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We characterize the distributions of size and duration afamches propagating in complex networks. By
an avalanche we mean the sequence of events initiated bytmmaly stimulated ‘excitation’ of a network
node, which may, with some probability, then stimulate sgjpent excitations of the nodes to which it is con-
nected, resulting in a cascade of excitations. This typerofgss is relevant to a wide variety of situations,
including neuroscience, cascading failures on electgomler grids, and epidemology. We find that the statis-
tics of avalanches can be characterized in terms of thedagggenvalue and corresponding eigenvector of an
appropriate adjacency matrix which encodes the structutikeonetwork. By using mean-field analyses, pre-
vious studies of avalanches in networks have not consideeedffect of network structure on the distribution
of size and duration of avalanches. Our results apply toviddal networks (rather than network ensembles)
and provide expressions for the distributions of size an@tin of avalanches starting at particular nodes in
the network. These findings might find application in the gsialof branching processes in networks, such as
cascading power grid failures and critical brain dynamiagarticular, our results show that some experimental
signatures of critical brain dynamics (i.e., power-lawtidigitions of size and duration of neuronal avalanches),
are robust to complex underlying network topologies.

PACS numbers:

I. INTRODUCTION cade, it is called aeuronal avalanche (experimentally, neu-
ronal avalanches are observed propagating in functiortal ne

In this paper we study the statistics of avalanches propagaf/orks where each node represents a group of neurons). Re-
ing in complex networks. The study of avalanches of activityCeNt €xperiments have studied neuronal avalan.ches oftgpctiv
in complex networks is relevant to diverse fields, including’? the brains of awake monkeys [4], anesthetized rats [22],
epidemiology [1, 2], genealogy [3], and neuroscience [4-13 §I|ces of rat cortex [5, 11_], and_ humans [23]. These stud-
The simplest case of an avalanche corresponds to a branchilfg found that when the tissue is allowed to grow and oper-
process [14, 15], first studied by Galton and Watson [3], whic &€ undisturbed in homeostasis [6], both the size and teahpor
can be considered as an avalanche propagating in a tree n@Hration of neuronal avalanches is d_|str|buted according t
work. Various generalizations to the case where avalanchd®Wer-law. In contrast, the application of drugs that selec
propagate in a more general network have been considerdtyely decrease the activity of inhibitory or excitatoryurens
recently [13, 16-18], and related problems such as thedistrresults in avalanche_s with different statistics [5]. Based
bution of cluster size in percolation models [19, 20] and-sel these observations, it has been argued and demonstrated ex-
organized criticality in the “sandpile” model [21] have bee perlmeqtally that many neuronal networks operate in a crit-
studied. In contrast to these previous studies, we develop i§al regime that leads to power-law avalanche distribution
theory of avalanche size and duration on complex network§ 11, 22, 23], maximized dynamic range [5, 7-9], and max-
that, instead of using some form of mean field analysis, exiMized information capacity [10-12]. Therefore, it is otagt
plicitly includes the network topology. This approach algp ~ Nterest to_characte_rlze this cnchI_sta@te and to underbt
for an analysis of avalanches starting from arbitrary nades NOW experimental signatures of criticality may change upon
the network and the effect of nontrivial network structure o Modification of the underlying network (e.g., changes irtlic
the distribution of avalanche size and duration. by the drugs used in experiments).

Our formalism in this paper is general, describing dynam- We find that the statistical properties of avalanches are de-
ics with applications to a wide variety of systems. Our rssul termined by spectral properties of the matrix whose entries
are correspondingly general, but they may be of particalari An., are the probabilities that the avalanche propagates from
terest to those investigating recent experimental obtiens  noden to nodem. In particular, the eigenvalug of max-
of avalanches of neuronal bursting in the mammalian cortexmum magnitude (by the Perron-Frobenius theorera real
When a neuron fires, it stimulates other neurons which magnd positive ifA,,,,, > 0) and its associated eigenvector play a
subsequently fire. When this linked activity occurs in a casfrominentrole in determining the functional form and the pa

rameters for the statistical distribution of avalanche sind

duration. While many of our findings have analogous results

in classical Galton-Watson branching processes [14, b5], i
*Electronic addressdani el . | ar r enor e@ol or ado. edu cluding the largest eigenvalue criterion for criticalityuihd



in so-called “multi-type” branching processes [15], we em-oc). Our goal in this paper is to determine the probability
phasize that our analysis allows us to identify how changes idistributions of these variables in terms of the mattix
network structure affect the parameters of the statistiisati-
butions of avalanche size and duration. Moreover, our theor
allows us to obtain the statistics of avalanches startinmat
ticular network nodes.

This paper is organized as follows. In Sec. Il we describe
our model for avalanche propagation in networks. In Sets. Il
and IV we analyze the statistics of avalanche duration and
size. In Sec. V we validate our analysis through numerical
experiments. Section VI presents further discussion anel co
clusions.

@ © O

Il. FORMULATION FIG. 1. An example avalanche is shown, where circles reptese
nodes, arrows represent links, and numbers inside nodesspond
: : 0 the time step at which each node is activated. Starting &sin-
co-lr;(;ig;z(?ieg;Tv?/oe{(o&fflgnzgg);s?;ggﬁel ;;1<ih§152|n a ]@et\é’g:;' Wégle excited node, labeled 1, the avalanche spreads to tweo mties,

N TS labeled 2, and so on. Note that the presence of a link doesuaot g
nOd_em has a Stat@jn =0orl. We r.efer oz, =0 ‘,is the antee the transmission of excitation. The example avataablove
resting state and ta,, = 1 as theexcited state. At discrete |asts for five time steps and excited a total of six nodes iritixicto
timest = 0,1, ..., the states of the nod&d,, are simultane- the initial node, sal = 5 andz = 7.

ously updated as follows: (i) If node is in the resting state,

zt, = 0, it can be excited by an excited nodez!, = 1, with

probability0 < A,,,, < 1, so thati!! = 1. (ii) The nodes

that are eXCitedifl =1, will deterministica”y return to the . DISTRIBUTION OF AVALANCHE DURATION
resting state in the next time step,'! = 0. We therefore
describe a network oV nodes with aV x N weighted net-
work adjacency matrid = {A,,,}, whereA,,,, > 0 may
be thought of as the strength of connection from nod®
nodem, andA,,,, = 0 implies that node: does not connect
to nodem. We will assume that given any two nodesand en(t) = P(dy < 1) 3)
m, the probability that an excitation originating at nodés " e

able to excite node: (through potentially many intermediate Tpe quantityc, (t) is the cumulative distribution function
nodes) is not zero. This is equivalent to ;aying thg network i (CDF) of the random variablé,,. In what follows, we will
fully connected, and therefore the matrixs irreducible. restrict our attention to a class of networks that we tall
Starting from a single excited node(z, = 1if m = n  cally tree-like. By locally tree-like, in this paper we shall
andz), = 0if m # n), we let the system evolve according to mean that, for any given not too large, and pair of nodes
the dynamics above, and observe the cascade of activity untj and £, if there exists a directed path of lengtlirom j to
there are no more excited nodes. This motivates the follgwin i, then it is rarely the case that there will also exist a second
definitions, which are illustrated in Fig. 1: (1) amalancheis  such path [24]. Many networks found in applications are of
the sequence of excitations produced by a single exciteeinodthis type, and it has been found that the locally tree-like ap
(2) theduration d of an avalanche is defined as the total num-proximation works very well in describing various dynaniica
ber of time steps spanned by the avalanche: if the avalanclfocesses while still capturing the effects of network twete

In order to analyze the statistics of avalanche duration, we
definec, (t) as the probability that an avalanche starting at
noden has duration less than or equalto

starts withz), = 1, then geneity [8, 9, 24-26]. For these networks, we can approxi-
o mately treat the avalanches propagating to different riomgh
dn = Itnz%l{xk = Oforall £}. (1) of noden as independent, and write the recursion relation
An avalanche that continues indefinitely is said to have infi- N
nite duration; (3) thaize  of an avalanche starting af, = 1 en(t+1) =] [(1 — Apm) + Anmcm(t)} N )
is defined as the total number of nodes excited during an m=1
avalanche, allowing for nodes to be excited multiple times: together with:,, (0) — 0 which follows from the definition (3).
d—1 N The right hand side of Eq. (4) is the probability that nodes ar
£, = Z Z it ) either not excited by node, or, if they are, that they generate

avalanches of duration at mast(1 — A,,,) is the probabil-
ity that an excitatiordoes not pass from node to nodem,
Note that it is possible for an avalanche to have size largewhereasA,,,,c,,(t) is the probability that an excitatiodoes
than the total size of the network (e.g.dif = oo, thenx,, = pass from node: to nodem and the resulting avalanche has



duration at most. Note that Eqg. (4) can treat any node ponentially as

as the starting node for an avalanche. As discussed above,

Eq. (4) assumes that the descendent branches of the avalanch en(t) = 1= Nuy, (7)
are independent. It is, however, possible that an avalanche ) ) ) )

may branch in such a way that two branches interact at a late¥hereu is the right eigenvector ofl corresponding to\;
time. Nevertheless, for the networks we studied we foung that» > 0 by the Perron-Frobenius theorem [28]. The fixed
while these events do occur for large avalanches, they do n®Qintb, = 1is linearly stable when < 1.

significantly affect our predictions. We show numerical re-  The probability density function (PDF) of avalanche dura-

sults confirming this in Sec. V. tion is given byp,(t) = P(d, = t) = cu(t) — calt — 1),
We are interested in the distribution of long avalanche du°
ration, i.e., in the asymptotic form ef,(¢) for t — oo. By Pa(t) ~ (A1 = Dup )t 8)

definition (see also Appendix A,, (t) is a bounded, increas-

ing function oft, and therefore it must converge to a value yhnich decays exponentially to zero with decay fate /).
lim; 00 cn(t) = b, < 1 which can be interpreted as the |5 symmary, we can draw two predictions from the analy-
probability that an avalanche starting at nedeas finite dura-  gjs apove for subcritical networks: (i) the PDF of avalanche
tion. Our analysis will be based on whether or not this limiti §ration decays exponentially towards zerogsand (i) the

strictly less than one or equal to one. As shown in Appendixyrgpability that an avalanche started at nedastst steps is
A, this is determined by the Perron-Frobenius eigenvalue ofroportional to the:” entry of the right eigenvector of, u,,.

A, Aif A < 1, thenlimy o0 ¢q(f) = 1. The case\ < 1will  These predictions are tested in Sec. V.

be referred to as thaibcritical case, and the case= 1 will

be referred to as theritical case. On the other hand Xf> 1,

thenlim; . ¢, (t) = b, < 1, which implies that there is B. Supercritical networks (A > 1)
a nonzero probability that an avalanche has infinite dumatio
This case will be referred to as tlsapercritical case. The
asymptotic form o, (¢) will be analyzed separately for these
three cases below.

A linear stability analysis of the fixed poinf, = 1 in the
supercritical case shows that this fixed point is linearly un
stable. This implies (see Appendix A) that there exists an-
other fixed pointh,, to which ¢, (¢) converges from below,
lim; o ¢ (t) = by, < 1. Thus, there is a nonzero probability
that an avalanche will have infinite duration. Our analysis b
low characterizes the distribution of finite avalanche tlara
in supercritical networks. We first note that the fixed péint

In the subcritical casé,, = 1 is the only fixed point of the ~satisfies
system Eg. (4) (see Appendix A). To analyze the asymptotic

A. Subcritical Networks (A < 1)

N
form of ¢, (), we assume it is close to the fixed point and de- b — 1-A A b 9
fine the small quantity,,(t) = 1 — ¢, (¢). Linearizing Eq. (4) " nH1 {( nm) + Anm } ©)
we obtain a

N Again, we introduce the quantitfy,(t) = b,, — ¢, (t), and con-
o sider the limit whert is large andf,, is small. We substitute
Fu(t+1) = mzl Anm fn (8)- ®) this into Eq. (4) and rewrite it as

Assuming exponential decay (or growth) of perturbations, N A [ (1)
fu(t) = Auy, we obtain b= fult+1) = b, T [1- 0= ) + Ao ) 19
m=1
N . . . .
Ay, = Z Ayt 6) By defining a new matrixD with entries
m=1
Thus,\ is an eigenvalue oft andu = [uy, ug, ..., uy| its right (1= Anm) + Anmbm

eigenvector. We identif as the Perron-Frobenius eigenvalue
since, having the largest magnitude among all the eigeasalu
A, will be the dominant term as — oo when compared N
with the other modes. We note that for finitethis approx- falt+1) ~ Z D fin(t). (12)
imation is good as long as there is a large enough separation —

between) and the rest of the spectrum df. This issue is

discussed in [27], where it is found that this separatiogs t ~As in the subcritical case, we conclude thfatt) ~ \ow,,
ically large in networks without strong community stru@ur wherew is the right Perron-Frobenius eigenvector of the ma-
Henceforth, we will assume thatis well separated from the trix D and\p its Perron-Frobenius eigenvalue. As argued in
rest of the spectrum odl. Thereforeg,, (t) approaches ex-  Appendix B,Ap < 1 whenX > 1, thus ensuring exponential

and linearizing Eq. (10) we find
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convergence. Therefore, we have normalized right eigenvectar of A with eigenvalue\x = 1.
Thus, a slowly varying solution only exists for a critical
en(t) & by — wpA\p. (13)  network. Sinceu is independent of time, the constant of

_ N N _ ~ proportionality must be time dependerfi,(t) = K(t)un.
As in the subcritical case, the probability density funatio Now, for finite f, we expect the solution to deviate by a small
(PDF) of avalanche duration is given by error from this limit solution, so we set

Pn(t) ~ (Ap" = DwnAp, (14) Fa(t) = K ()tn/(0) + en(t), (19)

which decays exponentially to zero with decay fatd /Ap). ~ where we assume, < f.(t), €/, < f.(t), and the

n

In summary, for supercritical networks: (i) the PDF of term () = ZN—1 u,/N is included to makeK (¢) in-

avalanche duration decays exponentially towards zerdas  dependent of the normalization of. Inserting this in
and (i) the probability that an avalanche started at notésts ~ Eq. (17), neglecting terms Of ordef, €2, fe, and using

t steps is proportional to theé” entry of the right eigenvector S S ki Arm Aty ~ u2, we obtaln
of D, w,. These predictions are tested in Sec. V. We note 7m
that these predictions simplify to those drawn from Eq. (8)

if the network is subcritical, in which cadg, = 1, Eq. (11) en 4 K'(t)un/ (v Z ApmEm — EKZ( tyu? /(u)?.
simplifies toD,,,,, = A,.., and thereforeap = A andw = u. 1 2
(20)
C. Critical Networks (A = 1) To eliminate the unknown error termwe multiply byv,,,

wherev is the left eigenvector ofl satisfyingv’ A = v7,
and sum oven. The error terms cancel and we obtain an

The analyses above show thatif = 1, the fixed point ordinary differential equation (ODE),

b, = 1 is marginally stable. This fixed point must be an at-
tracting fixed point, since, (¢) is nondecreasing arig, = 1 1 (vu?)

is the only fixed point of Eq. (4) as shown in Appendix A. K'(t)=—3

2 (vu) (u) K=(1), (1)

To determine the asymptotic form ef,(¢) for larget, we
let e, (t) = 1 — f.(t). We assume that Eq. (4) has a solu-

_ 1 . . .
tion whose asymptotic functional form ir(to be determined) where(zy) = 5 20, Tayn- Solving this ODE yields

can be extended to a differentiable function of a continuous 1
time variablet. Since the convergence ¢f (¢) to 0 is slower K(t) =~ 7wz>t (22)
than exponential, we look for a solutigh (¢) which is slowly B+ (vu) (u)

varying int when f, (¢) is small, and approximate . _ . -
ying fn®) PP where is an integration constant. In terms of the original

Falt+1) & folt) + L1 (D). (15)  Variables, we obtain
The slowly varying assumption implies thdf,,(¢)/dt = cn(t) =1 — ui"wg (23)
fr(t) < fu(t) asf, — 0, which we note excludes an ex- B+3 vu) >t

ponential solution. Substituting Eq. (15) into Eq. (4), vt g ) . ) .
The PDF, in the continuous time approximation, is given by

pu(t) = ¢, (b),

1- fn H nmfm )] . (16) Up
m=1 P (t) " 2 (24)
Assumingf,, (t) < 1 and expanding to second order, we get (ﬁ t 37 U><u> t)

after simplifying and dropping the time notation for clgrit
From Eq. (24) we make the prediction thatas+ oo,

1 ~ ut-2 Thi iction i i
Fot L~ ZAnmfm -3 Z Z A Ao fon froe (17) pn(t) ~ unt—*. This prediction is tested in Sec. V.

m  k#m

The leading order terms arg, on the left-hand side and
> m Anm fm 0N the right-hand side, so for these to balance
asf — 0requires IV. DISTRIBUTION OF AVALANCHE SIZE

In order to analyze the distribution of avalanche size, we de
fine the random variable, as the size of an avalanche starting
Therefore, in this limit the vector f(¢) = at noden. Let z,,, be a random variable which isif noden
[f1(t), f2(t),..., fn(t)]" has to be proportional to the excites noden and0 otherwise, so that,,,, = 1 with proba-



bility A,,,, and0 with probabilityl — A,,,,,. Thus substitution into Eq. (28) gives
XN: Ele=#mm®m| Z 0 m U W]
T, =1+ ZnmTm - (25) B

When\ > 1 there is a nonzero probability that an avalanche ) o ] ]

has infinite duration, and therefore infinite size, as demonlnserting this into Eq. (27) we obtain one of our main results
strated in Sec. 11l B and Appendix A. Therefore, we will re- N

strict our attention only to the distribution of avalancliest bo(s) = o= H (1 = Anm) + b Anmdm ()
are finite. To study this distribution, we define the moment " (1—=Apm) +bmAnm
generating function

(30)

m=1

Definingg. (s) = ¢, (s) — 1, and the matrix7 with entries

dn(s) = Ele” |z, < cal. (26)
bmAnm

We now use Eq. (25) to derive a relation between the mo- Hypm = e — (31)
ment generating functions corresponding to different sode s e
First, we rewrite the conditiom,, < oo for noden in terms e can rewrite Eq. (30) as
of events applicable to its neighbors. An avalanche strtin
at noden is finite if and only if for every noden, either (i) N
the excitation does not pass from nodéo nodem, or (ii) L+ gn(s)=e"° H 1+ Hpmgm(s)]. (32)
the excitation passes from nodeto nodem but the subse- m=1

guent avalanche starting from node is finite. Therefore,
we rewrite the conditiornr,, < oo as the requirement that
for anym, (znm,Tm) € Zpm U Whm, Where we have de-
fined the disjoint sets of events,,, = {z.» = 0} and
Wom = {&m < oo andz,,, = 1}. Assuming the inde-
pendence of the random variableg (consistent with the lo-
cally tree-like assumption used in the previous sectiorg, w
can rewritep,, (s) as

Defining the N x N matrix, B = diagb1, b, ...,by), We
have from Egs. (11) and (31), tha&ftB—! = B~'D. Thus

the matrixH is related to the matrixD by a similarity trans-
formation and therefore has the same spectrum. Therefore,
we will denote the Perron-Frobenius eigenvaluéioby A p.

Note thatA\p = X when\ < 1, since in that casé, = 1
and H = A. The asymptotic form for the distribution of the
size of avalanches starting at nodep,,(z), can be obtained

N from the asymptotic form of,,(s) ass — 0. Therefore, we
hn(s) =e* H E [e—Sanwm | Zpim U an}, (27)  study Eq. (32) by assuming,(s) is small. In order to obtain
mel an analytic expression for the distribution of size we assum

in addition, that the network is close to criticalp — 1| < 1.
where the expectatioi’[-] is taken over realizations of the Taking logarithms in Eq. (32) and using the approximation
random pairs z,, z,,). DenotingP(W) as the probability In(1 + g) ~ g — g*>/2 we obtain
of an event sell’, we relate the expected value in the product
in Eq. (27) to the probabilities of the evers,,,, andZ,,,,:

guls) — 5o ()* =

Ele > m®m| Z i U W P(Znm U W) N 1 N
— E[e—Sanwlenm]P(an) —S+ Z Hnmgm(s) - 5 Z Hgmgfn(s). (33)
m=1 m=1
+ Ele™ 7 mm (W |P(Wam,)- (28)

) ) ) o As s — 0 andg, — 0, the leading order terms atg(s) =
Using the following relations that follow from the definitie  _g S Humgm(s), or (HT — I)g = s1, whereg =

above, (91,92, ---,gn]T andl = [1,1,...,1]T. When|Ap—1| < 1,
and\p is well separated from the rest of the spectruniiof

P(Zpm) =1 = Apm, as we are assuming, = s(H” — I)~'1 ~ u, whereu is
P(Wpum) = Apmbm, the right Perron-Frobenius eigenvalueiéf(more precisely,

when) = 1 and we are assumingp — 1| < 1, by conti-
nuity the assumption is valid fof/ as well). Sinceu is in-
Ele=*2nm®m|Z, m] =1, dependent of, the solution up to first order is approximately
gn(8) = g(s)un/(u), where the termu) = = SN w, is
included to makeg(s) independent of the normalization af
For smalls, and including the nonlinear terms, we expect the
solution of Eqg. (33) to be close to this solution, so we set

gn(s) = g(s){w) " un + en(s), (34)

)
)
P(Zrm U W) = (1 = Apm) + Ay bim, we are assuming such a separation dorbut sinceH = A
]
]
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FIG. 2: (color online) Histograms of avalanche durationveh@bove for networks oV = 10° nodes with power-law degree distribution,
exponenty = 3.5 with Perron-Frobenius eigenvalues of= 0.9 (left), A = 1.0 (center) and\ = 1.1 (right). Symbols show the number
of avalanches having duratiahfrom a single simulation of0°%, 2 x 10°, and10°® avalanches, respectively, from left to right. Dashed lines
provide a reference for the theoretical predictions desdriin Egs. (7), (23), and (13). Note that the vertical positf the dashed lines
was chosen arbitrarily. Due to predictions of exponenteday for the sub- and super-critical cases, the left and pigits are plotted on a
log-linear scale, while the center plot is plotted on a log-$cale to show the power-law decay. Infinite duration acilas in the supercritical
case (right) are not displayed in the figure.
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FIG. 3: (color online) Histograms of avalanche size showsvelior networks ofV = 10° nodes with power-law degree distribution, exponent
~ = 3.5 with Perron-Frobenius eigenvalues of= 0.9 (left), A = 1.0 (center) and\ = 1.1 (right) on a log-log scale. Symbols show the
number of avalanches having sizédrom a single simulation 0f0°, 2 x 10°, and10°® avalanches, respectively, from left to right. Dashed
lines provide a reference for the theoretical prediction’/? exp(—z/z*) described in Egs. (41) and (42). Note that the vertical fmsiof
the dashed lines was chosen arbitrarily. Infinite size adles in the supercritical case (right) are not representdee data set. Agreement
between theoretical prediction and measurement is extel&spite finite sample size noise.

whereg,, is a small unkown error term. Substituting Eq. (34) where (xy) = % > . Tnyn. Equation (36) is a quadratic
into Eq. (33), usind/u = Apu, and neglecting terms of order equation forg(s), ag? + bg + ¢ = 0, with
€g we get
V(1 — H,le u?n
» L oy — 2on D Vn( ) 7 37)
g(s){uw) ™ uy +en(s) — 59(5) (u) " “u;, 2N (vu)(u)
= —s5 4+ Ag(s)(u) " uy, b= (Ap—1), (38)
,1 N P c= —s—<1<}1>”<;;> ) (39)

Solving forg(s) and substituting back intg, (s) = ¢, (s) —
To eliminate the unknown error tere,, we multiply by the ~ we find, choosing the root that guarantggs< 0,
left eigenvector entry,, of H and sum ovem. We use

HTv = A\pv and neglectAp — 1)e,, to get bnle)=1 _(/\D_l)_\/(/\D_1)2+45a<7<d37<;;> w
n(s) =1+ TN
~ 1 _ 2a (u)
9(s) (1)~ (vu) = S9(5)% (1) 2 (vu®) (40)
_ The moment generating functiaf,, first defined in Eq. (26),
— 1
= —s{v) + )‘Dg( ){w) <w> can be interpreted as the Laplace transform of the distoibut

_ 2( 36 of size. Taking the inverse Laplace transform of the form of
9ls)"(u Z Z oo (36) ¢ (s) found in Eq. (40) we obtain that for large the distri-
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bution of sizep,, () is approximately given by ical networks § = 1), and as\¢, for supercritical networks
(A > 1), where\p is the Perron-Frobenius eigenvalue of the
pr() X upz 32 exp(—x/z*), (41)  matrix D, Eq. (31). WhenAp — 1| < 1, the probability of
a finite avalanche of size will decay asr=3/2 exp(—z/2*),
where the characteristic siz¢ is given by wherez* is a network-specific constant, given in Eq. (42).
() () 1 In Figs. 2 and 3 we compare histograms of avalanche dura-
o =do——"— - (42) tion and size obtained from direct numerical simulations fo
(w) (Ap —1)2 A = 0.9 (left), 1.0 (center), and .1 (right) with the theoret-

ical predictions described in the previous paragraph (@dsh
lines). Note that, since our predictions allow for an un-
specified proportionality constant, the vertical positidrine
dashed lines was chosen arbitrarily. In general, we find good
agreement between the theoretical predictions of avaéanch
duration and size distributions with the histograms observ
which is the well-known exponent for critical branching pro in the s_|mulat|ons. While the das_hec_i lines in Figs. 2 and 3 are
cesses [14, 29]. Itis interesting to note that this exparient appealing to the eye, more quantitative measures of agreeme
lpetween theory and experiment are shown in Figs. 4 and 5.

our model, does not depend on the structure of the network;, i
contrasting related percolation models where all nodes wit 10 numerically test the agreement between theory and ex-

the same degree are considered statistically equival®it [2 periment for the distribution of avalanche duration, in.Fg

Also note that the quantityin Eq. (42) depends implicitly on We compare the best fit of the data too(t) x AL calculated
Ap. through a nonlinear least-squares regression on the giaula

PDF of avalanche duration, to our theoretical predictions i

Egs. (8) and (14) (solid line). The agreement is excellent,
V. NUMERICAL EXPERIMENTS though not exact, over the entire Arange)ofalues simulated.

Maximum likelihood estimates ok (not shown) are nearly

In this section, we test the theoretical predictions of tifee p identical to the least-squares estimates shownlln F'g'_4'
vious sections by directly simulating the process desdribe ~ AS @ partial test of our theory for the distribution of
Sec. Il on computer-generated networks. We first describe thaV%I%“Che size, we assume that the form of the distribusion i
processes used to construct networks and simulate avaignch? efm/m_' and estimate:” from the data, which we then

Networks were constructed in two steps. First, binary netcompare with our theoretical prediction in Eq. (42). Noting
works (with adjacency matrix entried,,,, € {0,1}) were t_hat ash — 1, " wil dl\{erge, We,estllm_at(_adi/gv Viaanon-
constructed via an implementation of the configuration rhodel'mear Igast-squares using Brent's minimization on the gum
[30], usingN' = 10° nodes, with nodal degrees drawn from lative histogram of the avalanche size data. Since our yheor
a power-law distribution with exponeats, i.e., the probabil-
ity that a node has degréds proportional tak—3->. Second,
each nonzero entryinm was given a weight, drawn from a 1.1
uniform distributionZ/[0, 1]. We then calculated the Perron-
Frobenius eigenvalue of this weighted matri, and mul-
tiplied the matrix by)\/S\, resulting in a matrix4 with the
desired eigenvalug. We simulated avalanches for networks
with A betweer).5 and1.5, sampling more finely for values
close tol.

Each simulated avalanche was created by first exciting .
single network node, chosen uniformly at random, and thel
calculating the size and duration of the resulting avalarash
defined in Egs. (1) and (2). If the resulting avalanche laster
for more than10° time steps, we considered it as having in-

The distribution of size is asymptotically an exponeniiaks

a power-law with exponent3/2. Such a functional form de-
scribes the distribution of the size of connected clustees n
the percolation threshold in some network percolation nsode
[19, 20]. In the critical case, wheh= \p = 1, 2* diverges
and we recover a power-law distribution with exponef/2,

Decay rate of avalanche duration distribution

finite duration and infinite size. In all cases, the initiat ex T, pedaed
citation was included so that the minimum size was= 1 044 06 08 I 15 12 16
and the minimum duration was = 1. For each subcritical Perron-Frobenius Eigenvalue, A

i 6
().‘ < 1) and supercritical X > 1) case,10 agalanches WEere  riG. 4: (Color online) A comparison of predicted duratiorcale
simulated, and foh = 1, we simulate@ x 10° avalanchesto 4o [Eq. (7) and Eq. (13)] (solid line), and numerical dations

better sample the very broad distribution of avalancheaize (sojid circles) plotted against, the largest eigenvalue of the network

criticality. adjacency matrix. Agreement is excellent for both the stibat and
A brief summary of the predictions of Secs. Il and IV is supercritical numerical simulations. The distributionasflanches
as follows. The probability of an avalanche of duratibwill durations decays a¥ and\}, for A < 1 and\ > 1, respectively, as

decay as\? for subcritical networksX < 1), asd—2 for crit-  indicated by arrows.
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FIG. 5: (color online) Testing the prediction that avalamsizex is FIG. 6: When the Perron-Frobenius eigenvaluis larger than one,
distributed as: /% exp (—z/x*), we compare the theoretical pre- there is a non-zero probability of an avalanche startingeden hav-
diction of z* (solid line) with 2* estimated via regression on the ing infinite duration, as predicted by Eq. (9). Here we avertige
largest 10% of avalanches from numerical simulationsdssificles,  finite fraction of avalanches originating from nodeover all nodes,
dashed line). Inset, identical data on a magnified domaionnato  showing excellent agreement between the fraction pretliocyeav-

= 1. Agreement is excellent fox near 1, and decreasingly accu- eraging Eqg. (9) (solid line) and fraction measured from sation
rate for much larger or smallex. (solid circles).

Qescribes only the asymptotic form of the distributions#s-  nite avalanches starting at node The symbols in Fig. 6
timate was performed only on the largas%s of measured showZN_l b,/N as a function of\. Agreement is excel-
data. [Similar results were obtained using the largest 8%, 1 |ent over the entire range of values tested. Beyond aggre-
and 0.1% of data (not shown), but when using more than thgate statistics, we also test a more subtle prediction ofBa.
largest 10%, the minimizing: value diverged, suggesting |n sec. 11, we concluded that,(t) = 1 — c,(t), the prob-
that we fit the power-law portion of data at the expense of theyility that an avalanche started at noddasts more than
exponential tail.] Figure 5 shows the theoretical predicti steps, scales for largeas f,, () o Atw,,, whereu is the right
(solid line) and the result of the numerical fit to the datdi€so  perron-Frobenius eigenvector af Other research in the net-
circles; the dashed lines are to aid the eye). As shown, agregork adjacency matrix literature has noted that the vector o
ment is quite good close typ = 1 (see the inset of Fig. 5), npodal out-degrees (in-degrees) is a good approximation for
but less accurate for very _subcrmcal orsupgrcrmca\hmk_s. the right (left) dominant eigenvector of in the absence of
The latter is reasonable since the assumption|tat—1/is  gegree correlations [31]. In this light, our prediction a0

a small quantity was used in the derivation of Eq. (42). As ang ynderstandable: when there are not degree correlations i
alternative, a maximum I|keI|h/ood estimation of the parame the network, a node with a larger right eigenvector entryl(an
tersa andz” in p(z) oc z~ e~ */** on avalanches of all sizes 5 |arger out-degree) will tend to produce longer avaiasc
(not shown) gives values af in the range(1.49,1.68) and  Therefore, in order to fully test our prediction, we createt
values ofz™ similar to those in Fig. 5. works withassortative mixing by degree [32], a type of degree

Although Figs. 4 and 5 demonstrla}te agreement betweeggrelation which we measure using the coefficjefg1],
theory and measurement for supercritical networks, thalt an

ysis was restricted to finite avalanches. To complementehis (kinkouty,
sult, we compare the predicted fraction of infinite avalasch p= Wv (43)

with the measured fraction, for various values)of. The

quantityb,, in Eq. (9) is the fraction of avalanches originat- where (-} denotes an average over all edges @ndre

ing at noden which will have finite duration and size. In weighted nodal degrees defined RS = >, Anm and
Fig. 6, we show the fraction of avalanches that decay in fi-kgut = >, Aum. In the absence of degree correlations
nite time, averaged over nodes, comparing theory (sol@ lin petween connected nodés” ko), = (kin) (k%) and
with experiment (solid circles). The theoretical fractioh ), = 1. In assortative networks, there exists a positive cor-
avalanches was calculated by numerically solving Eq. (9) tqelation (p > 1) between the in-degree at nodeand the
find b,,n = 1..., N, and then plottinngL1 b,/N as a out-degree at node: at the ends of a directed link from
function of \. The numerical fraction of finite avalanches wasto m. When the correlation is negative & 1), the network
calculated by simulating0® avalanches, each one starting at ais called disassortative. Thus we created Erd6s-Rényiom
random node (out oV = 10° nodes). If an avalanche lasted networks withV = 10 nodes, and rewired each network via
more than10° steps, we counted it as an infinite avalanche.a link-swapping process (as described in Ref. [31]) until we
Then, an estimate df, was calculated as the fraction of fi- had very assortative and disassortative netwagrks (.2 and
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and our results allow us to predict how various factors sisch a
network degree distributions or degree-degree correlatid-
fect these parameters [e.g., the parametén Eq. (42) or\p
in Eq. (13)]. (iii) In contrast to previous studies, our rikssu
025l . l allow us to predict the statistics of avalanches generétad a

; ’ particular node. This might be of critical importance in-cer
tain applications where the adjacency matrix is known or can
be inferred (such as the power grid or the Autonomous System
network of the Internet) since one can then allocate ressurc
to prevent avalanches, if so desired, that start at the nodes
which tend to generate the largest avalanches. As shown in
Fig. 7, the naive prediction that the nodes with the largast o
degree generate the largest avalanches is not necesgagily t
T when the networks have nontrivial structure, such as degree
0 002 004 0.6 0.08 o1 012 0.14 correlations.

right dominant eigenvector entry u, In developing our theory, we made some assumptions
FIG. 7: Testing the node-specific prediction of Eq. (7), amahes  which we now discuss. First, we assumed that the network
were simulated on a subcritical (= 0.95) and disassortativeo(=  was locally tree-like. This allowed us to treat avalanchrepp
0.8) Erdds Rényi random network witN' = 10* nodes. Inthe large  agating to the neighbors of a given node as independent of
plot, the f_ract|on of avalan_ches orlglnatlng at nodthat last Io_nger each other. While this is a good approximation for the net-
than 30 time stepsf» (30), is plotted against the corresponding en- o< e used, it is certainly not true in general. In patticu

try in the right Perron-Frobenius eigenvectay,. In the inset, the - . .
same valueg, (30) are plotted against the corresponding out-degreeava.lanches propagating separately from a given node might
k2"t. The eigenvector entry,, does a significantly better job than excite the same node as they grow. T_he result 'S, that t_he num-
out-degree:?"" of predicting the duration of avalanches originating P€r of nodes that the avalanches excite in the simulation may
at noden in disassortative networks (shown) and for assortative netbe less than what the theory would predict. In running our
works (not shown). simulations, we addressed this issue in two ways: first, we
kept track of the number of times two branches of the same
avalanche simultaneously excited the same nodénding
p = 0.8, respectively). Eq. (7) implies that in such networks, it to be an increasing function of avalanche size and Perron-
the tails of the CDF of avalanches originating at nodeillbe  Frobenius eigenvalue, yet still negligible when comparced t
proportional to the corresponding entry of the right eigemv  the total number of excitations. In addition, each time saich
tor, which may differ significantly from the nodal out-degre event occurred, we separately generated an avalanche start
For the a subcritical network\(= 0.95) with assortativity ing from the doubly excited node and corrected both the
coefficientp = 0.8 we plot f,,(30) and its corresponding en- size and duration of the original avalanche by incorpogatin
try in the right dominant eigenvectar, for each node, in  these additional avalanches. We found that doing this had
Fig. 7, showing that proportionality is excellent. In theéh no appreciable effect on the measured distributions, and so
of the same figure we plof, (30) against the corresponding all figures shown in this manuscript are produced from sim-
out-degree:2*! for each node:, showing that proportionality ulation datawithout the additional compensating avalanches
to out-degree does not hold. Assortative networks procdeet included. This, and the fact that the numerical simulations
same effect, but are not shown here. are described well by the theory, suggest that the intenacti
of avalanches propagating to different neighbor nodes ean b
safely neglected in the networks studied. The performahce o
VI. DISCUSSION our theory in networks that are not locally tree-like, sush a
networks with a high degree of clustering, is left for future

We have presented an analysis of the asymptotic distribJ—esearc.h' Apother approximation we used is that the Perron-
tions of the duration and size of avalanches in complex netfroPenius eigenvaluk is well separated from the rest of the

works. This work is of interest in various applications, mos spectrum. Thisis a gc_Jc_)d approximation in netwc_>rks without
notably neuroscience [4-13] and the analysis of power-griéfv_en defined communities, but can break down in networks
failure cascades [34]. While some of our results, such as th@ith strong community structure [27].

functional forms for the distributions, are analogous tosth Finally, we note that our results show that the experimental
found in classical Galton-Watson branching processesdi4] Signatures of criticality in neural systems (charactetiby

in mean-field models [20], we emphasize the distinguishingt Power-law distribution of avalanche size and duratiomwit
aspects of our results: (i) We generalize the criterion fisi-c ~ €xponents-3/2 and—2, respectively [4, 5, 11, 12]) are robust
cality to A = 1, which depends on the topology of the network to complex underlying network topologies.

in ways that previous results do not capture. For example, in The authors acknowledge useful discussions with Woodrow
critical branching processes [29] the condition for cdlity =~ Shew. DBL and MYC were supported by NSF MCTP Grant
is (d) = 1. (ii) The parameters of the asymptotic distributionsNo DMS-0602284. JGR was supported by NSF Grant No.
in the various regimes are affected by the network topologyPMS-0908221. EO was supported by ONR MURI Gran
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cnlt+1) _ ﬂ (1= Apm) + A (1)
en(t) ol € Apm) + Apmem(t — 1)
N
Appendix A: Probability of finite avalanche duration =11 Ir+ Anm(cm(t) = em(t = 1))
M oA + Aentt— 1)
> 1, (A5)

In this Appendix we establish that the probability of finite
avalanches, under our assumptions, is always one when
(critical and subcritical networks), and becomes less tiran
when A > 1 (supercritical networks). These probabilities,
by, = lim;_, » ¢, (t), Satisfy the equation

which proves the desired statement. Note that, although fro
the definition (3), it follows that,, (¢) are nondecreasing, this
proof is necessary since Eq. (4) is an approximation.

N
=TT [0 = Aum) + Aubia]. (A1)

m=1

AppendixB: A > 1= Ap <1

First, we show that i\ < 1, where) is the Perron-Frobenius
eigenvalue of4, then the only solution to the equation above
isb, = 1. Lettingb,, = 1 — f,,, we have for alln

In this Appendix we argue that the Perron-Frobenius eigen-
value of the similar matrice& andD is less than one when
the Perron-Frobenius eigenvalue dfis greater than one:

N A > 1= Ap < 1. Recall that the matrixD was defined
1_fn: H {1_Anmfm] (A2) as
m=1
Dym = b Anm (B1)
Using the Weierstrass product inequality [33], (1= Apm) + b Anm
N N whereb,,, the probability that an avalanche starting at nade
S Aumfn =1 ] {1 _ Anmfmjl — f,, (A3) isfinite, satisfies
m=1 m=1 N
with equality only if (i) Anyf,e = 0 for all m, or (i) b =[] [(1 — Anm) +Anmbm] (B2)
Apmfm = 0foral m # k and A, fr = 1 for somek m=1
[33]. If v is the left Perron-Frobenius eigenvectorAf this _ .
implies, sincev” A = Av’ Now, suppose thatl is such that\ > 1, and introduce a
’ ’ parametery < 1 by definingb,,(«) as theb,, corresponding
vIAf = Wi > vTt. (A4)  tothe matrixaA, which satisfies
If there is a nonzerd,, thenv’f > 0 since the Perron- N
Frobenius eigenvector has positive entries for irredecil bn(a) = H [(1 — aApm) + OzAnmbm(oz)] (B3)
Therefore, ifA < 1 we must havef,, = 0 foralln. If A =1, m=1

Eq. (A4) implies equality in Eq. (A3), which implies either

- » Now, calculate the derivative of, («) with respect tax,
(i) Apmfm = 0for all m, and thusf,, = 0 by (A3), or (ii)

Apmfm = 0forallm # k and A, fr = 1 for somek, N dbn(a)
which is impossible since we assumed that the entried of dbn(@) _ Z _A"’” o+ Anmbin(@) + @l 23 .
are strictly less than one anfd is a probability. Therefore, da 1 — @Anm) + aApmbm (@)
we must havef,, = 0 if A = 1, a valid argument for any. (B4)
Together with the previous argument above, we conclude thatetting s, = % .1+ and evaluating the expression above
b, =1forallnif A <1. ata =1, we get

Now, we show that i\ > 1 thenlim;_, o ¢, () = b, < 1. NoAo4a bt A
To show this, we view Eq. (4) as a dynamical system, and note fin =by, Z nm nm nmHm (B5)
that the analysis of Sec. Il A, applied to the case 1, shows ooy (1= Anm) + Anmbi,
that the fixed poinb,, = 1is linearly unstable. If we show that N N
cn(t) is nondecreasing with, then the limitb,, must be less = Z Do (b — 1) + Z Dy fm.- (B6)
than one. By induction, we will prove that,(t + 1) > ¢, (%) i a1

for all n. First, we have:,(0) = 0 andc,(1) = [[,,(1 — _

Anm) > 0, so the statement is valid for= 0. Then, assume In matrix form,

em(t) > em(t — 1) for all m and consider,, (t + 1)/c, (1),

noting thatc,, (t) > 0: (D" = Dp=D"(1 D), (B7)
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wherel = [1,1,...,1]7, b = [by,ba,...,bx]T, andy =  the right hand side of Eq. (B8) is positive. Now, we argue
[, pas - - -, ] ™. Now, we left multiply the previous equa- that the vectop: has nonpositive entries: asincreases, the
tion by v”', wherev is the left Perron-Frobenius eigenvector probability of an excitation passing between any pair ofesod
of D, satisfyingv” DT = A\pv7, to get increases, and thus the probability of having a finite axaian
can not increase, i.edp,, /da < 0. Therefore, the term” s
(Ap —1)v'p=xv"(1-b). (B8)  on the left hand side must be nonpositive and, since the right

) ) hand side is nonzero, it must be negative. Thus, the term
If A > 1, Appendix A shows that the entries @ — b) areall ) , _ | must be negative, that igp < 1.

positive. Since the Perron-Frobenius eigenveetbas posi-
tive entries as well (since we are assumifgs irreducible),
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