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Enhancing network robustness for malicious attacks

An Zeng∗ and Weiping Liu
Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

In a recent work [Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], the authors proposed a simple
measure for network robustness under malicious attacks on nodes. With a greedy algorithm, they
found the optimal structure with respect to this quantity is an onion structure in which high-degree
nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the
failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly,
complementary to the node-robustness measurement (Rn), we propose a link-robustness index (Rl).
We show that solely enhancing Rn cannot guarantee the improvement of Rl. Moreover, the structure
of Rl-optimized network is found to be entirely different from that of onion network. In order to
design robust networks resistant to more realistic attack condition, we propose a hybrid greedy
algorithm which takes both the Rn and Rl into account. We validate the robustness of our generated
networks against malicious attacks mixed with both nodes and links failure. Finally, some economical
constraints for swapping the links in real networks are considered and significant improvement in
both aspects of robustness are still achieved.

PACS numbers: 89.75.Fb,89.75.Hc,05.10.-a

I. INTRODUCTION

The security of the infrastructure in modern society is
of great importance. Systems like Internet, power grids,
transportation and fuel distribution networks need to be
robust and capable of surviving from random failures
or intentional attacks [1]. Many processes taking place
on networks might be significantly influenced if the net-
work structures are damaged [2, 3]. Examples of such
processes in nature and society include epidemic spread-
ing [4, 5], synchronization [6–8], random walks [9, 10],
traffic [11, 12] and opinion formation [13, 14]. Therefore,
the robustness for different network structures was in-
tensively studied in the past decade [15–19]. It is also
revealed that the shortest path [20] and graph spec-
trum [21, 22] can be employed to estimate the network
robustness. Moreover, interdependent network [23, 24] is
proposed to model the catastrophic cascade of failures in
real systems.
In a recent work, a new measure for network robust-

ness under malicious attack on nodes is proposed [25].
This measurement, which we call node-robustness in
this paper, considers the size of the largest compo-
nent during all possible malicious attacks, namely Rn =
1

N

∑
1

q=1/N S(q), where N is the number of nodes in the

network and S(q) is the relative size of giant component
(i.e., the fraction of nodes in the largest connected clus-
ter) after removing qN largest degree nodes. The nor-
malization factor 1/N makes robustness of networks with
different sizes comparable. A robust network is gener-
ally corresponding to a large Rn value. With this mea-
surement, a greedy algorithm is designed to enhance the
node-robustness in real systems and large improvement is
observed even though a small number of links are modi-
fied. Moreover, the optimal structure for node-robustness
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is found to be an onion structure in which high-degree
nodes are highly connected with rings of nodes with de-
creasing degree surrounding. Lately, a simple method
was also proposed to generate such robust onion net-
works [26].
However, the analysis in ref. [25] is only based on the

targeted attacks on nodes. In reality, failures can happen
in connections between nodes as well [18]. For example,
the power cables can be dysfunctional and some airlines
can be blocked due to the terrible weather or terrorist
attacks. In this paper, we propose a link-robustness in-
dex (Rl) to measure the ability of network to resist link
failures. We find that solely enhancing Rn cannot al-
ways improve Rl and the network structure for optimal
Rl is far different from the onion network. In addition,
we find the graph spectrum index [21, 22] only measures
the robustness against attack on nodes but cannot re-
flect link-robustness of networks. In order to design ro-
bust networks resistant to different kinds of malicious
attacks, we propose a greedy algorithm aiming for both
Rn and Rl improvement. To validate the robustness of
the resultant networks, we examined them against more
realistic attack strategy which combines both nodes and
links failure. Since the manipulation of real network al-
ways confronts certain economical constraints, we took
these requirements into consideration in our method and
some significant improvement in both Rl and Rn are still
obtained. Finally, our study suggests that robustness
improvement strongly depends on the considered attack
strategy. Therefore, each real system should have its own
optimal structure for robustness according to the attack
it receives.

II. LINK-ROBUSTNESS OF NETWORKS

Since a robust network should be able to resist the
most destructive attack, we begin our analysis by com-
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FIG. 1. (Color online) The change of the relative size of the
giant component S(p) with the fraction of links p removed
by different strategies in BA networks. The BA networks are
with N = 100 and k̄ = 6. The results are averaged over 100
independent realizations.

paring the harmfulness caused by different malicious at-
tack strategies on links. The most destructive attack is
supposed to destroy the most “important” links in the
networks. Like ref. [25], we monitor the size of giant
component to estimate how the network gets destroyed
after these “important” links are removed step by step.
There are many methods to measure the “importance”
of links, here we mainly consider three indexes to identify
the most important link to delete. The indexes include
edge-betweenness, link clustering coefficient and degree
product. The edge-betweenness of a link is the fraction of
shortest paths that pass through it [27]. In this strategy,
the link with the highest edge-betweenness is removed in
each step. The link cluster coefficient is the number of tri-
angles to which a given link belongs, divided by the num-
ber of triangles that might potentially include it, given
the degrees of the adjacent nodes [28]. In this strategy,
the link with the lowest link cluster coefficient is removed
in each step. Degree product of a link is simply calculated
by multiplying the degree of the nodes on the two ends
of the link. In this strategy, the link with the largest de-
gree product is removed in each step. Moreover, we also
use the random link removal as a benchmark for compar-
ison. In order to simulate a more harmful strategy, we
apply a dynamical approach in which the “importance”
of the links (i.e. edge-betweenness, link clustering coeffi-
cient and degree product) are recalculated after each link
removal during the attack [25].

Fig. 1 reports how the relative size of the giant com-
ponent S(p) changes with the fraction of links p removed
by different strategies in a Barabasi-Albert (BA) network
model [29]. Obviously, the most destructive strategy is
the one based on the edge-betweenness since S(p) de-
creases most quickly. Links with high betweeness usu-
ally have many shortest paths passing through. Cutting
these links will force a large number of nodes to look
for other alternative shortest path to communicate with
each other. Gradually, the highest edge-betweenness link
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FIG. 2. (Color online) The Rl of BA networks with N = 100
and k̄ = 6, the corresponding Rn-optimized and Rl-optimized
networks. The results are averaged over 100 independent re-
alizations.
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FIG. 3. (Color online) Simple examples of (a) the Rn-
optimized network (the onion network), (b) Rl-optimized net-
work (the urchin network) and (c) hybrid-optimized network.
The size of the nodes is proportional to their degree. Both
networks are obtained by using the corresponding greedy al-
gorithm in a BA model with N = 100 and k̄ = 6.

will be in the only path connecting many nodes. At this
time, cutting this link will isolate these nodes. Interest-
ingly, though the degree-based node attack strategy can
make a severe damage to the network, cutting the links
connecting high degree nodes leads to even less harmful
effect than the random removal method to the network
connectivity. This is reasonable because the hubs can
be strongly connected with each other, and this is well
known as the rich-club phenomenon [30].

Based on the analysis above, we will use edge-
betweeness as our link removal strategy throughout the
paper. Accordingly, we also propose a link-robustness
index (Rl) based on the highest edge-betweenness attack
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FIG. 4. (Color online) The change of the relative size of giant
components S with attack step m when different networks
are attacked by the mixed strategy. The original network is
USAir and the fraction of node failure f is set as 0.5. The
results are averaged over 100 independent realizations.

strategy as

Rl =
1

E

1∑

p=1/E

S(p), (1)

where E is the total number of links. This measure cap-
tures the network response to any fraction of link re-
moval. Apparently, if a network is robust against link
attack, its Rl should be relatively large. We remark
that similar index has been designed for suppressing the
spread of epidemics recently [31].
In ref. [25], it is found that the most robust structure

for node attack is the onion-like network which is corre-
sponding to the topology with maximum Rn. However,
it is still unclear whether this structure is tolerant to the
link attack as well. We therefore report the Rl in BA
networks and the corresponding onion networks in Fig.2.
Interestingly, despite the onion networks are resistant to
malicious node attack, they are weaker than the original
BA networks with respect to the intentional link attack.
More specifically, the Rl in onion networks is 19.9% lower
than the BA model (For detail value, see Table I). One
typical onion network is shown in Fig. 3(a). As we can
see, nodes with almost the same degree are connected to
form a layer and different layers relays on several links to
communicate. Since the edge-betweenness of these intra-
layer links are relatively high, they will be removed early
when the network is attacked on links. Consequently,
some isolated layers can be quickly formed, which makes
the onion structure sensitive to the link attack.
Therefore, it is necessary to design a structural manip-

ulating method to enhance the link-robustness for net-
works. Since changing the degree of a node is commonly
assumed to be particular more expensive than changing
the connections, we keep invariant the degree of each
node in our algorithm. Starting from an original net-
work, we swap the connections of two randomly cho-
sen edges, i.e., we randomly select two edges ab and cd

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

m

S
(m

)

 

 

Original network
R

n
−optimized network

R
l
−optimized network

Hybrid−optimized network

FIG. 5. (Color online) The change of the relative size of giant
components S with attack step m when different networks are
attacked by the mixed strategy. The original network is Grid
and the fraction of node failure f is set as 0.5. The results
are averaged over 100 independent realizations.

(which connect node a with node b, and node c with
node d, respectively), then change them to ad and bc
only if Rnew

l > Rold

l . We then repeat this procedure
with another randomly chosen pair of edges until no fur-
ther substantial improvement is achieved for a given large
number of consecutive swapping trials (Here, we set it as
104).
Actually, the link swapping greedy algorithm has been

commonly applied to achieve the optimal or near-to-
optimal network functions such as node-robustness [25],
immunization [31], synchronization [32], and so on. In
our case, though we cannot guarantee this algorithm will
obtain the global optimum, we have checked that the re-
sults from this algorithm are relatively stable in different
swap trials. Moreover, it yields similar results as that ob-
tained by the simulated annealing algorithm in improving
link-robustness.
In Fig. 2, we can clearly see that the Rl can be sig-

nificantly improved by the algorithm. Compared to the
original BA network, Rl can be increased by 15.8% (See
Table I for detail value). In Fig. 3(b), we also show the
structure of the Rl-optimized network. Different from the
“Onion” network obtained in [25], the Rl-optimized net-
work shows roughly the prickles-covered “Urchin” struc-
ture in which no obvious community exists and nodes
with small degree are not inclined to connect to each
other but mainly attach to the nodes with higher degree.
In this way, each pair of nodes has many paths to com-
municate with one another. So that the network can stay
connected even many highest edge-betweenness links are
removed.

III. IMPROVING ROBUSTNESS IN REAL

NETWORKS

In real systems, the failures can actually happen in not
only nodes but also links. For example, heavy snow can
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TABLE I. Properties in the different networks: Node-robustness index (Rn), Link-robustness index (Rl), the spectrum of the
adjacency matrix (λ1/λ2), degree assortativity (r), average shortest path length (〈d〉) and clustering coefficient (〈C〉).

Network Algorithm Rn Rl λ1/λ2 r 〈d〉 〈C〉
Original 0.201 0.429 1.856 -0.181 2.576 0.142

BA Rn-optimized 0.352 0.343 2.579 0.158 2.828 0.117
Rl-optimized 0.200 0.497 1.891 -0.162 2.584 0.137
Hybrid-optimized 0.219 0.491 1.898 -0.153 2.583 0.133

Original 0.110 0.244 2.382 -0.208 2.738 0.625
USAir Rn-optimized 0.293 0.245 5.054 -0.148 2.875 0.280

Rl-optimized 0.111 0.319 2.631 -0.315 2.492 0.480
Hybrid-optimized 0.196 0.298 3.018 -0.237 2.593 0.429

Original 0.111 0.093 1.122 0.001 6.588 0.123
Grid Rn-optimized 0.240 0.173 1.404 0.356 6.128 0.015

Rl-optimized 0.125 0.248 1.192 0.019 4.974 0.024
Hybrid-optimized 0.161 0.237 1.272 0.110 5.017 0.031
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FIG. 6. (Color online) The Q value of different networks when
f changes from 0 to 1. The original network is USAir. The
results are averaged over 100 independent realizations.

break some power cables and aircraft mechanical prob-
lem can block certain airlines. Therefore, when design-
ing the robust networks, we should take both Rn and
Rl into account. In order to achieve this objective, we
propose a hybrid greedy algorithm to manipulate the net-
work structure for better robustness. Different from the
process in the previous section, we swap the connections
of two randomly chosen edges only if both Rn and Rl are
improved. The swapping process stops if there is no im-
provement in a certain number of consecutive swapping
trials which is set as 104 here.

Besides the BA network model, we further consider two
real systems: (1) USAir: the network of US air trans-
portation system [33], which contains 332 airports and
2126 airlines. (2) Grid: an electrical power grid in a part
of western Europe (mainly Portugal and Spain) [34], with
nodes representing generators, and links corresponding to
the high-voltage transmission lines between them. This
network contains 217 nodes and 320 links. Both real
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FIG. 7. (Color online) The Q value of different networks
when f changes from 0 to 1. The original network is Grid.
The results are averaged over 100 independent realizations.

networks are well connected and without any isolated
component.

For each network mentioned above, we obtained the
corresponding Rn-optimized, Rl-optimized and Hybrid-
optimized networks by the greedy algorithms and the re-
lated results are given in Table I. As we can see from
the BA model and USAir network, optimizing Rn can-
not guarantee the improvement of Rl and optimizing Rl

cannot always increase Rn neither. However, the hy-
brid method can improve both Rn and Rl from the orig-
inal networks. More specifically, the Rn and the Rl are
increased respectively by 78.2% and 22.1% in the US-
Air network. In the Grid network, the improvement of
Rn is 46.4% and the increment of Rl can reach even
154.8%. Compared with Rn-optimized and Rl-optimized
networks, the hybrid-optimized networks do not have ad-
vantage in single aspect of robustness, but they are kept
with a reasonable balance between Rn and Rl.

The spectrum of adjacency matrix, namely the ratio
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of largest and second largest eigenvalues λ1/λ2, was for-
merly used to characterize network robustness [21, 22].
However, we observe that the spectrum index has cer-
tain positive correlation with Rn but has no obvious re-
lation to Rl. Therefore, it actually only represents the
node-robustness but cannot reflect the network robust-
ness for link attack. The topology properties of the re-
sultant networks are also analyzed. The result in Table
I shows that the hybrid-optimized networks usually have
larger assortativity, smaller average shortest path length
and lower cluster coefficient than the original networks.
It has been revealed that the optimal structure for Rn

is the onion structure in which nodes with almost the
same degree are connected, so the most significant fea-
ture for Rn-optimized network is the large assortativity.
For the aspect of Rl, the most destructive attack strategy
is based on the highest load (edge-betweenness), so the
less significant the community structure is, the higher
Rl will be. Consequently, the robust network against
to the link attack should be with small average short-
est path length and small cluster coefficient. Unlike the
onion networks, the Rl-optimized networks usually do
not have a large assortativity, which explains why the
onion networks do not have a high Rl. For the resul-
tant networks from the hybrid algorithm, they will finally
carry these topology properties from both Rn-optimized
and Rl-optimized networks. One example of the hybrid-
optimized network is shown in Fig. 3(c). The struc-
ture is between the “Onion” network and “Unchin” net-
work. Although the hybrid-optimized network looks like
an “Unchin” network, it still has some links connecting
the nodes with small degree.
Since the attacks in nodes and links can happen si-

multaneously, one interesting aspect to consider is to see
how the networks in Table I react to the attack combin-
ing node failures and link failures. Accordingly, we de-
sign a mixed attack strategy in which the largest degree
nodes will be removed with probability f and the links
with highest edge-betweenness will be cut with proba-
bility 1− f . The procedure goes on until the size of the
giant component reaches 0. We first set f = 0.5 as an ex-
ample and report in Fig. 4 and 5 the performance of the
networks in Table I. The results show that the hybrid-
optimized networks preserve the giant component most
effectively.
We then consider the mixed attack process with f vary-

ing from 0 to 1. When f = 0, the process is just pure
highest load (edge-betweenness) attack on links. When
f = 1, it returns to the largest degree attack on nodes.
Here, we are mainly interested in the situation where
0 < f < 1. In order to estimate in which range of f the
hybrid-optimized network has advantage, we generalize
the definition of robustness to a quantity Q in the mixed
attack process,

Q =
1

M

M∑

m=1

S(m), (2)

where M is the total number of steps to reduce the size

of giant component to 0. Q measures how tolerant a
network against the malicious attack (which can be nodes
attack, link attack or mixed). According to Eq. (2),
Q = Rl when the f = 0 and Q = Rn when f = 1.
The Q value of the networks in Table I under different

f are reported in Fig. 6 and 7. Obviously, the original
networks performs worst under any f . The Rn-optimized
networks can indeed improve the Q value when f is large.
However, they do not have too much advantage when f
is small. More specifically, in the USAir network (see
Fig. 6), the Rn-optimized network has almost the same
Q when f is smaller than 0.4. The Rl-optimized network
can significant improve the Q value when f is small, but
Q drops nearly back to the original network level when
f is large. The similar trend can be observed also in the
Grid network (Fig. 7). These phenomena indicate that
the Rn-optimized network is very sensitive to link attack
while the Rl-optimized network is fragile when attacked
by nodes. The hybrid-optimized networks, however, per-
form very stable under different attack situations (i.e.,
different f), which suggests that the hybrid-optimized
network is a much more reliable structure in reality, es-
pecially when the fraction of node and link failure is
unknown. In addition, compared to the Rn-optimized
and Rl-optimized networks, the hybrid-optimized net-
work can even enjoy a higherQ value in certain range of f
(0.2 ≤ f ≤ 0.75 in the USAir network and 0.1 ≤ f ≤ 0.9
in the Grid network). In other words, when the network
is attacked by both links and nodes, the hybrid-optimized
network seems to be the most robust structure.
Finally, we consider some economical constraint on

improving the robustness in the real system. First of
all, the total length (geographically calculated) of links
cannot be exceedingly large. Secondly, the number of
changes of links should be relatively small. Therefore, for
reconstructing the real networks like USAir and Grid, we
add two more constraints to the greedy algorithm: the
swap of two links is only accepted if the total geographic
length of edges does not increase, and both Rn and Rl

are increased more than certain values (denoted as ∆Rn

and ∆Rl) [35]. With the strong constraints, Rn and
Rl of real networks can still be significantly improved.
Specifically, with only 3.9% links changed, the Rn and
Rl of the USAir network can be respectively increased
by 56% and 17% (Rn: from 0.110 to 0.172. Rl: from
0.244 to 0.285). In the Grid network, the Rn can be
improved by 23% (from 0.111 to 0.136) and the Rl can
be improved by 20% (from 0.093 to 0.112) with only
6.9% links changed.

IV. CONCLUSION

How to enhance the robustness of networks is an im-
portant topic, which is related to protecting the real sys-
tem from random failures and malicious attacks. In the
former literatures, most of the works focused on propos-
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ing methods to improve the network robustness for the
attack on nodes. However, the connections between
nodes can be also damaged due to some unexpected ac-
cidents, which requires us to take the link failure into
account when designing robust networks. In this paper,
based on the highest load attack strategy, we propose the
link-robustness index to estimate how the network can
resist to the most destructive targeted attack on links.
Moreover, we designed a hybrid greedy algorithm to en-
hance both node-robustness and link-robustness. When
attacked by the strategy combining node and link failure,
the resultant networks from the hybrid method outper-
form the networks from solely improving either Rn or
Rl. Finally, some economical constraints are considered
when enhancing the robustness of real networks and some
significant improvement are observed.
As shown in our results, different attack strategies re-

quire different optimal network structures to be tolerant
to the damage. From the practical point of view, the hy-
brid method can create a reliable network which is gen-
erally robust to the attack mixed with node failures and
link failures. In reality, the probability of the node fail-
ure and link failure can hardly be known especially when

the systems receive malicious attacks. Since the hybrid-
optimized networks perform very stable under different
attack situations, they can be the most suitable struc-
tures when designing real systems. Finally, we remark
that many possible extensions of this work can be done
in the future. For example, there is a family of problems
where the goal is to minimize the robustness to design
effective immunization strategy [31, 36] and the hybrid
immunization on both links and nodes can be considered
in this case. Moreover, link failure should be also taken
into consideration when studying the interdependent net-
works and the idea of hybrid-optimized method can be
extended to design a robust structure for interdependent
systems.
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