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We characterize the distributions of size and duration of avalanches propagating in complex networks. By
an avalanche we mean the sequence of events initiated by the externally stimulated ‘excitation’ of a network
node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is con-
nected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations,
including neuroscience, cascading failures on electricalpower grids, and epidemology. We find that the statis-
tics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an
appropriate adjacency matrix which encodes the structure of the network. By using mean-field analyses, pre-
vious studies of avalanches in networks have not consideredthe effect of network structure on the distribution
of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles)
and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in
the network. These findings might find application in the analysis of branching processes in networks, such as
cascading power grid failures and critical brain dynamics.In particular, our results show that some experimental
signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches),
are robust to complex underlying network topologies.

PACS numbers:

I. INTRODUCTION

In this paper we study the statistics of avalanches propagat-
ing in complex networks. The study of avalanches of activity
in complex networks is relevant to diverse fields, including
epidemiology [1, 2], genealogy [3], and neuroscience [4–13].
The simplest case of an avalanche corresponds to a branching
process [14, 15], first studied by Galton and Watson [3], which
can be considered as an avalanche propagating in a tree net-
work. Various generalizations to the case where avalanches
propagate in a more general network have been considered
recently [13, 16–18], and related problems such as the distri-
bution of cluster size in percolation models [19, 20] and self-
organized criticality in the “sandpile” model [21] have been
studied. In contrast to these previous studies, we develop a
theory of avalanche size and duration on complex networks
that, instead of using some form of mean field analysis, ex-
plicitly includes the network topology. This approach allows
for an analysis of avalanches starting from arbitrary nodesin
the network and the effect of nontrivial network structure on
the distribution of avalanche size and duration.

Our formalism in this paper is general, describing dynam-
ics with applications to a wide variety of systems. Our results
are correspondingly general, but they may be of particular in-
terest to those investigating recent experimental observations
of avalanches of neuronal bursting in the mammalian cortex.
When a neuron fires, it stimulates other neurons which may
subsequently fire. When this linked activity occurs in a cas-
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cade, it is called aneuronal avalanche (experimentally, neu-
ronal avalanches are observed propagating in functional net-
works where each node represents a group of neurons). Re-
cent experiments have studied neuronal avalanches of activity
in the brains of awake monkeys [4], anesthetized rats [22],
slices of rat cortex [5, 11], and humans [23]. These stud-
ies found that when the tissue is allowed to grow and oper-
ate undisturbed in homeostasis [6], both the size and temporal
duration of neuronal avalanches is distributed according to a
power-law. In contrast, the application of drugs that selec-
tively decrease the activity of inhibitory or excitatory neurons
results in avalanches with different statistics [5]. Basedon
these observations, it has been argued and demonstrated ex-
perimentally that many neuronal networks operate in a crit-
ical regime that leads to power-law avalanche distributions
[5, 11, 22, 23], maximized dynamic range [5, 7–9], and max-
imized information capacity [10–12]. Therefore, it is of great
interest to characterize this critical state and to understand
how experimental signatures of criticality may change upon
modification of the underlying network (e.g., changes induced
by the drugs used in experiments).

We find that the statistical properties of avalanches are de-
termined by spectral properties of the matrix whose entries
Anm are the probabilities that the avalanche propagates from
noden to nodem. In particular, the eigenvalueλ of max-
imum magnitude (by the Perron-Frobenius theoremλ is real
and positive ifAnm > 0) and its associated eigenvector play a
prominent role in determining the functional form and the pa-
rameters for the statistical distribution of avalanche size and
duration. While many of our findings have analogous results
in classical Galton-Watson branching processes [14, 15], in-
cluding the largest eigenvalue criterion for criticality found
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in so-called “multi-type” branching processes [15], we em-
phasize that our analysis allows us to identify how changes in
network structure affect the parameters of the statisticaldistri-
butions of avalanche size and duration. Moreover, our theory
allows us to obtain the statistics of avalanches starting atpar-
ticular network nodes.

This paper is organized as follows. In Sec. II we describe
our model for avalanche propagation in networks. In Secs. III
and IV we analyze the statistics of avalanche duration and
size. In Sec. V we validate our analysis through numerical
experiments. Section VI presents further discussion and con-
clusions.

II. FORMULATION

To model the propagation of avalanches in a network, we
consider a network ofN nodes labeledm = 1, 2, ..., N . Each
nodem has a statẽxm = 0 or 1. We refer tox̃m = 0 as the
resting state and tõxm = 1 as theexcited state. At discrete
timest = 0, 1, ..., the states of the nodes̃xt

m are simultane-
ously updated as follows: (i) If nodem is in the resting state,
x̃t
m = 0, it can be excited by an excited noden, x̃t

n = 1, with
probability0 ≤ Anm < 1, so thatx̃t+1

m = 1. (ii) The nodes
that are excited,̃xt

n = 1, will deterministically return to the
resting state in the next time step,x̃t+1

n = 0. We therefore
describe a network ofN nodes with aN × N weighted net-
work adjacency matrixA = {Anm}, whereAnm > 0 may
be thought of as the strength of connection from noden to
nodem, andAnm = 0 implies that noden does not connect
to nodem. We will assume that given any two nodesn and
m, the probability that an excitation originating at noden is
able to excite nodem (through potentially many intermediate
nodes) is not zero. This is equivalent to saying the network is
fully connected, and therefore the matrixA is irreducible.

Starting from a single excited nodek (x̃0
n = 1 if m = n

andx̃0
m = 0 if m 6= n), we let the system evolve according to

the dynamics above, and observe the cascade of activity until
there are no more excited nodes. This motivates the following
definitions, which are illustrated in Fig. 1 : (1) anavalanche is
the sequence of excitations produced by a single excited node;
(2) theduration d of an avalanche is defined as the total num-
ber of time steps spanned by the avalanche: if the avalanche
starts withx̃0

n = 1, then

dn = min
t≥0

{x̃t
k = 0 for all k}. (1)

An avalanche that continues indefinitely is said to have infi-
nite duration; (3) thesize x of an avalanche starting atx̃0

n = 1
is defined as the total number of nodes excited during an
avalanche, allowing for nodes to be excited multiple times:

xn =

dn−1
∑

t=0

N
∑

k=1

x̃t
k. (2)

Note that it is possible for an avalanche to have size larger
than the total size of the network (e.g., ifdn = ∞, thenxn =

∞). Our goal in this paper is to determine the probability
distributions of these variables in terms of the matrixA.
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FIG. 1: An example avalanche is shown, where circles represent
nodes, arrows represent links, and numbers inside nodes correspond
to the time step at which each node is activated. Starting from a sin-
gle excited node, labeled 1, the avalanche spreads to two other nodes,
labeled 2, and so on. Note that the presence of a link does not guar-
antee the transmission of excitation. The example avalanche above
lasts for five time steps and excited a total of six nodes in addition to
the initial node, sod = 5 andx = 7.

III. DISTRIBUTION OF AVALANCHE DURATION

In order to analyze the statistics of avalanche duration, we
definecn(t) as the probability that an avalanche starting at
noden has duration less than or equal tot,

cn(t) = P(dn ≤ t). (3)

The quantitycn(t) is the cumulative distribution function
(CDF) of the random variabledn. In what follows, we will
restrict our attention to a class of networks that we calllo-
cally tree-like. By locally tree-like, in this paper we shall
mean that, for any givent not too large, and pair of nodes
j andk, if there exists a directed path of lengtht from j to
k, then it is rarely the case that there will also exist a second
such path [24]. Many networks found in applications are of
this type, and it has been found that the locally tree-like ap-
proximation works very well in describing various dynamical
processes while still capturing the effects of network hetero-
geneity [8, 9, 24–26]. For these networks, we can approxi-
mately treat the avalanches propagating to different neighbors
of noden as independent, and write the recursion relation

cn(t+ 1) =
N
∏

m=1

[

(1−Anm) +Anmcm(t)
]

, (4)

together withcn(0) = 0 which follows from the definition (3).
The right hand side of Eq. (4) is the probability that nodes are
either not excited by noden, or, if they are, that they generate
avalanches of duration at mostt: (1 − Anm) is the probabil-
ity that an excitationdoes not pass from noden to nodem,
whereasAnmcm(t) is the probability that an excitationdoes
pass from noden to nodem and the resulting avalanche has
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duration at mostt. Note that Eq. (4) can treat any noden
as the starting node for an avalanche. As discussed above,
Eq. (4) assumes that the descendent branches of the avalanche
are independent. It is, however, possible that an avalanche
may branch in such a way that two branches interact at a later
time. Nevertheless, for the networks we studied we found that,
while these events do occur for large avalanches, they do not
significantly affect our predictions. We show numerical re-
sults confirming this in Sec. V.

We are interested in the distribution of long avalanche du-
ration, i.e., in the asymptotic form ofcn(t) for t → ∞. By
definition (see also Appendix A),cn(t) is a bounded, increas-
ing function of t, and therefore it must converge to a value
limt→∞ cn(t) = bn ≤ 1 which can be interpreted as the
probability that an avalanche starting at noden has finite dura-
tion. Our analysis will be based on whether or not this limit is
strictly less than one or equal to one. As shown in Appendix
A, this is determined by the Perron-Frobenius eigenvalue of
A, λ: if λ ≤ 1, thenlimt→∞ cn(t) = 1. The caseλ < 1 will
be referred to as thesubcritical case, and the caseλ = 1 will
be referred to as thecritical case. On the other hand, ifλ > 1,
then limt→∞ cn(t) = bn < 1, which implies that there is
a nonzero probability that an avalanche has infinite duration.
This case will be referred to as thesupercritical case. The
asymptotic form ofcn(t) will be analyzed separately for these
three cases below.

A. Subcritical Networks (λ < 1)

In the subcritical case,bn = 1 is the only fixed point of the
system Eq. (4) (see Appendix A). To analyze the asymptotic
form of cn(t), we assume it is close to the fixed point and de-
fine the small quantityfn(t) = 1− cn(t). Linearizing Eq. (4)
we obtain

fn(t+ 1) =

N
∑

m=1

Anmfm(t). (5)

Assuming exponential decay (or growth) of perturbations,
fn(t) = λtun, we obtain

λun =
N
∑

m=1

Anmum. (6)

Thus,λ is an eigenvalue ofA andu = [u1, u2, ..., uN ] its right
eigenvector. We identifyλ as the Perron-Frobenius eigenvalue
since, having the largest magnitude among all the eigenvalues,
λtun will be the dominant term ast → ∞ when compared
with the other modes. We note that for finitet, this approx-
imation is good as long as there is a large enough separation
betweenλ and the rest of the spectrum ofA. This issue is
discussed in [27], where it is found that this separation is typ-
ically large in networks without strong community structure.
Henceforth, we will assume thatλ is well separated from the
rest of the spectrum ofA. Therefore,cn(t) approaches1 ex-

ponentially as

cn(t) ≈ 1− λtun, (7)

whereu is the right eigenvector ofA corresponding toλ;
un > 0 by the Perron-Frobenius theorem [28]. The fixed
pointbn = 1 is linearly stable whenλ < 1.

The probability density function (PDF) of avalanche dura-
tion is given bypn(t) = P (dn = t) = cn(t) − cn(t − 1),
so

pn(t) ∼ (λ−1 − 1)unλ
t, (8)

which decays exponentially to zero with decay rateln(1/λ).
In summary, we can draw two predictions from the analy-

sis above for subcritical networks: (i) the PDF of avalanche
duration decays exponentially towards zero asλt, and (ii) the
probability that an avalanche started at noden lastst steps is
proportional to thenth entry of the right eigenvector ofA, un.
These predictions are tested in Sec. V.

B. Supercritical networks (λ > 1)

A linear stability analysis of the fixed pointbn = 1 in the
supercritical case shows that this fixed point is linearly un-
stable. This implies (see Appendix A) that there exists an-
other fixed pointbn to which cn(t) converges from below,
limt→∞ cn(t) = bn < 1. Thus, there is a nonzero probability
that an avalanche will have infinite duration. Our analysis be-
low characterizes the distribution of finite avalanche duration
in supercritical networks. We first note that the fixed pointbn
satisfies

bn =

N
∏

m=1

[

(1 −Anm) +Anmbm

]

. (9)

Again, we introduce the quantityfn(t) = bn−cn(t), and con-
sider the limit whent is large andfn is small. We substitute
this into Eq. (4) and rewrite it as

bn− fn(t+1) = bn

N
∏

m=1

[

1−
Anmfm(t)

(1−Anm) +Anmbm

]

. (10)

By defining a new matrixD with entries

Dnm =
Anmbn

(1−Anm) +Anmbm
, (11)

and linearizing Eq. (10) we find

fn(t+ 1) ≈

N
∑

m=1

Dnmfm(t). (12)

As in the subcritical case, we conclude thatfn(t) ≈ λt
Dwn,

wherew is the right Perron-Frobenius eigenvector of the ma-
trix D andλD its Perron-Frobenius eigenvalue. As argued in
Appendix B,λD < 1 whenλ > 1, thus ensuring exponential
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convergence. Therefore, we have

cn(t) ≈ bn − wnλ
t
D. (13)

As in the subcritical case, the probability density function
(PDF) of avalanche duration is given by

pn(t) ∼ (λ−1
D − 1)wnλ

t
D, (14)

which decays exponentially to zero with decay rateln(1/λD).
In summary, for supercritical networks: (i) the PDF of

avalanche duration decays exponentially towards zero asλt
D,

and (ii) the probability that an avalanche started at noden lasts
t steps is proportional to thenth entry of the right eigenvector
of D, wn. These predictions are tested in Sec. V. We note
that these predictions simplify to those drawn from Eq. (8)
if the network is subcritical, in which casebn = 1, Eq. (11)
simplifies toDnm = Anm, and thereforeλD = λ andw = u.

C. Critical Networks (λ = 1)

The analyses above show that ifλ = 1, the fixed point
bn = 1 is marginally stable. This fixed point must be an at-
tracting fixed point, sincecn(t) is nondecreasing andbn = 1
is the only fixed point of Eq. (4) as shown in Appendix A.
To determine the asymptotic form ofcn(t) for large t, we
let cn(t) = 1 − fn(t). We assume that Eq. (4) has a solu-
tion whose asymptotic functional form int (to be determined)
can be extended to a differentiable function of a continuous
time variablet. Since the convergence offn(t) to 0 is slower
than exponential, we look for a solutionfn(t) which is slowly
varying int whenfn(t) is small, and approximate

fn(t+ 1) ≈ fn(t) + f ′
n(t). (15)

The slowly varying assumption implies thatdfn(t)/dt ≡
f ′
n(t) ≪ fn(t) asfn → 0, which we note excludes an ex-

ponential solution. Substituting Eq. (15) into Eq. (4), we get

1− fn(t)− f ′
n(t) ≈

N
∏

m=1

[1−Anmfm(t)] . (16)

Assumingfn(t) ≪ 1 and expanding to second order, we get
after simplifying and dropping the time notation for clarity,

fn + f ′
n ≈

∑

m

Anmfm −
1

2

∑

m

∑

k 6=m

AnmAknfmfk. (17)

The leading order terms arefn on the left-hand side and
∑

m Anmfm on the right-hand side, so for these to balance
asf → 0 requires

fn =
∑

m

Anmfm. (18)

Therefore, in this limit the vector f(t) =
[f1(t), f2(t), . . . , fN (t)]T has to be proportional to the

normalized right eigenvectoru of A with eigenvalueλ = 1.
Thus, a slowly varying solution only exists for a critical
network. Sinceu is independent of time, the constant of
proportionality must be time dependent,fn(t) = K(t)un.
Now, for finitef , we expect the solution to deviate by a small
error from this limit solution, so we set

fn(t) = K(t)un/〈v〉+ εn(t), (19)

where we assumeεn ≪ fn(t), ε′n ≪ f ′
n(t), and the

term 〈u〉 =
∑N

n=1 un/N is included to makeK(t) in-
dependent of the normalization ofu. Inserting this in
Eq. (17), neglecting terms of orderε′, ε2, fε, and using
∑

m

∑

k 6=m AnmAknumuk ≈ u2
n, we obtain

εn +K ′(t)un/〈v〉 =

N
∑

m=1

Anmεm −
1

2
K2(t)u2

n/〈u〉
2.

(20)

To eliminate the unknown error termε, we multiply byvn,
wherev is the left eigenvector ofA satisfyingvTA = vT ,
and sum overn. The error terms cancel and we obtain an
ordinary differential equation (ODE),

K ′(t) = −
1

2

〈vu2〉

〈vu〉〈u〉
K2(t), (21)

where〈xy〉 ≡ 1
N

∑

n xnyn. Solving this ODE yields

K(t) ≈
1

β + 1
2

〈vu2〉
〈vu〉〈u〉 t

, (22)

whereβ is an integration constant. In terms of the original
variables, we obtain

cn(t) ≈ 1−
un

β + 1
2

〈vu2〉
〈vu〉〈u〉 t

. (23)

The PDF, in the continuous time approximation, is given by
pn(t) = c′n(t),

pn(t) ∝
un

(

β + 1
2

〈vu2〉
〈vu〉〈u〉 t

)2 . (24)

From Eq. (24) we make the prediction that ast → ∞,
pn(t) ∼ unt

−2. This prediction is tested in Sec. V.

IV. DISTRIBUTION OF AVALANCHE SIZE

In order to analyze the distribution of avalanche size, we de-
fine the random variablexn as the size of an avalanche starting
at noden. Let znm be a random variable which is1 if noden
excites nodem and0 otherwise, so thatznm = 1 with proba-
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bility Anm and0 with probability1−Anm. Thus

xn = 1 +

N
∑

m=1

znmxm. (25)

Whenλ > 1 there is a nonzero probability that an avalanche
has infinite duration, and therefore infinite size, as demon-
strated in Sec. III B and Appendix A. Therefore, we will re-
strict our attention only to the distribution of avalanchesthat
are finite. To study this distribution, we define the moment
generating function

φn(s) ≡ E[e−sxn |xn < ∞]. (26)

We now use Eq. (25) to derive a relation between the mo-
ment generating functions corresponding to different nodes.
First, we rewrite the conditionxn < ∞ for noden in terms
of events applicable to its neighbors. An avalanche starting
at noden is finite if and only if for every nodem, either (i)
the excitation does not pass from noden to nodem, or (ii)
the excitation passes from noden to nodem but the subse-
quent avalanche starting from nodem is finite. Therefore,
we rewrite the conditionxn < ∞ as the requirement that
for anym, (znm, xm) ∈ Znm ∪ Wnm, where we have de-
fined the disjoint sets of eventsZnm = {znm = 0} and
Wnm = {xm < ∞ and znm = 1}. Assuming the inde-
pendence of the random variablesxm (consistent with the lo-
cally tree-like assumption used in the previous section), we
can rewriteφn(s) as

φn(s) = e−s
N
∏

m=1

E
[

e−sznmxm |Znm ∪Wnm

]

, (27)

where the expectationE[·] is taken over realizations of the
random pairs(znm, xm). DenotingP (W ) as the probability
of an event setW , we relate the expected value in the product
in Eq. (27) to the probabilities of the eventsWnm andZnm:

E[e−sznmxm |Znm ∪Wnm]P (Znm ∪Wnm)

= E[e−sznmxm |Znm]P (Znm)

+ E[e−sznmxm |Wnm]P (Wnm). (28)

Using the following relations that follow from the definitions
above,

P (Znm) = 1−Anm,

P (Wnm) = Anmbm,

P (Znm ∪Wnm) = (1−Anm) +Anmbm,

E[e−sznmxm |Wnm] = φm(s),

E[e−sznmxm |Znm] = 1,

substitution into Eq. (28) gives

E[e−sznmxm |Znm ∪Wnm]

=
(1−Anm) + bmAnmφm(s)

(1−Anm) + bmAnm
. (29)

Inserting this into Eq. (27) we obtain one of our main results,

φn(s) = e−s
N
∏

m=1

(1−Anm) + bmAnmφm(s)

(1−Anm) + bmAnm
. (30)

Defininggn(s) = φn(s)− 1, and the matrixH with entries

Hnm =
bmAnm

(1−Anm) + bmAnm
. (31)

we can rewrite Eq. (30) as

1 + gn(s) = e−s
N
∏

m=1

[1 +Hnmgm(s)]. (32)

Defining theN × N matrix, B = diag(b1, b2, ..., bN), we
have from Eqs. (11) and (31), thatHB−1 = B−1D. Thus
the matrixH is related to the matrixD by a similarity trans-
formation and therefore has the same spectrum. Therefore,
we will denote the Perron-Frobenius eigenvalue ofH by λD.
Note thatλD = λ whenλ ≤ 1, since in that casebn = 1
andH = A. The asymptotic form for the distribution of the
size of avalanches starting at noden, pn(x), can be obtained
from the asymptotic form ofgn(s) ass → 0. Therefore, we
study Eq. (32) by assuminggn(s) is small. In order to obtain
an analytic expression for the distribution of size we assume,
in addition, that the network is close to critical,|λD −1| ≪ 1.
Taking logarithms in Eq. (32) and using the approximation
ln(1 + g) ≈ g − g2/2 we obtain

gn(s)−
1

2
gn(s)

2 =

−s+

N
∑

m=1

Hnmgm(s)−
1

2

N
∑

m=1

H2
nmg2m(s). (33)

As s → 0 andgn → 0, the leading order terms aregn(s) =
−s +

∑

m Hnmgm(s), or (HT − I)g = s1, whereg =
[g1, g2, . . . , gN ]T and1 = [1, 1, . . . , 1]T . When|λD−1| ≪ 1,
andλD is well separated from the rest of the spectrum ofH ,
as we are assuming,g = s(HT − I)−11 ∼ u, whereu is
the right Perron-Frobenius eigenvalue ofH (more precisely,
we are assuming such a separation forA, but sinceH = A
whenλ = 1 and we are assuming|λD − 1| ≪ 1, by conti-
nuity the assumption is valid forH as well). Sinceu is in-
dependent ofs, the solution up to first order is approximately
gn(s) = g(s)un/〈u〉, where the term〈u〉 = 1

N

∑N
n=1 un is

included to makeg(s) independent of the normalization ofu.
For smalls, and including the nonlinear terms, we expect the
solution of Eq. (33) to be close to this solution, so we set

gn(s) = g(s)〈u〉−1un + εn(s), (34)
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FIG. 2: (color online) Histograms of avalanche duration shown above for networks ofN = 105 nodes with power-law degree distribution,
exponentγ = 3.5 with Perron-Frobenius eigenvalues ofλ = 0.9 (left), λ = 1.0 (center) andλ = 1.1 (right). Symbols show the number
of avalanches having durationd from a single simulation of106, 2 × 106, and106 avalanches, respectively, from left to right. Dashed lines
provide a reference for the theoretical predictions described in Eqs. (7), (23), and (13). Note that the vertical position of the dashed lines
was chosen arbitrarily. Due to predictions of exponential decay for the sub- and super-critical cases, the left and right plots are plotted on a
log-linear scale, while the center plot is plotted on a log-log scale to show the power-law decay. Infinite duration avalanches in the supercritical
case (right) are not displayed in the figure.
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FIG. 3: (color online) Histograms of avalanche size shown above for networks ofN = 105 nodes with power-law degree distribution, exponent
γ = 3.5 with Perron-Frobenius eigenvalues ofλ = 0.9 (left), λ = 1.0 (center) andλ = 1.1 (right) on a log-log scale. Symbols show the
number of avalanches having sizex from a single simulation of106, 2 × 106, and106 avalanches, respectively, from left to right. Dashed
lines provide a reference for the theoretical predictionx−3/2 exp(−x/x∗) described in Eqs. (41) and (42). Note that the vertical position of
the dashed lines was chosen arbitrarily. Infinite size avalanches in the supercritical case (right) are not representedin the data set. Agreement
between theoretical prediction and measurement is excellent despite finite sample size noise.

whereεn is a small unkown error term. Substituting Eq. (34)
into Eq. (33), usingHu = λDu, and neglecting terms of order
εg we get

g(s)〈u〉−1un + εn(s)−
1

2
g(s)2〈u〉−2u2

n

= −s+ λg(s)〈u〉−1un

+

N
∑

m=1

Hnmεm(s)− g(s)2〈u〉−2 1

2

N
∑

m=1

H2
nmu2

m. (35)

To eliminate the unknown error termεn, we multiply by the
left eigenvector entryvn of H and sum overn. We use
HTv = λDv and neglect(λD − 1)εn to get

g(s)〈u〉−1〈vu〉 −
1

2
g(s)2〈u〉−2〈vu2〉

= −s〈v〉+ λDg(s)〈u〉−1〈vu〉

− g(s)2〈u〉−2 1

2N

∑

n

∑

m

vnH
2
nmu2

m, (36)

where 〈xy〉 ≡ 1
N

∑

n xnyn. Equation (36) is a quadratic
equation forg(s), ag2 + bg + c = 0, with

a =

∑

n

∑

m vn(1 −H2
nm)u2

m

2N〈vu〉〈u〉
, (37)

b = (λD − 1), (38)

c = −s
〈v〉〈u〉

〈vu〉
. (39)

Solving forg(s) and substituting back intogn(s) = φn(s)−1
we find, choosing the root that guaranteesgn < 0,

φn(s) = 1 +
−(λD − 1)−

√

(λD − 1)2 + 4sa 〈v〉〈u〉
〈vu〉

2a

un

〈u〉
(40)

The moment generating functionφn, first defined in Eq. (26),
can be interpreted as the Laplace transform of the distribution
of size. Taking the inverse Laplace transform of the form of
φn(s) found in Eq. (40) we obtain that for largex, the distri-
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bution of sizepn(x) is approximately given by

pn(x) ∝ unx
−3/2 exp(−x/x∗), (41)

where the characteristic sizex∗ is given by

x∗ = 4a
〈u〉〈v〉

〈uv〉

1

(λD − 1)2
. (42)

The distribution of size is asymptotically an exponential times
a power-law with exponent−3/2. Such a functional form de-
scribes the distribution of the size of connected clusters near
the percolation threshold in some network percolation models
[19, 20]. In the critical case, whenλ = λD = 1, x∗ diverges
and we recover a power-law distribution with exponent−3/2,
which is the well-known exponent for critical branching pro-
cesses [14, 29]. It is interesting to note that this exponent, in
our model, does not depend on the structure of the network,
contrasting related percolation models where all nodes with
the same degree are considered statistically equivalent [20].
Also note that the quantitya in Eq. (42) depends implicitly on
λD.

V. NUMERICAL EXPERIMENTS

In this section, we test the theoretical predictions of the pre-
vious sections by directly simulating the process described in
Sec. II on computer-generated networks. We first describe the
processes used to construct networks and simulate avalanches.

Networks were constructed in two steps. First, binary net-
works (with adjacency matrix entrieŝAnm ∈ {0, 1}) were
constructed via an implementation of the configuration model
[30], usingN = 105 nodes, with nodal degrees drawn from
a power-law distribution with exponent3.5, i.e., the probabil-
ity that a node has degreek is proportional tok−3.5. Second,
each nonzero entrŷAnm was given a weight, drawn from a
uniform distributionU [0, 1]. We then calculated the Perron-
Frobenius eigenvalue of this weighted matrix,λ̂, and mul-
tiplied the matrix byλ/λ̂, resulting in a matrixA with the
desired eigenvalueλ. We simulated avalanches for networks
with λ between0.5 and1.5, sampling more finely for values
close to1.

Each simulated avalanche was created by first exciting a
single network node, chosen uniformly at random, and then
calculating the size and duration of the resulting avalanche as
defined in Eqs. (1) and (2). If the resulting avalanche lasted
for more than106 time steps, we considered it as having in-
finite duration and infinite size. In all cases, the initial ex-
citation was included so that the minimum size wasx = 1
and the minimum duration wasd = 1. For each subcritical
(λ < 1) and supercritical (λ > 1) case,106 avalanches were
simulated, and forλ = 1, we simulated2× 106 avalanches to
better sample the very broad distribution of avalanche sizeat
criticality.

A brief summary of the predictions of Secs. III and IV is
as follows. The probability of an avalanche of durationd will
decay asλd for subcritical networks (λ < 1), asd−2 for crit-

ical networks (λ = 1), and asλd
D for supercritical networks

(λ > 1), whereλD is the Perron-Frobenius eigenvalue of the
matrixD, Eq. (31). When|λD − 1| ≪ 1, the probability of
a finite avalanche of sizex will decay asx−3/2 exp(−x/x∗),
wherex∗ is a network-specific constant, given in Eq. (42).

In Figs. 2 and 3 we compare histograms of avalanche dura-
tion and size obtained from direct numerical simulations for
λ = 0.9 (left), 1.0 (center), and1.1 (right) with the theoret-
ical predictions described in the previous paragraph (dashed
lines). Note that, since our predictions allow for an un-
specified proportionality constant, the vertical positionof the
dashed lines was chosen arbitrarily. In general, we find good
agreement between the theoretical predictions of avalanche
duration and size distributions with the histograms observed
in the simulations. While the dashed lines in Figs. 2 and 3 are
appealing to the eye, more quantitative measures of agreement
between theory and experiment are shown in Figs. 4 and 5.

To numerically test the agreement between theory and ex-
periment for the distribution of avalanche duration, in Fig. 4
we compare the best fit̂λ of the data top(t) ∝ λ̂t, calculated
through a nonlinear least-squares regression on the simulated
PDF of avalanche duration, to our theoretical predictions in
Eqs. (8) and (14) (solid line). The agreement is excellent,
though not exact, over the entire range ofλ values simulated.
Maximum likelihood estimates of̂λ (not shown) are nearly
identical to the least-squares estimates shown in Fig. 4.

As a partial test of our theory for the distribution of
avalanche size, we assume that the form of the distribution is
x−3/2e−x/x∗

, and estimatex∗ from the data, which we then
compare with our theoretical prediction in Eq. (42). Noting
that asλ → 1, x∗ will diverge, we estimated1/x∗ via a non-
linear least-squares using Brent’s minimization on the cumu-
lative histogram of the avalanche size data. Since our theory
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FIG. 4: (Color online) A comparison of predicted duration decay
rates [Eq. (7) and Eq. (13)] (solid line), and numerical simulations
(solid circles) plotted againstλ, the largest eigenvalue of the network
adjacency matrix. Agreement is excellent for both the subcritical and
supercritical numerical simulations. The distribution ofavalanches
durations decays asλt andλt

D for λ ≤ 1 andλ > 1, respectively, as
indicated by arrows.
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FIG. 5: (color online) Testing the prediction that avalanche sizex is
distributed asx−3/2 exp (−x/x∗), we compare the theoretical pre-
diction of x∗ (solid line) with x∗ estimated via regression on the
largest 10% of avalanches from numerical simulations (solid circles,
dashed line). Inset, identical data on a magnified domain around
λ = 1. Agreement is excellent forλ near 1, and decreasingly accu-
rate for much larger or smallerλ.

describes only the asymptotic form of the distribution, this es-
timate was performed only on the largest10% of measured
data. [Similar results were obtained using the largest 5%, 1%
and 0.1% of data (not shown), but when using more than the
largest 10%, the minimizingx∗ value diverged, suggesting
that we fit the power-law portion of data at the expense of the
exponential tail.] Figure 5 shows the theoretical prediction
(solid line) and the result of the numerical fit to the data (solid
circles; the dashed lines are to aid the eye). As shown, agree-
ment is quite good close toλD = 1 (see the inset of Fig. 5),
but less accurate for very subcritical or supercritical networks.
The latter is reasonable since the assumption that|λD − 1| is
a small quantity was used in the derivation of Eq. (42). As an
alternative, a maximum likelihood estimation of the parame-
tersα andx∗ in p(x) ∝ x−αe−x/x∗ on avalanches of all sizes
(not shown) gives values ofα in the range(1.49, 1.68) and
values ofx∗ similar to those in Fig. 5.

Although Figs. 4 and 5 demonstrate agreement between
theory and measurement for supercritical networks, that anal-
ysis was restricted to finite avalanches. To complement thisre-
sult, we compare the predicted fraction of infinite avalanches
with the measured fraction, for various values ofλD. The
quantitybn in Eq. (9) is the fraction of avalanches originat-
ing at noden which will have finite duration and size. In
Fig. 6, we show the fraction of avalanches that decay in fi-
nite time, averaged over nodes, comparing theory (solid line)
with experiment (solid circles). The theoretical fractionof
avalanches was calculated by numerically solving Eq. (9) to
find bn, n = 1 . . . , N , and then plotting

∑N
n=1 bn/N as a

function ofλ. The numerical fraction of finite avalanches was
calculated by simulating106 avalanches, each one starting at a
random node (out ofN = 105 nodes). If an avalanche lasted
more than106 steps, we counted it as an infinite avalanche.
Then, an estimate ofbn was calculated as the fraction of fi-
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FIG. 6: When the Perron-Frobenius eigenvalueλ is larger than one,
there is a non-zero probability of an avalanche starting at noden hav-
ing infinite duration, as predicted by Eq. (9). Here we average the
finite fraction of avalanches originating from noden over all nodes,
showing excellent agreement between the fraction predicted by av-
eraging Eq. (9) (solid line) and fraction measured from simulation
(solid circles).

nite avalanches starting at noden. The symbols in Fig. 6
show

∑N
n=1 bn/N as a function ofλ. Agreement is excel-

lent over the entire range ofλ values tested. Beyond aggre-
gate statistics, we also test a more subtle prediction of Eq.(7).
In Sec. III, we concluded thatfn(t) = 1 − cn(t), the prob-
ability that an avalanche started at noden lasts more thant
steps, scales for larget asfn(t) ∝ λtun, whereu is the right
Perron-Frobenius eigenvector ofA. Other research in the net-
work adjacency matrix literature has noted that the vector of
nodal out-degrees (in-degrees) is a good approximation for
the right (left) dominant eigenvector ofA in the absence of
degree correlations [31]. In this light, our prediction above
is understandable: when there are not degree correlations in
the network, a node with a larger right eigenvector entry (and
thus larger out-degree) will tend to produce longer avalanches.
Therefore, in order to fully test our prediction, we creatednet-
works withassortative mixing by degree [32], a type of degree
correlation which we measure using the coefficientρ [31],

ρ =
〈kinn koutm 〉e

〈kinn 〉e〈koutm 〉e
, (43)

where 〈·〉e denotes an average over all edges andk are
weighted nodal degrees defined askinn =

∑

m Anm and
koutn =

∑

m Anm. In the absence of degree correlations
between connected nodes〈kinn koutm 〉e = 〈kinn 〉e〈k

out
m 〉e and

ρ = 1. In assortative networks, there exists a positive cor-
relation (ρ > 1) between the in-degree at noden and the
out-degree at nodem at the ends of a directed link fromn
to m. When the correlation is negative (ρ < 1), the network
is called disassortative. Thus we created Erdős-Rényi random
networks withN = 104 nodes, and rewired each network via
a link-swapping process (as described in Ref. [31]) until we
had very assortative and disassortative networks (ρ = 1.2 and
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FIG. 7: Testing the node-specific prediction of Eq. (7), avalanches
were simulated on a subcritical (λ = 0.95) and disassortative (ρ =
0.8) Erdős Rényi random network withN = 104 nodes. In the large
plot, the fraction of avalanches originating at noden that last longer
than 30 time steps,fn(30), is plotted against the corresponding en-
try in the right Perron-Frobenius eigenvector,un. In the inset, the
same valuesfn(30) are plotted against the corresponding out-degree
kout
n . The eigenvector entryun does a significantly better job than

out-degreekout
n of predicting the duration of avalanches originating

at noden in disassortative networks (shown) and for assortative net-
works (not shown).

ρ = 0.8, respectively). Eq. (7) implies that in such networks,
the tails of the CDF of avalanches originating at noden will be
proportional to the corresponding entry of the right eigenvec-
tor, which may differ significantly from the nodal out-degree.
For the a subcritical network (λ = 0.95) with assortativity
coefficientρ = 0.8 we plotfn(30) and its corresponding en-
try in the right dominant eigenvectorun for each noden, in
Fig. 7, showing that proportionality is excellent. In the inset
of the same figure we plotfn(30) against the corresponding
out-degreekoutn for each noden, showing that proportionality
to out-degree does not hold. Assortative networks produce the
same effect, but are not shown here.

VI. DISCUSSION

We have presented an analysis of the asymptotic distribu-
tions of the duration and size of avalanches in complex net-
works. This work is of interest in various applications, most
notably neuroscience [4–13] and the analysis of power-grid
failure cascades [34]. While some of our results, such as the
functional forms for the distributions, are analogous to those
found in classical Galton-Watson branching processes [14]or
in mean-field models [20], we emphasize the distinguishing
aspects of our results: (i) We generalize the criterion for criti-
cality toλ = 1, which depends on the topology of the network
in ways that previous results do not capture. For example, in
critical branching processes [29] the condition for criticality
is 〈d〉 = 1. (ii) The parameters of the asymptotic distributions
in the various regimes are affected by the network topology,

and our results allow us to predict how various factors such as
network degree distributions or degree-degree correlations af-
fect these parameters [e.g., the parameterx∗ in Eq. (42) orλD

in Eq. (13)]. (iii) In contrast to previous studies, our results
allow us to predict the statistics of avalanches generated at a
particular node. This might be of critical importance in cer-
tain applications where the adjacency matrix is known or can
be inferred (such as the power grid or the Autonomous System
network of the Internet) since one can then allocate resources
to prevent avalanches, if so desired, that start at the nodes
which tend to generate the largest avalanches. As shown in
Fig. 7, the naive prediction that the nodes with the largest out-
degree generate the largest avalanches is not necessarily true
when the networks have nontrivial structure, such as degree
correlations.

In developing our theory, we made some assumptions
which we now discuss. First, we assumed that the network
was locally tree-like. This allowed us to treat avalanches prop-
agating to the neighbors of a given node as independent of
each other. While this is a good approximation for the net-
works we used, it is certainly not true in general. In particular,
avalanches propagating separately from a given node might
excite the same node as they grow. The result is that the num-
ber of nodes that the avalanches excite in the simulation may
be less than what the theory would predict. In running our
simulations, we addressed this issue in two ways: first, we
kept track of the number of times two branches of the same
avalanche simultaneously excited the same noden, finding
it to be an increasing function of avalanche size and Perron-
Frobenius eigenvalue, yet still negligible when compared to
the total number of excitations. In addition, each time suchan
event occurred, we separately generated an avalanche start-
ing from the doubly excited noden and corrected both the
size and duration of the original avalanche by incorporating
these additional avalanches. We found that doing this had
no appreciable effect on the measured distributions, and so
all figures shown in this manuscript are produced from sim-
ulation datawithout the additional compensating avalanches
included. This, and the fact that the numerical simulations
are described well by the theory, suggest that the interaction
of avalanches propagating to different neighbor nodes can be
safely neglected in the networks studied. The performance of
our theory in networks that are not locally tree-like, such as
networks with a high degree of clustering, is left for future
research. Another approximation we used is that the Perron-
Frobenius eigenvalueλ is well separated from the rest of the
spectrum. This is a good approximation in networks without
well defined communities, but can break down in networks
with strong community structure [27].

Finally, we note that our results show that the experimental
signatures of criticality in neural systems (characterized by
a power-law distribution of avalanche size and duration with
exponents−3/2 and−2, respectively [4, 5, 11, 12]) are robust
to complex underlying network topologies.

The authors acknowledge useful discussions with Woodrow
Shew. DBL and MYC were supported by NSF MCTP Grant
No DMS-0602284. JGR was supported by NSF Grant No.
DMS-0908221. EO was supported by ONR MURI Gran



10

N00014-07-1-0734.

Appendix A: Probability of finite avalanche duration

In this Appendix we establish that the probability of finite
avalanches, under our assumptions, is always one whenλ ≤ 1
(critical and subcritical networks), and becomes less thanone
whenλ > 1 (supercritical networks). These probabilities,
bn = limt→∞ cn(t), satisfy the equation

bn =

N
∏

m=1

[

(1−Anm) +Anmbm

]

. (A1)

First, we show that ifλ ≤ 1, whereλ is the Perron-Frobenius
eigenvalue ofA, then the only solution to the equation above
is bn = 1. Lettingbn = 1− fn, we have for alln

1− fn =

N
∏

m=1

[

1−Anmfm

]

. (A2)

Using the Weierstrass product inequality [33],

N
∑

m=1

Anmfm ≥ 1−
N
∏

m=1

[

1−Anmfm

]

= fn, (A3)

with equality only if (i) Anmfm = 0 for all m, or (ii)
Anmfm = 0 for all m 6= k andAnkfk = 1 for somek
[33]. If v is the left Perron-Frobenius eigenvector ofA, this
implies, sincevTA = λvT ,

vTAf = λvT f ≥ vT f . (A4)

If there is a nonzerofn, thenvT f > 0 since the Perron-
Frobenius eigenvector has positive entries for irreducibleA.
Therefore, ifλ < 1 we must havefn = 0 for all n. If λ = 1,
Eq. (A4) implies equality in Eq. (A3), which implies either
(i) Anmfm = 0 for all m, and thusfn = 0 by (A3), or (ii)
Anmfm = 0 for all m 6= k andAnkfk = 1 for somek,
which is impossible since we assumed that the entries ofA
are strictly less than one andfk is a probability. Therefore,
we must havefn = 0 if λ = 1, a valid argument for anyn.
Together with the previous argument above, we conclude that
bn = 1 for all n if λ ≤ 1.

Now, we show that ifλ > 1 thenlimt→∞ cn(t) = bn < 1.
To show this, we view Eq. (4) as a dynamical system, and note
that the analysis of Sec. III A, applied to the caseλ > 1, shows
that the fixed pointbn = 1 is linearly unstable. If we show that
cn(t) is nondecreasing witht, then the limitbn must be less
than one. By induction, we will prove thatcn(t+ 1) ≥ cn(t)
for all n. First, we havecn(0) = 0 andcn(1) =

∏

m(1 −
Anm) ≥ 0, so the statement is valid fort = 0. Then, assume
cm(t) ≥ cm(t − 1) for all m and considercn(t + 1)/cn(t),
noting thatcn(t) > 0:

cn(t+ 1)

cn(t)
=

N
∏

m=1

(1−Anm) +Anmcm(t)

(1−Anm) +Anmcm(t− 1)
.

=
N
∏

m=1

[

1 +
Anm(cm(t)− cm(t− 1))

(1 −Anm) +Anmcm(t− 1)

]

≥ 1, (A5)

which proves the desired statement. Note that, although from
the definition (3), it follows thatcn(t) are nondecreasing, this
proof is necessary since Eq. (4) is an approximation.

Appendix B: λ > 1 ⇒ λD < 1

In this Appendix we argue that the Perron-Frobenius eigen-
value of the similar matricesH andD is less than one when
the Perron-Frobenius eigenvalue ofA is greater than one:
λ > 1 ⇒ λD < 1. Recall that the matrixD was defined
as

Dnm =
bnAnm

(1−Anm) + bmAnm
, (B1)

wherebn, the probability that an avalanche starting at noden
is finite, satisfies

bn =

N
∏

m=1

[

(1 −Anm) +Anmbm

]

. (B2)

Now, suppose thatA is such thatλ > 1, and introduce a
parameterα ≤ 1 by definingbn(α) as thebn corresponding
to the matrixαA, which satisfies

bn(α) =

N
∏

m=1

[

(1− αAnm) + αAnmbm(α)
]

. (B3)

Now, calculate the derivative ofbn(α) with respect toα,

dbn(α)

dα
= bn(α)

N
∑

m=1

−Anm +Anmbm(α) + αAnm
dbm(α)

dα

(1 − αAnm) + αAnmbm(α)
.

(B4)
Letting µn = dbn

dα

∣

∣

α=1
, and evaluating the expression above

atα = 1, we get

µn =bn

N
∑

m=1

−Anm +Anmbm +Anmµm

(1−Anm) +Anmbm
(B5)

=

N
∑

m=1

Dnm(bm − 1) +

N
∑

m=1

Dnmµm. (B6)

In matrix form,

(DT − I)µ = DT (1− b), (B7)
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where1 = [1, 1, . . . , 1]T , b = [b1, b2, . . . , bN ]T , andµ =
[µ1, µ2, . . . , µN ]T . Now, we left multiply the previous equa-
tion by vT , wherev is the left Perron-Frobenius eigenvector
of D, satisfyingvTDT = λDvT , to get

(λD − 1)vTµ = λvT (1− b). (B8)

If λ > 1, Appendix A shows that the entries of(1−b) are all
positive. Since the Perron-Frobenius eigenvectorv has posi-
tive entries as well (since we are assumingA is irreducible),

the right hand side of Eq. (B8) is positive. Now, we argue
that the vectorµ has nonpositive entries: asα increases, the
probability of an excitation passing between any pair of nodes
increases, and thus the probability of having a finite avalanche
can not increase, i.e.,dbn/dα ≤ 0. Therefore, the termvTµ
on the left hand side must be nonpositive and, since the right
hand side is nonzero, it must be negative. Thus, the term
λD − 1 must be negative, that is,λD < 1.
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