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Much effort has gone into understanding the modular nature of complex networks. Communities,
also known as clusters or modules, are typically considered to be densely interconnected groups of
nodes that are only sparsely connected to other groups in the network. Discovering high quality
communities is a difficult and important problem in a number of areas. The most popular approach
is the objective function known as Modularity, used to both discover communities and measure
their strength. To understand the modular structure of networks it is then crucial to know how
such functions evaluate different topologies, what features they account for and what implicit as-
sumptions they may make. We show that trees and treelike networks can have unexpectedly and
often arbitrarily high values of modularity. This is surprising since trees are maximally sparse con-
nected graphs and are not typically considered to possess modular structure, yet the non-local null
model used by modularity assigns low probabilities, and thus high significance, to the densities of
these sparse tree communities. We further study the practical performance of popular methods on
model trees and on a genealogical dataset, and find that the discovered communities also have very
high modularity, often approaching its maximum value. Statistical tests reveal the communities in
trees to be significant, in contrast with known results for partitions of sparse, random graphs.

PACS numbers: 89.75.Hc, 89.75.Fb, 05.10.a, 89.20.Hh

I. INTRODUCTION

Complex networks have made an enormous impact on
research in a number of disciplines [1–5]. Networks have
revolutionized the study of social dynamics and human
contact patterns [6–8], metabolic and protein interaction
in the cell [9, 10], ecological food webs [11–13], and tech-
nological systems such as the world wide web [14, 15] and
airline transportation networks [16, 17]. Seminal results
include the small-world [18] and scale-free nature [14] of
many real world systems.
One of the most important areas of network research

has been the study of community structure [19, 20]. Com-
munities, sometimes called modules, clusters, or groups,
are typically considered to be subsets of nodes that are
densely connected among themselves while being sparsely
connected to the rest of the network. Networks contain-
ing such groups are said to possess modular structure.
Understanding this structure is crucial for a number of
applications from link prediction [21] and the flow of in-
formation [22] to a better understanding of population
geography [23–25].
Much effort has been focused on finding the best pos-

sible partitioning of a network into communities. Typi-
cally this is done by optimizing an objective function that
measures the community structure of a given partition.
Many algorithmic approaches have been devised. Most
partition the entire network while some focus on local
discovery of individual groups [26–28]. Overlapping com-
munity methods, where nodes may belong to more than
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one group, have recently attracted much interest [29–31].
For a lengthy review of community methods see [19].

Given the reliance on objective functions, it is impor-
tant to understand how the intuitive notion of commu-
nities as internally dense, externally sparse groups is en-
coded in the objective function. Some functions simply
measure the density of links within each community, ig-
noring the topological features those links may display,
while other functions rely upon those links forming many
loops or triangles, for example. We show the impor-
tance of understanding these distinctions by revealing
some surprising features of how communities are eval-
uated. In particular we show that the only requirement
for strong communities—according to the most popular
community measure—is a lack of external connections,
that bottlenecks [32] leading to isolated groups can make
strong communities even when those groups are inter-
nally maximally sparse. This contradicts the notion of
communities as being unusually densely interconnected
groups of nodes.

This paper is organized as follows. In Sec. II we present
several measures of community quality and discuss their
different features and purposes. In Sec. III we show ana-
lytically that trees and treelike graphs can possess parti-
tions that display very high, often arbitrarily high values
of modularity. This is our primary result. In Sec. IV
we apply two successful community discovery algorithms
to these trees and show that the discovered communities
can have even higher modularities. We also study the
community structure of a treelike network derived from
genealogical data. In Sec. V we perform statistical tests
on the various communities and find that most of the par-
titions we consider for trees are statistically significant.
We finish with a discussion and conclusions in Sec. VI.



2

II. MEASURING COMMUNITIES

Given a network—represented by a graphG ofN nodes
and M links whose structure is encoded in an N ×N ad-
jacency matrix A where Aij = 1 if nodes i and j are
connected and zero otherwise—we wish to determine to
what extent G possesses modular structure. To put the
notion of a community or module onto a firm foundation,
objective functions have been introduced to quantify how
“good” or “strong” a community or a partitioning into
communities is. These objective functions are also often
the goal of an optimization algorithm, where the algo-
rithm attempts to find the community or communities
that maximizes (or minimizes) the objective function.
Here we briefly discuss three objective functions: sub-
graph conductance, modularity, and partition density.
Due to its popularity and wide use we will focus primarily
on modularity.

A. Conductance

The conductance φ of a subgraph is a measure of how
‘isolated’ the subgraph is, in analogy with electrical con-
ductance [33]. Subgraphs with many connections to the
rest of the network will have high conductance, whereas
a subgraph will have low conductance if it relies on a few
links for external connectivity. For a given subgraph S
such that |S| ≤ N , one form of conductance is

φ(S) =

∑

i,j Aij

[

i ∈ S
][

j /∈ S
]

∑

i,j Aij

[

i ∈ S
][

j ∈ S
] =

KS − 2mS

2mS

, (1)

where
[

P
]

= 1 if proposition P is true and zero otherwise,

KS =
∑

i,j Aij

[

i ∈ S
]

is the sum of the degrees (number

of neighbors) of all nodes in S, and mS is the total num-
ber of links in S. (The factor of two in the denominator
is sometimes dropped.) In other words, subgraph con-
ductance is the ratio between the number of links exiting
the subgraph to the number of links within the subgraph.

While low φ may appear to be a good indicator of
community structure, we remark that it primarily mea-
sures isolation or “bottleneckedness,” meaning that, e.g.,
a random walker moving in a subgraph with low con-
ductance will be very few opportunities to exit the sub-
graph, whereas it would have many opportunities if the
subgraph had high conductance. This is also true if
the subgraph is a densely interconnected module. How-
ever, consider a large 2D periodic square lattice of size
Lx × Ly, Lx ≥ Ly. This graph has N = LxLy nodes
and M = 2N links and is generally considered to have
no modular structure. The conductance of a subgraph
created by cutting the lattice in half along the y direc-
tion is φ = 2Ly/ (LxLy) = 2/Lx. As the lattice grows,
the conductance of this subgraph decreases, despite there
being no modular structure.

B. Modularity

A key point lacking in earlier definitions of communi-
ties such as conductance is that they fail to quantify the
statistical significance of the subgraph. It may be possi-
ble for a randomized null graph to contain subgraphs ex-
hibiting comparable conductance, for example, and con-
ductance alone does not capture this. Modularity [34, 35]
was introduced to account for this in an elegant way. It
has become the most common community objective func-
tion [19, 20] and possesses a number of distinct advan-
tages over previous approaches, such as not requiring the
number of communities to be known in advance. How-
ever, it has some drawbacks as well. It is known to pos-
sess a resolution limit where it prefers communities of a
certain size that depends only on the global size of the
network and not on the intrinsic quality of those commu-
nities [36, 37]. Meanwhile, sparse, uncorrelated random
graphs are expected not to possess modular structure,
but fluctuations may lead to partitions with high modu-
larity [38–40]. Yet another concern is modularity’s highly
degenerate energy landscape [41], which may lead to very
different yet equally high modularity partitions.
Modularity Q can be written as:

Q =
1

2M

∑

i,j

[

Aij −
kikj
2M

]

[

ci = cj
]

=
∑

c

[

mc

M
−

(

Kc

2M

)2
]

, (2)

where M = 1
2

∑

ij Aij is the total number of links in
the network; ci is the community containing node i;
mc = 1

2

∑

ij Aij

[

ci = c
][

cj = c
]

is the total number of

links inside community c; and Kc =
∑

i ki
[

ci = c
]

is the
total degree of all nodes in community c. The first defi-
nition of Q illustrates the intuition of its form: For every
node pair that shares a community we sum the difference
between whether or not that pair is actually linked with
the expected “number” of links between those same two
nodes if the system was a purely random network con-
strained to the same degree sequence (this null model is
known as the configuration model, and the loss term is
approximate). This is then normalized by the total num-
ber of links in the network. By rewriting the sum over
node pairs as a sum over the communities themselves, the
second definition of Q makes clear the resolution limit:
global changes to the total number of linksM will dispro-
portionately affect each community’s local contribution
to Q. This can potentially shift the maximal value of Q
to a different partition even when the local structure of
the communities remains unchanged.
Equation 2 gives values between − 1 and 1. When

Q ≈ 0 there is strong evidence that the discovered com-
munity structure is not significant, at least according to
this null model, while the communities are considered
better and more significant as Q grows. In practice, re-
searchers may assume that a network possesses modular
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structure when Q > 0.25 or 0.3 [34]. However, since fluc-
tuations can induce high modularity in random graphs,
one must always approach the raw magnitude of Q with
caution: statistical testing (Sec. V) may provide stronger
evidence for the presence of modules than modularity
alone [38].

C. Partition density

Yet another approach to quantifying community struc-
ture is that of partition density [30]. Partition density
was introduced specifically for the case of link commu-
nities, where links instead of nodes are partitioned into
groups. This allows for communities to overlap, since
nodes may belong to multiple groups simultaneously. We
do not consider overlapping communities here, but par-
tition density can still be calculated for non-overlapping
node communities.

The partition density D is

D =
1

2M

∑

c

mc

mc − (nc − 1)

(nc − 1) (nc − 2)
. (3)

Partition density measures, for each community, the
number of links within that community minus the min-
imum number of links necessary to keep a subgraph of
that size connected, nc − 1, the size of its spanning tree.
This is then normalized by the maximum and minimum
number of links possible for that connected subgraph,
(

nc

2

)

and nc − 1, respectively. The partition density is
then the average of this quantity over the communities,
weighted by the fraction of links within each community.
For a link partition that covers an entire connected net-
work, we have

∑

c mc = M , but this does not necessarily
hold for a node partition.

A crucial feature of the partition density is that it ex-
plicitly compares the link density of a subgraph to that
of a tree of the corresponding size. This controls for the
fact that the subgraph in question is connected, making
the reasonable assumption that communities should be
internally connected. The null model used by modular-
ity on the other hand, does not make this assumption,
and it may potentially assign very low probabilities to
such an event. As we will show, this is a crucial aspect
of modularity.

III. COMMUNITIES IN TREES AND

TREELIKE GRAPHS

We now study a model tree graph that one may con-
sider to not possess modular structure and show that
these graphs possess partitions with arbitrarily high mod-
ularity values. We also study a mixed case graph contain-
ing both modular and non-modular structures.

FIG. 1. Cayley tree for z = 2 and g = 3. The root node is
indicated in white.

A. Cayley tree

The Cayley tree is a regular graph with no loops and
where every node i has the same degree ki = z + 1 (ex-
cept for leaf nodes on the boundary who possess k = 1).
See Fig. 1. It can be constructed by first starting from a
root node at generation 0, giving that node z + 1 child
nodes, and then repeatedly giving each new child z chil-
dren of its own. This continues for a fixed number of
generations g. These trees can grow either in “width”
(via z) or in “depth” (via g). The number of nodes in
generation g > 0 is n(g) = (z + 1)zg−1 and the total
number of nodes is N(g) = 1+

∑g

g′=1 n(g
′). Since this is

a tree, the total number of links is M(g) = N(g) − 1 =
(z + 1)(1 − zg)/(1 − z). Since the bulk of the graph
is regular, the Cayley tree has no density fluctuations
(all connected subgraphs of the same size have the same
number of links) and so it does not in an obvious way
conform to our preconceived notions of communities as
internally dense, externally sparse groups. In the ther-
modynamic limit the Cayley tree is known as the Bethe
lattice. We concern ourselves here primarily with finite
graphs, however, such that finite size and edge effects
cannot be ignored.
We now compute the modularity of a specific partition

of the Cayley tree, which we call the analytic partition.
First place the root node into a community of its own.
Then create a new community for each child of the root
node, containing that child and all of its descendants.
Thus there are z + 2 communities in total. Apart from
the singleton community containing the root node, every
community is a complete z-ary tree (which is not exactly
a Cayley tree) with g − 1 generations. Partitioning the
tree in this way requires cutting only z + 1 links. There
are zero links inside the singleton community and

m =
N(g)− 1

z + 1
− 1 = z

1− zg−1

1− z
(4)
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links inside the z+1 other communities. To compute the
total degree of nodes within the community, we note that
all (N(g)− 1)/(z+1) nodes have degree z+1 except the
n(g)/(z + 1) boundary nodes that have degree 1. Thus
the total degree is

K = (z + 1)

(

N(g)− 1

z + 1
−

n(g)

z + 1

)

+
n(g)

z + 1

=
1 + z − 2zg

1− z
. (5)

The final modularity is then given by substituting these
expressions for m, K, and M into:

Qcayley = (z + 1)

[

m

M
−

(

K

2M

)2
]

−

(

z + 1

2M

)2

, (6)

where the functional dependence on z and g has been
suppressed. For z = 10 and g = 4, for example, Qcayley ≈
0.91, an extremely high modularity. Even for z = 3 and
g = 3 we have a high modularity of Qcayley ≈ 0.7. (Raw
modularity values must be approached with caution; we
will quantify these numbers in Sec. V.) In general, the
limiting value of Qcayley for a given z is

lim
g→∞

Qcayley(z, g) =
z

z + 1
. (7)

Even for a finite g > 1, Qcayley → 1 as z → ∞. Thus the
Cayley tree is able to achieve arbitrarily high modu-
larity partitions. (We will later show these partitions to
also be statistically significant.) This is not the only par-
tition capable of achieving high modularity. We discuss
another partition in the Appendix.
Meanwhile, the z+1 branch communities of the Cayley

tree’s analytic partition each have conductance

φcayley =
1

m
=

1− z

z − zg
. (8)

For z = 4 and g = 10, for example, φcayley ≈ 2.86×10−6,
a very small value. This makes sense since only a sin-
gle link separates that entire branch from the rest of the
graph. This also emphasizes that conductance is pri-
marily a measure of bottlenecks and isolation and should
be approached with caution when applied to community
structure.
Finally, we remark that the partition density of the

Cayley tree is zero since mc = nc − 1. This is true not
just for the analytic partition but for all partitions of the
Cayley tree where each community is connected.

B. A clique and a tree

In practice, one may deal with networks with wide fluc-
tuations in local density, meaning there may exist local-
ized subgraphs of low and of high density at the same
time. We analyze a simple example consisting of a single

Clique Tree

(a)

(b)

Clique

T  Trees….….

FIG. 2. (left) A mixed test case consisting of a single clique
(complete subgraph) of nclique nodes connected by a single
link to a z-ary tree. This is partitioned into communities
by cutting the single bridging link. (right) A generalization
where now T trees are connected to the single clique (T <

nclique).

complete graph known as a clique connected by one link
to the root of a z-ary tree of g generations. See Fig. 2.
We wish to compute the modularity of a community

partition containing the entire clique in one community
and the entire tree in the other, where only the link
from the root of the tree to the clique was cut. We
assume that there are nclique nodes in the clique and
ntree =

(

1− zg+1
)

/ (1− z) nodes in the tree. The num-

bers of links in each subgraph are mclique =
(

nclique

2

)

and mtree = z (1− zg)/ (1− z), respectively. The to-
tal number of links is M = mclique + mtree + 1 and the
total degrees are Kclique = nclique + (nclique − 1)2 and
Ktree = zg + (z + 1) (1− zg) / (1− z). The final modu-
larity of the partition is then given by substituting these
expressions into

Qclique−tree =
mclique +mtree

M
−

K2
clique +K2

tree

4M2
. (9)

We plot Eq. (9) as a function of g in Fig. 3a for
nclique = 100 and several values of z. We see that Q at-
tains a maximum of 1/2, a value not as high as the pure
Cayley tree previously analyzed despite the addition of
a “perfect” community. We also see that, as z increases,
Q becomes more sharply peaked as a function of g. This
is due to the resolution limit: the larger z is, the more
quickly the tree will grow from one generation to the next
and thus the tree community more quickly passes beyond
the size preferred by modularity. This leads to a Q that
grows more rapidly and then decays more rapidly as g
increases.
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We also study a generalization of Fig. 2a from one tree
to T trees (Fig. 2b), where each tree is its own commu-
nity. For this model mtree and Ktree are unchanged for
each tree, while now Kclique = T + nclique(nclique − 1),
M = mclique + Tmtree + T and

Qclique−trees =
mclique + Tmtree

M
−

K2
clique + TK2

tree

4M2
.

(10)
We plot Eq. (10) in Fig. 3b as a function of nclique for sev-
eral values of T . We see that increasing T raises the over-
all modularity of the partition, giving apparently high
values of Qclique−trees > 0.8. We also see that, as T in-
creases, the curve becomes more flat, meaning that good
quality partitions, according to modularity, exist for a
wide range of clique sizes. We remark that this gener-
alization may also be treated by exploiting the recursive
nature of z-ary trees by merging all the tree roots into
one node and moving that node into the clique (this is
particularly simple when T = z).
In Sec. V we study the statistical significance of these

Clique-Tree partitions.

C. Other trees

The results above were derived for Cayley and z-
ary trees. The regular nature of these trees allows for
tractable expressions of modularity, but our results are
not limited to these types of trees. The important fea-
ture in this context is that all connected subgraphs of n
nodes in any tree will always contain m = n − 1 links.
Since it seems a reasonable basic requirement for a com-
munity detection method to discover communities that
are connected, this density relation is a reasonable mini-
mum baseline for a method to be compared against. This
also means that, since every tree obeys this relation, bot-
tlenecks become the primary drivers of high modularity
partitions in all trees. We further explore the general-
ity of our results in Sec. IV where we apply community
detection algorithms to random trees.

IV. REAL-WORLD EXAMPLES

The above derivations show that trees may possess ar-
bitrarily high values of modularity. However, these cal-
culations did not consider the resolution limit of modu-
larity. In fact, real world optimization of modularity will
result in partitions that give even higher values of Q than
those of the analytic partitions discussed in Sec. III.
To see this we apply two of the most popular and

successful community discovery methods. The first is
known as Fast Unfolding (sometimes referred to as
the Louvain method) and can efficiently find very high
modularity partitions [42]. The second method is called
Infomap [43]. Infomap does not optimize modularity,
instead exploiting information-theoretic arguments, but
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FIG. 3. (a) Modularity for the example network illustrated
in Fig. 2a. As we increase the size of the tree for a fixed
clique size, the modularity grows to a maximum value and
then decays away. This is due to the resolution limit: there
exists a specific tree size that maximizes Q for each clique size.
(b) For the generalization of one clique and T trees, shown in
Fig. 2b, we see that the analytic partition again attains high
modularity, especially as more trees are added. Likewise, as T
increases we see that the peak of Q flattens out and that the
partition has high modularity for a range of clique sizes. This
means that much of the resolution limit can be compensated
for if the network is sufficiently treelike.

the partitions it does find are often high in modularity,
especially for undirected networks.
We apply these algorithms to the Cayley tree. In Fig. 4

we plot the modularities discovered by each algorithm
and the modularities Qcayley of the analytic partitions
(Eq. 6). We see that the methods find communities that
appear as strong as the analytic method or stronger. Fast
Unfolding typically exceeds Qcayley as the trees grow, and
even approaches Q = 1. Infomap tends to stay closer to
Qcayley but it too can exceed these bounds, especially for
trees with z = 2. If these methods were applied blindly to
a network, such high values of modularity would suggest
that these communities are extremely high quality and
that the network was extremely modular.
What about trees other than the Cayley tree? Will

such discovery methods find comparable values of mod-
ularity. To answer this, we now apply these methods to
random trees generated from a Galton-Watson branching
process [44], where each node has a random number of de-
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FIG. 4. (Color online) Community discovery methods find
even higher values of modularity than the analytical partition
of the Cayley tree. We apply two methods: (a) Fast Unfold-
ing [42] and (b) Infomap [43] for several values of z. Closed
symbols correspond to Eq. (6) while open symbols correspond
to the modularities found by the methods. Fast Unfolding
finds consistently higher modularity partitions than the ana-
lytic partition, due to the resolution limit. These partitions
even approach Q = 1. Infomap, which does not optimize
modularity, tends to find partitions comparable to the ana-
lytic partition, although it too finds higher value partitions
for z = 2 and some values of g for z = 3. Note that the
vertical axes do not begin at Q = 0.

scendants drawn from a Poisson distribution with mean
λ. (We also stop growing the tree at g generations.) For
λ = 4 and g = 6, for example, we find Fast Unfolding
partitions with modularity Q = 0.9814 ± 0.0055, while
for Infomap we find partitions with Q = 0.8594± 0.0069.
This supports the generality of our results: high modu-
larity partitions also exist in non-Cayley trees.

As a final practical example, we also apply both meth-
ods to a treelike network derived from a genealogical
dataset capturing the advisor-advisee relationships be-
tween mathematicians and their students [45, 46]. (This
genealogy is not exactly a tree since some students have
multiple advisors.) We only consider the giant con-
nected component of the network, capturing approxi-
mately 90% of the dataset. In total the network has
N = 133319 nodes and M = 148247 links. The mod-
ularities of the partitions found by Fast Unfolding and
Infomap are QFU = 0.951083 and QIM = 0.877146, re-

spectively. These high values would again imply that the
network is strongly modular; however, statistical test-
ing should be performed to support this argument (see
Sec. V).
As a brief aside, another interesting aspect of a com-

munity partition is the distribution of community sizes
(numbers of nodes per community). Since any discov-
ered modular network structure depends intrinsically on
the definition at the heart of the algorithm used to find
that structure, it is not known for certain what the true
distribution is. Nevertheless, there has been empirical
evidence showing that the size distribution may exhibit
a power law Pr(s) ∼ s−α, for α ≥ 1 [29, 30].
Yet the distributions of community sizes found in the

genealogical network, shown in Fig. 5, are not heavy-
tailed. Instead both methods find approximately expo-
nential distributions, with a small number of larger com-
munities that would be underrepresented by a exponen-
tial distribution. The lack of very large communities may
be expected in graphs without hubs, but the degree dis-
tribution for this network is heavy-tailed (Fig. 5b, inset).
This relatively narrow size distribution may provide some
warning that the communities found in this network dif-
fer from typical communities in some meaningful way,
though this is far from certain. Further study of this dis-
tribution may prove fruitful in understanding the modu-
lar nature of complex systems.

V. STATISTICAL TESTING

Given that there exist high modularity partitions in
both the Cayley tree and the Mathematics Genealogy, a
crucial question becomes, are these partitions significant
in some way or could they be simply due to some random
process? This is especially important since it is known
that sparse, uncorrelated graphs can potentially possess
high modularity partitions due to fluctuations [38–40].
To address such questions of statistical significance re-
quires first defining an appropriate null model. Hypoth-
esis testing then asks what is the probability that the
observed phenomena (in this case the discovered com-
munities or their properties) may have arisen within the
null model. If this probability is sufficiently low, then
there is evidence that the communities cannot be ex-
plained by the null model. This does not mean that the
communities are “meaningful,” however, since this only
compares them to that particular null model. For ex-
ample, a simple choice of null model is the configuration
model: build uncorrelated random graphs that preserve
the degree sequence of the original graph, apply com-
munity detection to these graphs, and then compare the
configuration model communities to those of the origi-
nal network. However, a Cayley tree is typically very
different from its equivalent configuration model ensem-
ble, being highly structurally ordered, and this alone may
lead to statistically significant differences in, e.g., modu-
larity. Thus it is crucial to choose the most appropriate
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FIG. 5. The distribution of community sizes found in the
genealogical network for (a) Fast Unfolding and (b) Infomap.
We see that neither distribution is heavy-tailed, being instead
approximately exponential (straight lines) except for a small
number of the largest communities that would be underes-
timated by an exponential distribution. (inset) Unlike the
community size distribution, the degree distribution of the
network is heavy-tailed. The straight line shows a pure power
law, Pr(k) ∼ k−2.5, for comparison.

null model possible.

Defining statistical tests for community structure re-
mains an area of research [47, 48]. For our purposes, we
use the testing procedure introduced in [47]. Roughly,
this test takes the worst node w in a community c (the
node with the least neighbors also inside c), removes w
from c, and asks what is the probability p that w would
have that many neighbors or more within c if its links
were distributed randomly over the whole graph while
holding the rest of c and the degrees of all other nodes
fixed. Since w represents the worst case, if p is small
then it is unlikely that w or any other nodes in c would
have so many other neighbors also in c due to chance.
Therefore, they consider a community to be significant
if p < 0.05, the standard significance level for hypothesis
testing. Note that this test strictly controls for both the
links inside c (and therefore its density), the number of
links exiting c, and the overall sparsity of the network.
The authors in [47] used this test to show that communi-
ties in sparse Erdős-Rényi and power law graphs are not
significant. For full details, see [47].

Here, we compute a p for each community of interest
using their method and ask what fraction of communities
are significant.

For the analytic partitions of the Cayley tree
(Sec. III A), we find that all z+1 branch communities are
statistically significant. (For z = 3 and g = 7, for exam-
ple, the maximum p = 0.00144.) This means that this
particular partition cannot be explained simply by the
global sparsity of the tree itself. In particular, this test
considers the internal structure of a community as fixed,
and yet these communities are significant even though
they are internally maximally sparse trees. This contra-
dicts the typical intuition of communities as internally
dense, externally sparse subgraphs and supports the ar-
gument that bottlenecks alone are sufficient to signifi-
cantly optimize modularity.

We next test the analytic partition of the Clique-Tree
example (Sec. III B). We consider for nclique = 100, all
z = 2, 3, 4, and g = 2, . . . , 10 (see also Fig. 3a). In all
cases both communities were significant: the maximum
p observed from any combination of those parameters was
p = 0.00387.

We now turn to the community discovery methods Fast
Unfolding and Infomap. For Fast Unfolding on the Cay-
ley tree (z = 3, g = 7) we find that approximately 91% of
the discovered communities were significant. This shows
that even practical methods can find statistically sig-
nificant, high modularity partitions solely through the
discovery of bottlenecks. For Infomap, which does not
optimize modularity, we find that no communities are
statistically significant according to this test. However,
we remark that a less strict test also introduced in [47]
shows that approximately 48% of the Infomap commu-
nities are significant. The truth likely lies between these
extremes, but we can safely conclude that most Infomap
communities could be explained by this test’s null model.

Next, we test Fast Unfolding and Infomap on the fi-
nite Galton-Watson trees discussed in Sec. IV. We find
comparable results to the partitions of the Cayley tree:
for λ = 4 and g = 6, we find that 96.9% ± 0.808% Fast
Unfolding communities were significant while almost no
(0.0311%± 0.0350%) Infomap communities were signifi-
cant.

Finally, we consider the practical example of the math-
ematics genealogy. Both Fast Unfolding and Infomap
found apparently high values of modularity, but are these
results significant? Applying this test shows that they are
not: for Fast Unfolding and Infomap only approximately
2.4% and 2.6% of the communities were significant, re-
spectively. Although we again caution that this does not
necessarily prove these communities to be meaningless,
it further underlines the potential danger of relying upon
raw modularity values as a quantifier of modular struc-
ture.
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VI. DISCUSSION AND CONCLUSIONS

We have shown that trees appear very modular. Yet
connected trees are maximally sparse and possess no den-
sity fluctuations, going against the tenet that communi-
ties are unusually dense subgraphs. Thus, counter to our
intuition, measures such as modularity, while ostensibly
rewarding densely interconnected groups, can actually be
optimized solely through the discovery of bottlenecks and
it is not necessary for the discovered groups to be inter-
nally dense. In particular, we do not claim that trees
lack communities, nor do we claim that these communi-
ties are not meaningful in some way. Instead we argue
only that it is sufficient to discover bottlenecks to opti-
mize modularity and conductance. This disconnect be-
tween intuition and practice has not been well discussed
in the literature and in fact most work has overlooked
the out-sized role that bottlenecks play in the existence
of modular structure.
So is our definition of modular structure correct?

Equation 2 depends so strongly on its null model that
we must judiciously understand all facets of it. We have
shown that communities do not need significantly high
internal density to lead to high quality (according to
modularity). Therefore, if researchers want to consider
modules according to their intuition, they may need to
introduce measures that specifically account for internal
density in some way beyond that of Eq. 2. Taken together
with modularity’s other issues such as its resolution limit,
it appears that rigorously and unambiguously quantify-
ing modular network structure is difficult and remains an
open question.
Researchers have shown that sparse graphs will have

high modularity, yet the statistical tests applied here
show that the sparsity of trees alone is not sufficient to
explain these results. By controlling for tree sparsity, we
have shown that bottlenecks lead not only to high mod-
ularity but to statistically significantly high modularity.
Our results on trees further differ from sparse random
graphs in that the expected high modularity partitions
do not need to be equipartitions (see Appendix), and the
derivations here do not invoke features of ensembles of
random graphs.
One may suspect that the addition of non-tree

components to a network may destroy the observed
phenomena—that it is somehow fragile—yet our results
in Sec. III B show that this is not the case and that merely
the presence of trees may lead to modular structure. A
crucial consequence of this is that, since trees are the lim-
iting structure as networks become sparse, sampled and
missing data [49] may boost modularity, at least in some
regions of the network, even though the network remains
globally connected. Incomplete data remains an issue in
high-throughput biological assays for example [50], and
thus one should consider both sparsity and bottlenecks
when approaching graph partitioning in these problems.
Finally, the statistical tests we used in Sec. V show

that many of the communities found in trees are signifi-

cant, whereas the communities found in the mathematics
genealogy, while very high in modularity, are typically
not significant. However, this test does not verify that
the tree communities are “meaningful,” only that they
differ from the test’s null model. Likewise, the discov-
ered genealogical communities could still be meaningful
in other ways, perhaps revealing important schools of
mathematicians or mathematics research. For networks
that possess additional data annotating the properties or
roles of network elements—for example Gene Ontology
terms describing proteins in protein-protein interaction
networks [51–54]—these discovered groups may in fact be
highly enriched, meaning that their nodes or links share
many annotations [30, 55], even though structurally the
community is not significant. Further study of the inter-
play between these different validation mechanisms may
be crucial to increasing our understanding of modular
networks and complex systems in general.
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Appendix: Another high modularity partition of the

Cayley tree

Consider the analytic partition of the Cayley tree,
where the root node occupies a singleton community
alongside the z + 1 branch communities. Neglecting the
singleton community, which has a vanishing contribution
to Q anyway, the communities are all the same size. We
showed in Sec. III that the modularity of this partition
Qcayley can become arbitrarily close to one. This is not
the only arbitrarily high modularity partition present in
the Cayley Tree.

To see this, take one of the z + 1 branch communities
and “shatter” it such that all nodes in that branch now
form singleton communities of their own. The modularity
Qshattered of this partition is

Qshattered = z

[

m

M
−

(

K

2M

)2
]

−

(

N(g)− 1

z + 1
−

n(g)

z + 1
+ 1

)(

z + 1

2M

)2

−
n(g)

z + 1

(

1

2M

)2

. (A.1)
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Here the first term is the contribution of the remaining
z “unshattered” branches; the second term accounts for
the losses due to singleton interior nodes, both the root
node and the shattered branch interior; and the last term
accounts for losses due to the singleton leaf or interface
nodes of the shattered branch. The quantities m, M , K,
n(g), and N(g) correspond to those derived in Sec. III A.
Substituting these into Eq. A.1 gives

lim
g→∞

Qshattered =

(

z

z + 1

)2

. (A.2)

As expected, this value is smaller than the limit

Qcayley → z/(z + 1) as g → ∞ but it shows that this
partition still achieves arbitrarily high values of modu-
larity.
As mentioned in the main text, it has been shown that

sparse, uncorrelated random graphs may possess high
modularity partitions [38, 39]. Under these conditions
all communities should be equivalent in expectation and
thus one expects all communities to be roughly compara-
ble in size, so that the community structure must be an
equipartition of the network. The high value of mod-
ularity displayed in Eq. A.2 shows that trees, while also
being sparse, can contain high modularity partitions that
are very far from equipartitions, in contrast with the re-
sults of [38, 39].
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