 where
even those vestiges have disappeared, and the only relevant remaining features are the two
potential wells of the two grains.

A large number of simulation ions (about 100 million) in the code is required to obtain
the force on the grains without excessive noise. Each Mach number requires a different
simulation, of course, each of which is a moderately expensive calculation (about 1 hour
of 128 processors for 1000 time steps). The force on the downstream grain is measured in
the code by integration of the total momentum flux across each of three different spheres
(of radius 0.3, 0.4, and 0.5 λDe) centered on the downstream grain. A perfect steady state
calculation ought to give the same total force for each of these spheres. In Fig. 10 these
different measures are all three plotted to give an indication of the (rather small) uncertainty
arising mostly from mesh resolution. The good reproducibility of the small forces was also
documented by performing equivalent runs but for different choice of coordinates: x = 0,
y = 0.5 or x = −0.5, y = 0, etc.
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Figure 9: (Color Online) Wake potential for M = 0.1. The slice shown is on the plane y = 0.
Collisionless plasma, near-linear regime: point charge Q̄ = −0.02.

(a) (b)

Figure 10: (Color Online) Transverse force in collisionless plasma on an equal grain at
downstream position z = 1, x = 0.5, y = 0. versus flow mach number M . Points: two-grain
simulation, total force; dashed line: gradient of one-grain wake potential. (a) near-linear
regime: point charge Q̄ = −0.02, (b) non-linear regime point charge Q̄ = −0.2.
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Collisionless results for the transverse force on the downstream grain are shown in Fig. 10
for two different grain-charge values. Attractive force, towards the z-axis, is plotted positive.
In other words, the ordinate is minus the x-force when the x-position is positive. The two-
grain simulation results (points) are compared with the force on the downstream grain that
would arise from the transverse electric field that exists in the wake of the upstream grain
alone (line). It has been shown previously that at sonic speeds the single-grain wake field-
force agrees quite well with the full two-grain force calculation. This agreement is observed
here also at low Mach number. For grain-charge small enough to be in the near-linear regime
(Fig. 10(a)) the agreement is very good. In the nonlinear regime (Fig. 10(b)) it is not as
good, especially in the transition region near M = 0.4. The two-grain calculation shows the
force going abruptly to near zero, whereas the transverse wake field gradient reaches near
zero only at a lower Mach number M ∼ 0.3.

(a) (b)

Figure 11: (Color Online) Transverse force in collisional plasma on an equal grain at down-
stream position z = 1, x = 0.5, y = 0. versus flow mach number M . Points: two-grain
simulation, total force; dashed line: gradient of one-grain wake potential. (a) near-linear
regime: point charge Q̄ = −0.02, (b) non-linear regime point charge Q̄ = −0.2.

The transverse force on the upstream particle is found to be typically a factor of five
smaller in magnitude than the force on the downstream particle. Moreover it has the same

sign, not the opposite sign one might expect for action and reaction if direct interparticle
force were involved. This observation is entirely consistent with the expectation that the
upstream particle feels mostly the shielded repulsive field of the downstream particle. It is
the downstream attractive transverse force that is anomalous in its direction. It is attractive
because of the wake effects. These observations emphasize the non-reciprocal nature of the
particles’ effective interaction, as mediated by the plasma. Of course, at zero flow velocity
the situation becomes symmetric between upstream and downstream, and their transverse
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forces must become equal and opposite. However, in all but the non-linear collisional case
studied here the forces have become too small to measure reliably in the code at the lowest
velocity explored.

When neutral collisions are present, the transverse force on the downstream grain is
modified as illustrated in Fig. 11. In the near-linear charge-magnitude regime (Fig. 11(a))
there is still quite good agreement between the full two-grain simulation force and the single-
grain wake field force. The overall magnitude of the force is suppressed by about 30% from
the collisionless case, and it approaches zero for M <∼ 0.35. However, in the non-linear case,
there are major discrepancies between the actual transverse force and the wake-field (i.e.
between the points and the line). The collisions suppress the force at intermediate Mach
numbers (0.5 ≤ M ≤ 1) much more than the single-grain wake field. And at low Mach
numbers the force remains attractive (plotted positive here) whereas the wake-field actually
reverses in sign below M = 0.3. The force remains positive apparently because the ion
drag perturbation on the downstream particle becomes more important than the potential
gradient. The convergence of the transverse velocity, illustrated in Fig. 6, then overcomes the
electric repulsion of Fig. 5(b)). We cannot rule out, however, that there are other synergistic
two-particle effects that contribute.

The attractive force remaining positive at low velocity might have significance for the
experiments that observe grain alignment even at low flow velocity[22]. Fig. 11(b) shows non-
zero attractive (transverse aligning) force in the non-linear collisional case even at M = 0.1.
The force is quite a small fraction (perhaps 10%) of the aligning force atM = 1, but might be
large enough to be significant. The magnitude of charge in this case is approximately what
would be acquired by a grain of radius 0.1λDe, which is probably rather larger than most
experiments. Ten times smaller grains (Fig. 11(a)) appear to have little residual attraction
at low M .

5 Conclusion

It has been shown that the oscillations in the wake of a small charged grain disappear
because of damping: either collisional damping when the flow velocity is large, or Landau
damping when the flow velocity is reduced below a few times the ion thermal velocity.
However, neutral collisions sufficient to remove oscillations do not of themselves remove the
ion density enhancement immediately behind a negatively charged grain, caused by focussing.
Extensive computations show that the wake density enhancement and the related potential
peak disappears quite abruptly as the flow velocity is reduced below approximately 0.3cs (for
Te/Ti = 100). This disappearance causes the transverse, grain-aligning, force on a grain in
the wake of another to become negligible. The two-grain, three-dimensional, computations
confirm that for collisionless plasmas the tranverse force is well represented by the gradient of
the single-grain wake potential for small-grains even at low Mach numbers in the near-linear
regime. It is somewhat less well represented in the non-linear regime. For collisional plasmas
in the non-linear regime the wake-potential gradient does not represent the transverse force
well, and a small residual grain-aligning force (about one tenth of the force for sonic flows)
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remains at Mach numbers down to 0.1. Although the presence of this residual force does
not allow one immediately to rule out explanation of grain alignment and chains at low
Mach numbers, its smallness, and its absence in the near-linear regime, suggests that other
mechanisms, omitted from the present calculations, ought to be considered. These might
include forces arising from direct neutral gas effects on the grain: drag or thermophoretic
forces. They might also include the collective effects of the other nearby grains.
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