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Abstract  

 Band structure and wave localization are investigated for sea surface water waves 

over large-scale sand wave topography.  Sand wave height, sand wave width, water 

depth, and water width between adjacent sand waves have important impacts on band 

gaps.  Random fluctuations of sand wave height, sand wave width, and water depth 

induce water wave localization.  However, random water width produces a perfect 

transmission tunnel of water waves at a certain frequency so that localization would 

not occur no matter how large the disorder level is applied. Together with theoretical 

results, the field experimental observations in the Taiwan Bank suggest band gap and 

wave localization as the physical mechanism of sea surface water wave propagating 

over natural large-scale sand waves. 

 

PACS number(s): 47.35.Bb, 04.30.Nk, 91.50.Ga 
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 With the rapid development of photonic crystals and phononic crystals, the 

application of the Bloch theorem to water waves over periodically structured bottoms 

has recently received considerable attention [1-5].  It has been established both 

theoretically and experimentally that the interactions of water waves with structured 

bottoms can produce many interesting phenomena such as Bragg resonance and 

Anderson localization.  For water waves propagating in periodic media, Bragg 

resonance induces complex band structures and the propagation of a water wave is 

forbidden within the band gap.  In random media however, multiple scattering may 

lead to wave localization, a concept originally proposed by Anderson, [6] that 

explains electronic localization induced by disorders in electronic systems.  By 

extending the ideas of band structures and localization to photonic crystals, phononic 

crystals, and water waves over periodic bottoms, a bridge has been formed between 

the disciplines of solid-state physics, optics, acoustics and fluid mechanics [6-11]. 

 Although band structure and localization of surface water waves have recently 

been found in artificial and small-scale laboratory settings [1-5], the corresponding 

application in ocean waves over natural large-scale (hundreds of meters) sand waves 

has not yet been investigated.  Tens to hundreds of sand waves naturally form a 

prominent periodic and rhythmic pattern in the offshore sandy seabed of shallow seas.  

In comparison with artificial structures, sand waves have special topographic features 

[12-18].  Water width between adjacent sand waves with significant random 

fluctuation is much larger than sand wave width, and sand wave height is comparable 
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with water depth.  In ocean engineering, sand waves may interfere with 

anthropogenic activities, such as shipping lanes, pipelines on the seabed, and wind 

farms, thus significantly increasing the interest in water dynamics over sand waves.  

Satellite-borne synthetic aperture radar (SAR) imaging has been applied to reveal 

random topographic features of sand waves, such as height, length, and position [12].  

Shao et al. [18] have applied satellite sensing sun glitter imaging of sand waves on the 

Taiwan Bank.  The hydrodynamic interaction models have been previously applied 

to investigate the interaction of surface water wave with current over sand waves 

[12,17-19], however, none of these models has revealed the properties of band gaps 

and localization of surface water waves. Important impacts of sand wave random 

fluctuations on the band gaps of sea surface water waves has not yet been revealed.   

 In this paper, we investigate the band structure and wave localization of shallow 

sea surface water waves above natural large-scale uneven sand waves.  The effects 

of sand wave random fluctuations on wave propagations are examined.  Increasing 

the disorder level of random water width would not induce water wave localization at 

a certain frequency.  The theoretical analyses, together with experimental 

observations in the Taiwan Bank, suggest band gap and wave localization of water 

wave over natural large-scale sand wave topography.  

 We consider the one-dimensional theoretical system to test the physical 

mechanism of band structure and wave localization of surface water waves over 

uneven sand wave bottoms.  Detailed geophysical application requires determining  

the sand wave parameters based on the geophysically topographic features, which is 
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out of scope of this study and has been reported elsewhere [12-19].  The system 

shown in Fig. 1(a) describes N identical steps with width a  and height aH  

representing the periodically situated sand waves on the sea bottom.  The water 

depth and width between adjacent sand waves are 0H  and b , and the water depth 

over the sand waves is aHH −0 .  The water width b between adjacent sand waves 

is sufficiently larger than the sand wave width a.  Based on previous studies [12,18], 

the typical parameter values of the large-scale sand wave system are used as: a  = 60 

m, b  = 600 m, aH = 20 m, and 0H = 30 m.  Randomness of these parameters and 

the corresponding disorder levels are classified as:  

 (1) Sand wave width randomness.  a is uniformly distributed with 

)]1(),1([ aaaa Δ+Δ−  and 0≥a  leads to the disorder level 11 ≤Δ≤− a . 

 (2) Sand wave height randomness.  aH  is distributed with 

)]1(),1([ aaaa HHHH Δ+Δ−  and aH  ≤ 0H  leads to 11 00 −≤Δ≤−
a

a
a H

H
H

H
H

. 

 (3) Water width randomness. b is within the range of )]1(),1([ bbbb Δ+Δ−  and 

0≥b  leads to the disorder level of 11 ≤Δ≤− b . 

 (4) Water depth randomness. 0H varies randomly between 

)]1(),1([ 0000 HHHH Δ+Δ−  and 0H  ≥ aH  causes 
0

0
0

11
H
H

H
H
H aa −≤Δ≤− . 

 The equation governing the water wave over topographical bottom is described as 

[2,11] 

01
2 =+⎟

⎠
⎞

⎜
⎝
⎛ ∇∇ ηη

k
                      (1) 

where the wave number k satisfies )tanh(2 kHgk=ω , η  is the surface 
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displacement, and g is the gravity acceleration constant.  Using the linear Eulerian 

equation of motion, the surface velocity vector v  can be determined as 

0=∇+
∂
∂ ηg

t
v  [2].  For a given frequency ω , 0k  in the water and ak  over the 

sand wave steps can be determined by using 0H  and aHH −0 .  At the boundaries 

of the sand wave steps in Fig. 1(a), we have the following boundary conditions: both 

η  and η∇⋅n
k

kH )(tanh  are continuous, where n  denotes the outward normal 

vector at the boundaries.  For one-dimensional surface water wave propagation, the 

water waves on the left and right ends can be solved from Eq. (1) as 

    -ikx
L

ikx
LL eBeA +=η , 

 ikx
R

ikx
RR eBeA +=η ,                      (2) 

where  Lη  and Rη  are the surface displacements on the left and right ends of the 

sand wave system, LA  and LB  are the amplitudes of the incident and reflected 

waves.  For the unit plane wave incidence, LA  = 1.  RA  is the amplitude of the 

outgoing wave.  The radiation boundary condition at the right end yields 0=RB .  

Using the transfer matrix method [2,11], we can derive the transfer matrix iT  for the 

ith sandwave and the coefficients RA  and LB , and thus obtain the transmission 

coefficient as 2

1
R

N

i
i ATT == ∏

=

.   From the Bloch theorem, the eigenmodes of wave 

field in an infinite periodic medium can be written as iKx
K exux )()( =η , where 

)(xuK  is the periodic function satisfying )()( baxuxu KK ++=  and K is the usual 

Bloch wave number.  Thus, the dispersion relation is derived as 
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Based on Eqs. (1)-(3), the frequency band structure of water waves over the periodic 

sand wave system can be obtained.  Fig. 1(b) and (c) show the dispersion relation 

and the transmission coefficient T of the periodic sand wave structure respectively.  

The band gaps correspond to the significant transmission dips.  For the frequency 

ranges outside of the grey region in Fig.1(b), the complex solution of K determines 

the forbidden energy bands or band gaps.  Wave propagations are evanescent due to 

Bragg resonance and hence there are no transmission waves for the periodic sand 

wave structure.  However, for the frequencies within the grey region, K has the real 

solution and water waves propagate through the sand wave system, corresponding to 

allowed energy bands or pass bands.  Pass bands are separated by band gaps.  

Therefore, multiple scattering in the periodic sand wave system leads to complicated 

frequency band structures of water waves.  

 Topographic features of sand waves affect the band structure of water waves.  

To show this, Fig. 2(a)-(d) presents the dependencies of the band structure on sand 

wave height aa HH / , sand wave width aa / , water depth 00 / HH , and water width 

bb / .  Here, the band structure shows a complicated relationship with frequency, 

differing from the single relationship in [11].  It may be associated with the much 

larger ratio a/b in Ref. [11] than the value in our sand wave system was used.  As 

shown in Fig. 2(a), for sufficiently small aH , band gaps disappear.  With further 

increase in aH , the band gaps show a complicated pattern: the lowest band gap 

becomes larger first but smaller later.  Furthermore, when sand waves are as high as 

water depth, band gaps become so wide that water wave propagations are forbidden.  
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Fig. 2(b) shows that the band gap approaches a lower frequency in an oscillatory 

manner, with an increase of the sand wave width a.  The water depth 0H  in Fig. 

2(c) appears to have an inverse effect on band gaps as compared with aH .  

aHH →0  gives the full band gap, and then the propagation of the wave is forbidden 

within the whole frequency range.  In Fig. 2(d), with the increase of the water depth 

b, the band gaps approach lower frequencies more significantly than those in Fig. 

2(b).  

 Furthermore, random structures of sand wave would complicate the transmission 

characteristics of the water wave.  For random aH , a , 0H ,  and b , Figs. 3(a) 

and (b) show the average transmission coefficient T  at the right end of the sand 

wave system versus frequency f, where the disorder levels aHΔ  = aΔ  = 0HΔ = 

bΔ  = 0.3, and the average results over 10000 random parameter generations for the 

whole sand wave array system were taken for each of these parameters.  Random 

sand wave width a and height aH  could reduce wave transmissions, while random 

water width b and depth 0H  tend to smear out band structure.  This is due to the 

fact that the change of aH  only affects ak , however, the change of 0H  affects 

both 0k  and ak , and thus produces a more significant effect on the band gaps.  In 

addition, when the disorder levels of aH , a, and 0H  are increased above some 

critical values, Anderson localizations appear. 

 However, for random water width b, Fig. 3(b) reveals an interesting 

delocalization phenomenon: wave localization is interrupted by a pass band around f 

= 0.08 Hz.  At this resonant frequency, the sand wave width a  equals to the 
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half-wavelength of the water wave. iT  =1 at each sand wave unit causes the 

transmission coefficient ∏
=

=
N

i
iTT

1

 =1, and thus the water wave that can pass any 

single sand wave will then extend the entire sand wave system as well without 

transmission loss no matter how the water width b changes (that is how each of sand 

wave is situated).  The sand wave system behaves like a single sand wave. We thus 

call this wave as perfect wave and the sand wave system as Perfect Transmission 

Tunnel (PTT) of water waves. When f slightly deviates from this value, transmission 

coefficient significantly decreases due to multiple scattering, particularly for large 

sand wave number N.  PPT waves with T  =1 can also be found when the sand 

wave width a  is an integer multiple of the half-wavelength of the water wave, e.g., 

),2,1(,2/ == mma λ .  The numerical calculation based on the transfer matrix 

method [2,11] shows the consistency with this theoretical relationship in determining 

the resonant wavelength, as shown in Fig. 3(b).  In order to further examine the 

effect of the disorder level bΔ  on wave localization, Fig. 3(c) shows the 

transmission T  versus bΔ , where insets are the energy distributions for bΔ  = 

0.3 at three frequencies, 0.04 Hz, 0.08 Hz, and 0.12 Hz.  For f = 0.04 Hz and 0.12 Hz, 

localization appears and T  significantly decreases when bΔ  is increased above 

some critical value.  Anderson localization greatly suppresses the water wave 

propagation.  However, for f = 0.08 Hz, no matter how large bΔ  is, T  remains 

almost unchanged and Anderson localization does not appear.  PPT is produced in 

the sand wave system, and thus the PPT wave is extended to the whole system. 

Having an analogy with the resonant transmission of acoustic waves in random-dimer 
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medium [20], this transmission tunnel feature has not previously been reported in 

water wave systems.  The finding presented in this study supports that increasing 

disorder level of a single random parameter may not always induce Anderson 

localization [21,22], even for one-dimensional water wave system. 

 Our theoretical investigations represent valuable exploration and provide 

important information to understand the field experiment observations in the Taiwan 

Bank.  Detailed descriptions about the field experiment refer to the study by Shao et 

al [18].  High-resolution optical imaging was used to map submarine topography.  

Fig.4(a) shows the sea bottom topography of the Taiwan Bank and the sand wave 

stripes in a Landsat-5 Thematic Mapper satellite image, where the image was taken at 

10:50 BJT in August 1998 under the spatial resolution of 30 m.  Fig. 4(b) displays 

the enlarged area in Fig. 4(a) at 10:50 BJT on 11 August 1998, 10:21 BJT on 27 June 

2005, and 10:27 BJT on 3 July 2007, respectively. Visible sand waves on the Taiwan 

Bank are stably situated and form a prominent periodic pattern of approximately 

parallel ridges.  Between sand waves, the topography of the seabed is relatively flat.  

These topographic features of sand waves support the one-dimensional assumption of 

the above theoretical system.  In Fig. 4(b), the depth-averaged horizontal velocity 

was measured by a 300 kHz vessel-mounted Acoustic Doppler Current Profilers 

(ADCP) at the time interval of 1.41 s, as shown in Fig. 4(c).  Measurements were 

repeated 28 times along six sand waves.  The limitation of the frequency resolution 

of ADCP causes that the reliably measured highest signal frequency should be much 

less than 0.35 Hz in order to avoid frequency aliasing.  In addition, finite sand wave 
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number (such as six sand waves in Fig. 4(b)) causes the low frequency transmission 

property cannot be experimentally measured.  Considering these two factors, we 

applied the eighth-order Butterworth band-pass filter to the theoretical model outputs 

in order to match the measured experimental results within the frequency range 0.04 

Hz < f < 0.25 Hz.  

 The photograph in Fig. 4(d) displays the sea surface state when the vessel was 

heading across a sand wave crest where "R" and "S" represent rough and smooth 

surface states, respectively.  The smooth and rough zones appear upstream and 

downstream of the sand wave crest, indicating their different spatiotemporal 

complexity [23,24].  As shown in Fig. 4(c), narrowband frequency currents were 

found above the sand wave crests, while broadband currents were observed in the 

troughs.  The perfect waves with the m-order wavelength ),2,1(,/2 =mma  are 

dominantly observed within the smooth zones, while broadband waves are found 

within the rough zones. Fig. 5 compares the transmission coefficients derived from 

the experimental ADCP data and theoretical model output, where the sand wave 

system parameters are used as: a  = 40 m, b  = 600 m, aH = 20 m, 0H = 25 m , 

and the disorder level bΔ  = 0.3, based on the field study by Shao et al [18], and the 

sand wave numbers N = 6 and 100 are used in the model, respectively.  Clearly, the 

theoretical simulations show the qualitative consistency with the experimental 

measurements. Both theoretical and experimental results derived from six sand waves 

reveal that the non-perfect waves within the frequency range 0.1 < f < 0.15 Hz can be 

suppressed when propagating through the smooth zones, suggesting wave localization.  
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In particular, in the sand wave system with N = 100, the theoretical simulation reveals 

that the localization effect is more significant than that in N = 6, suggesting that 

including more sand waves can further suppress or filter out the non-perfect wave 

transmissions, although this study did not provide the experimental evidence to show 

this.  Furthermore, the PPT waves with the wavelengths of a  and a2  in Fig. 5 

can readily propagate through the sand wave systems with low energy decays.  In 

experiments, the measured amplitude of higher-order PPT wave was lower than that 

of the lower-order waves. This is associated with the losses in the medium, which was 

treated as lossless in the theoretical models. These patterns of water waves from 

photography and ADCP correspond to the sand wave stripes in the Landsat-5 

Thematic Mapper satellite image.  Observations at these different spatial scales show 

the existences of band gaps and PPT for water waves in the Taiwan Bank.  

 In conclusion, we have investigated band structure and localization as the 

physical mechanism of sea surface water waves propagating through natural 

large-scale sand waves.  The effects of sand wave height, sand wave width, water 

depth, and water width on the band gaps are analyzed.  Furthermore, we investigate 

the wave localizations under the random fluctuations of these parameters.  With the 

increase of disorder levels above some critical values, sand wave height, sand wave 

width, and water depth can induce Anderson localization of water waves.  However, 

random water width produces the delocalized PTT of water waves at a certain 

frequency, and then continuously increasing its disorder level could not induce 

localization. PTT can significantly suppress other frequency components, and can be 
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a good candidate as frequency-control devices, such as filters. This might have 

potential application in ocean engineering, such as reducing the impact on sand waves 

dominating seabed from water waves. Finally, the field experiments in the Taiwan 

Bank were performed.  The results from Landsat-5 Thematic Mapper satellite 

imaging, photography, and ADCP measurement shows band gap and wave 

localization outside laboratory conditions.  Similar patterns can also be found in the 

North Sea, the Bisanseto Sea, and Georges Bank, suggesting that band gap and 

localization may represent common physical properties of ocean surface water waves 

above natural large-scale sand wave topography across the world.   
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Figure Captions  

(Color online) Fig.1 (a) One-dimensional sand wave system;  (b) Dispersion relation;  

(c) Transmission coefficient T versus frequency f. 

 

(Color online) Fig.2 Dependences of the band structure on (a) aa HH / , (b) aa / , 

(c) 00 / HH , and (d) bb / , where the band gaps are marked as red regions. 

 

(Color online) Fig.3 (a) Average transmission coefficients T  versus frequency f for 

the random fluctuations aHΔ , aΔ , and 0HΔ ;  (b) T  versus f  for bΔ = 0.3 at 

N = 5, 100, and 1000 and bΔ = 0.3 at N = 1000;  (c) T  versus bΔ  at 0.04 Hz, 

0.08 Hz, and 0.12 Hz.  Inset: energy distributions at these three frequencies for bΔ  

= 0.3 indicated by the dashed line. 

 

(Color online) Fig. 4 (a) Sand wave stripes in a Landsat-5 Thematic Mapper satellite 

image, where the image was taken at 10:50 BJT on 11 August 1998;  (b) An enlarged 

area of sand waves at 10:50 BJT on 11 August 1998, 10:21 BJT on 27 June 2005, and 

10:27 BJT on 3 July 2007;  (c) Depth-averaged horizontal velocity measured by 

ADCP;  (d) Photograph of the sea surface state above the sand waves, where "R" and 

"S" represent rough and smooth surface states, respectively. 

 

Fig.5 Transmission coefficient T  versus frequency f for the experimental data and 

theoretical model outputs with N = 6 and 100.
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Figure 4 
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