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Agent-Based Modeling (ABM) constitutes a powerful computational tool for the exploration of
phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a
computer-assisted approach that bridges the significant gap between the single agent, “microscopic”
level, and the macroscopic (coarse-grained, “population”) level, where fundamental questions must
be rationally answered, and policies guiding the emergent dynamics devised. Our approach will
be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM
incorporates interactions between a heterogeneous population of citizens (active (“insurgent”), in-
active or jailed) and a population of “police officers”. Detailed simulations exhibit an equilibrium
“punctuated” by periods of social upheavals. We show how to effectively reduce the agent-based dy-
namics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed
citizens and the number of active ones. The coarse-grained model captures the ABM dynamics
while drastically reducing the computation time (by a factor of ∼ 20).
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I. INTRODUCTION

Agent-based modeling (ABM) has become a powerful
tool for studying behavior of complex systems in recent
years, in part through advances in modern computing
technology. In this modeling approach, the system stud-
ied consists of individual agents, whose actions and in-
teractions are computed via stipulated behavioral rules.
The ABM provides a convenient framework in which dif-
ferent interactions between individuals in possibly large,
heterogeneous populations can be computationally im-
plemented, and the dynamics and phenomena resulting
from these interaction rules can be observed and, hope-
fully, rationalized. The use of ABM has a long lin-
eage dating back to Von Neumann’s self-reproducing au-
tomata [1]. Pioneered by Thomas Schelling through his
seminal works [2–4], the ABM has found increasing ap-
plication in studying a wide variety of topics in social
science (e.g., see [5–8]).
ABM has, however, an inherent weakness in that the

computational time for large complex systems, which
typically consist of thousands or millions of agents, can
be prohibitively long. This drawback makes the compre-
hensive analysis of certain ABM results extremely time-
consuming and, as a result, may unsatisfactorily delay
realistic decision- and policy-making associated with im-
portant societal, economical or military events. Improv-
ing computational efficiency for ABM becomes, there-
fore, a necessity. This naturally links with mathematical
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approaches to coarse-graining and model reduction, tech-
niques which attempt to single out crucial macroscopic
factors of complex systems, and construct accurate but
reduced alternatives to the original, full-system dynam-
ics. In this manner, the extraction of useful model pre-
dictions can be significantly accelerated.

One approach to achieving accurate and efficient model
reduction that is particularly well-suited for ABM is the
recently developed Equation-Free (EF) framework [9–11].
This framework circumvents the explicit derivation of
macroscopic, system level equations for coarse-grained
observables (statistics, features) of the ABM; it is ap-
plicable when we believe that such coarse-grained equa-
tions in principle exist, yet they are not available in closed
form. Our purpose in this paper is to show how to imple-
ment the EF method to ABM, obtaining reduced models
and significantly accelerating the computational extrac-
tion of system-level information from the ABM.

The concrete topic we choose to illustrate this applica-
tion is an agent-based civil violence model originally pro-
posed by Epstein [12]. In this paper, insurgency was char-
acterized by repeated outbursts of “active” citizen popu-
lations, arising in simulation in the form of a “punctuated
equilibrium” - a phenomenon widely observed across dis-
ciplines. From the perspective of dynamics, it would be
interesting to model this punctuated equilibrium behav-
ior via a few representative coarse variables. Further-
more, if such a reduced model can be obtained, the sim-
ulation time for the original civil violence model may also
decrease significantly. Since dynamics of any system in
punctuated equilibrium is stochastic, we attempt to build
the reduced, effective model in the form of a system of
stochastic differential equations (SDEs), in which one or
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more terms is a stochastic process. The resulting solution
is then, in itself, a stochastic process [13]. A key difficulty
in constructing the reduced model as a multi-dimensional
(here, two-dimensional) SDE lies in accurately obtaining
the drift and diffusion coefficients in the SDE as functions
of the coarse variables. As we will discuss in more detail
below, we will use two characteristic aggregate features
of the original model – the numbers of jailed and active
citizens – as our two coarse variables. We will also design
a computational procedure, i.e., the so-called lifting step
in the EF framework, that generates detailed agent states
consistent with prescribed values of the coarse variables,
thus enabling estimation of the drift and diffusion coef-
ficients. The particular lifting procedure we will use is
inspired from observations of the dynamics of the detailed
ABM.
The paper is organized as follows: Section II briefly de-

scribes the original civil violence model derived from Ep-
stein [12] and showcases its characteristic dynamical be-
havior. Section III provides our observations on relation-
ships between our two chosen coarse variables and the re-
maining system variables. We then design the lifting pro-
cedure and show how to estimate the drift and diffusion
coefficients of the reduced model through short bursts
of appropriately designed ABM simulation. Significant
statistics of the temporal behavior obtained through both
the original and the reduced model will be compared as
well. In Section IV, the Fokker-Planck equation and
the backward Kolmogorov equation, based on our 2-
dimensional reduced effective SDE, will be solved to ob-
tain respectively (a) the long-term, stationary joint Prob-
ability Distribution Function (PDF) of the two coarse
variables and (b) the mean exit time for the system (de-
scribed by the two coarse variables) to escape a given
domain (leading to “insurgency”). This mean exit time
can be used to approximate the average time between
social upheavals. Conclusions and discussion will be pre-
sented in Section V.

II. THE CIVIL VIOLENCE ABM AND

SIMULATION

In Epstein’s original model [12], dynamics of social vio-
lence is simulated via interactions among citizens and po-
lice officers that are placed on a square lattice grid. Each
position in the lattice grid can be occupied by one agent
(citizen or police officer) only. A “citizen” is defined as an
agent with two inherent characteristics – “hardship” (H)
and “risk aversion” (R). The values of these character-
istics are sampled from the uniform distribution U(0, 1)
and fixed for each agent during the entire simulation.
Quantifying the “perceived legitimacy of the regime” by
a quantity L, a citizen will decide whether to rebel or not
based on the following rule: if H(1−L)−RP > T , then
the citizen becomes active; otherwise, he/she remains in-
active (quiet). In the above rule, T is a (fixed) threshold
value and P is a (spatiotemporally varying) arrest prob-

ability that depends on the current state of the agent
neighborhood.
Active citizens may be arrested, and jailed, by the po-

lice officers in their spatial vicinity. The arrest probabil-
ity was modelled in [12] as

P = 1− exp[−k(C/A)v], (1)

where C and A were, respectively, the numbers of po-
lice officers and active citizens in a circular neighborhood
with radius v (called “vision v”) and k was a constant.
In this paper a different model for the arrest probability,
proposed in [14], is used:

P = 1− exp[−k(C/A)v]
15
∑

i=0

(k(C/A)v)
i

i!
. (2)

The sigmoidal function given by the above equation is
capable of giving rise to insurgency “outbursts” (see [14]
for the justification of this modification to the Epstein
model and for references documenting the occurrence of
the punctuated equilibrium phenomenon in this social
context). The shapes of the arrest probability from the
above two models are compared in Fig. 1.
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FIG. 1. (Color online) Arrest probability from Eqn. (1) and
(2) (see text).

Citizens and police officers constantly perform random
walks on the lattice, by moving to a randomly selected
position in their size 1 Moore neighborhood if that po-
sition is not occupied. Otherwise, they remain in their
original position. Police officers also have the ability to
arrest the nearest active citizen in their vision (v′), jump
to that citizen’s position, and send the citizen to jail. The
jail term of an arrested citizen is variable; at every arrest
it is initialized with a random integer sampled over the
uniform distribution U(0, Jmax). As citizens complete
their full term in the jail, they are released back to the
lattice and select random, unoccupied locations to reside.
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Within each “day” (one step of the evolution algorithm
is taken to be one “day”), a citizen is allowed to move
only once, yet the police officers are more mobile, and
can move and arrest M(> 1) times (this is another mod-
ification of the Epstein model proposed in [14]). Table I
lists values of the parameters used to simulate the model.
Note that the parameter k is found from the condition
that P = 0.5 when M = A/C. The boundary condi-
tions in space are set to be periodic, which means that
an agent, after exiting the domain at one of the four side
boundaries reenters the lattice from the “opposite” side.

Lattice size 100×100 Jmax 120
Citizen density 0.7 k 62.6716
Police officer density 0.01 v 14
T 0.1 v’ 14
L 0.8 M 4

TABLE I. Parameters used by the simulation (for notation,
see text).

FIG. 2. (Color online) Flow chart for the model simulation
procedure within one “day” period.

A typical simulation procedure within one “day” step
is described by the flow chart in Fig. 2. Using the model
and the procedure described above, we perform multi-
agent simulations and extract time histories of the num-
bers of jailed and active citizens, as plotted in Fig. 3
(a). The histories show remarkable “emergent” dynam-
ics exhibiting the so-called punctuated equilibrium phe-
nomenon [15, 16]: long periods of quiescent, stable stasis
are punctuated by almost instantaneous outbursts of in-
surgency. Note, however, that this phenomenon does not
occur in the original Epstein model [12] with the arrest
probability P defined as in Eqn. (1) as discussed in [14].
The observations are also plotted in a two-dimensional
phase plane projection (Fig. 3 (b)).
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FIG. 3. (Color) Time history of the numbers of jailed and
active citizens extracted from the full agent-based simulation
and their two-dimensional phase plane projection. (a) time
history; (b) phase plane projection.

III. COARSE-GRAINING: AN SDE REDUCED

MODEL APPROXIMATION

The punctuated equilibrium shown in Fig. 3 is a fea-
ture of the collective behavior of the citizen-police sys-
tem, whose occurrence results from detailed interactions
amongst all agents. Table II lists inherent (fixed during
a simulation) properties as well as (time-varying) “state
variables” for each type of agent. The following question
arises naturally: is it possible to obtain a closed set of
dynamic equations for the evolution of only a few coarse
variables? More specifically, can such a set of dynamic
equations be written in terms of only two such variables:
the numbers of the jailed and the active citizens? In other
words, if the information we have is the current value of
only these two coarse variables, is it possible to obtain
a model that allows us to predict the value of these two
variables in the future? To date, no explicit set of equa-
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Agent type H R Position Active status Residual jail term

Active X X X active –
citizens
Inactive X X X inactive –
citizens
Jailed X X – inactive X

citizens
Police – – X – –
officers

TABLE II. Inherent properties and state variables for the
different types of agents (see text). A checkmark (X) indicates
that this type of agent has a given property; the dash (−)
indicates that it does not.

tions, deterministic (ODEs) or stochastic (SDEs), has
been analytically obtained, that accurately describes the
temporal evolution in terms of only these two quantities.
If such a set of equations can, in principle, be derived,

it makes sense to expect that this reduced closed model
will be stochastic, in the form of an SDE

dX1= µ1dt+ σ1dW1

dX2= µ2dt+ σ21dW1 + σ22dW2, (3)

where X1 and X2 are respectively the numbers of jailed
and active citizens, and W1, W2 are independent Wiener
processes. Then the drift and diffusion coefficients
µ1, µ2, σ1, σ21, σ22 will, in general, be functions of X1 and
X2 only. To evaluate these functions for different values
of X1 and X2, Eqn. (5) can be used (see, e.g., [17]):
The operator 〈·〉 represents ensemble average. Dij are
the diffusion coefficients of the Fokker-Planck equation
corresponding to the SDE Eqn. (3). In this paper, the
values of µi and Dij are estimated using Eqn. (6) by
setting ∆t to a single day (∆t = 1): The diffusion coef-
ficients in Eqn. (3) are then calculated via a Cholesky
decomposition [17, 18]:

σ1 =
√

D11

σ21 =
D12

σ1

σ22 =
√

D22 − σ2
21. (4)

In Eqn. (6) we need to compute the ensemble values of
Xi(t+∆t)−Xi(t), i = 1, 2 for (in principle) any possible
pair (X1(t), X2(t)) = (x1, x2). This can be achieved via
a properly designed coarse-time stepper for Xi, i = 1, 2.
Starting with a pair of values for X1(t) and X2(t), we
need to be able to generate consistent detailed initial
conditions for the entire population of all agents (this is
called the lifting procedure in the Equation-free frame-
work). The entire system is then evolved over a short
time interval ∆t via the agent-based simulation, and the
values of the coarse variables (the numbers of jailed and
active citizens), Xi(t+∆t) are observed from the detailed
simulation; this is the so-called restriction step. Clearly,
the restriction step is easy: at the end of the full ABM

simulation, we simply count the numbers of jailed and
active citizens; the key difficulty lies in finding an appro-
priate lifting procedure. In what follows, a detailed ap-
proach to implementing a reasonable lifting is presented
and discussed.

A. From Macro to Micro: a discussion of lifting

considerations

Suppose that a simulation is suddenly interrupted, and
that we are only given from it the values – at that time
– of the two coarse variables: the numbers of jailed X1

and active citizens X2 (and we also know the constant,
during the entire simulation, total number of citizens,
Ncitizen). A very interesting and important question then
becomes: how can one construct appropriate realizations
of the entire detailed ABM state (lattices of active as
well as inactive citizens and police officers, jailed citi-
zens and their jail term distributions) that are consistent
with the two coarse values? “Appropriate” here means
that, whether we continue the original, interrupted sim-
ulation, or whether we restart it from these artificially
constructed (“lifted”) states, the ABM dynamics will be
effectively the same (in probability). It might be tempt-
ing, just knowing X1 and X2, to initialize all Table 2 fea-
tures for all agents in a random and uncorrelated way; yet
we find that, in order to reproduce the true system dy-
namics, certain correlations that have developed during
the simulation must somehow be captured and retained
when consistently initializing the detailed ABM states.
It is worth pausing for a moment and considering how

much information must be, in this step, “reinjected” in
the fine scale model: based on only two scalar numbers
we must assign hundreds and even thousands of agents
(citizens and policemen), with appropriate intrinsic prop-
erties on the lattice as well as citizens in jail with ap-
propriate jail terms. In certain cases, if there is a large
separation of time scales in the problem, any errors one
makes in these assignments are quickly forgotten after
a few simulation steps. In our problem this is not the
case - in addition to the values of the coarse variables
we will incorporate certain qualitative observations we
have made, based on extensive ABM simulations, in our
construction of an acceptable “lifting operator”.
We start by observing that the two-dimensional pa-

rameter space of all citizens’ H and R values (which, as
intrinsic properties of the agents, are prescribed at the
beginning of the simulation and remain constant through
it) can be divided into 3 parts (Fig. 4 (a)).
Region 1: H ≤ T/(1 − L). Citizens in this region are
always inactive.
Region 2: H > T/(1 − L) and H(1 − L) − R > T .
Citizens in this region are always active or jailed.
Region 3: H > T/(1 − L) and H(1 − L) − R ≤ T .
Citizens in this region may be active, inactive or jailed.
Whether they are active or inactive depends on the value
of the arrest probability P , which varies in space and
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µi(x1, x2) = lim
∆t→0

〈Xi(t+∆t)−Xi(t)〉

∆t
|X1(t)=x1,X2(t)=x2

,

Dij(x1, x2) = lim
∆t→0

〈Xi(t+∆t)−Xi(t)− µi∆t〉〈Xj(t+∆t)−Xj(t)− µj∆t〉

∆t
|X1(t)=x1,X2(t)=x2

. (5)

µi(x1, x2) ≈
〈Xi(t+∆t)−Xi(t)〉

∆t
|X1(t)=x1,X2(t)=x2

,

Dij(x1, x2) ≈
〈Xi(t+∆t)−Xi(t)− µi∆t〉〈Xj(t+∆t)−Xj(t)− µj∆t〉

∆t
|X1(t)=x1,X2(t)=x2. (6)

time.
Denoting the number of citizens in Region i of the H-R

parameter plane as Ni (these are fixed at the beginning
of the simulation), the allocation of subpopulation types
(active, inactive, or jailed) in each of the three regions
is shown in the chart of Fig. 4 (b). There is only one
unknown quantity in these allocations: the value of A2,
which is constrained by A2 < X2 and N2 −A2 < X1. At
the beginning of every computational experiment, given
the current values of the coarse variables X1 and X2 we
first select the value of A2 at random. Given the pre-
scriptions in Fig. 4 (b), we calculate the subpopulation
count in each region. The available H-R pairs are then
randomly assigned to citizens based on the allocations
indicated in the chart. For example, all N1 pairs in Re-
gion 1 are allocated to inactive citizens; N2−A2 pairs are
randomly selected from Region 2 and allocated to jailed
citizens; X2 − A2 pairs are randomly selected from Re-
gion 3 and allocated to active citizens, and so on. Note
that, because citizens in Region 2 are always active or
jailed, we have X1 +X2 ≥ N2. In addition, since all cit-
izens in Region 1 never turn active or go to jail, we have
X1 + X2 ≤ Ncitizen − N1 = N2 + N3. Also accounting
for the condition X1 ≥ 0, X2 ≥ 0, the trajectories in the
X1-X2 phase plane are always confined in the simulation
domain as shown in Fig. 5.
The police officer positions change drastically during

an outburst of rebellious activity; during the quiescent
period, however, when the population of active citizens
is very close to zero, the police officer positions show more
(if not entirely) homogeneous patterns. This can be seen
in Fig. 6 (b-k), where we divide the simulation lattice
into a 10× 10 grid and plot populations of police officers
in each grid cell.
The spatial heterogeneity of police officer position pat-

terns is evaluated via the following measure:

σ =

∑10
i,j=1(C(i,j) − Chom,(i,j))

2

100
, (7)

where C(i,j) is the number of police officers in cell (i, j)
and Chom,(i,j) is the number of police officers in cell (i, j)
if the police officers were homogeneously distributed.
Clearly, since there are 100 total 10 × 10 coarse cells in
our 100 × 100 lattice and a total of 100 police officers,

Chom,(i,j) = 1 for each of these coarse cells (i, j), i, j =
1, · · · , 10. The time history of the heterogeneity measure
σ is shown in Fig. 6 (l).
The reason for the above temporal variation of the po-

lice officer position patterns is that police officers move
rapidly to arrest active citizens in an outburst, but after
the outburst is cracked down, there are almost no citi-
zens to arrest - so the police officers only move in their
size 1 Moore neighborhood. Their position patterns be-
come therefore nearly stationary between two successive
outbursts. As a culmination of the quick outbursts of
rebellions, these position patterns of police officers ap-
pear to be able to effectively suppress almost all possible
subsequent insurgencies; we observe that they maximize
arrest probabilities of potentially active citizens in Region
3, leaving only a small chance for an outburst to occur
again. This is also the cause for a long stable stasis be-
tween two adjacent rebellions. To consistently generate
police officer positions, one possible way is to run the
original simulation for some time and record one snap-
shot of police officer positions within the quiescent period
where the number of active citizens,X2, is low, say, 5−10.
This set of positions is then used to place police officers
for (X1, X2) pairs with X2 in a representative range, say
[0, 8]. Police officer positions are generated randomly for
X2 values out of this range.
By monitoring several snapshots of the citizen posi-

tions during an outburst, we observe that active citi-
zens are almost invariably located fairly homogeneously
within a circle, whose radius r varies with time (see Fig.
7). We also observed that the density of active citizens
within this circle is (to a very good approximation) equal
to the density of potentially active citizens (that is, citi-
zens with internal properties H and R in Region 2 and 3
of Fig. 4 (a)) over the entire lattice. Therefore, the value
of r(t) can be estimated by

r(t) ≈

√

X2(t)

π(N2 +N3)/L2
. (8)

When initializing citizen positions, given X2(t), we
therefore place active citizens uniformly within a circle
with the appropriate radius r. Since the boundary con-
ditions are periodic in space, the center of the circle can
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FIG. 4. (Color online) Partition of the H-R domain into three regions and allocation of H,R pairs. (a) the three-region
partition; (b) allocation of numbers of H,R pairs in each region to each citizen type (active, inactive, jailed).

FIG. 5. (Color online) The simulation domain in the X1-X2

phase plane that contains all trajectories. The central white
region stands for the simulation domain. The surrounding
green region is not accessible by X1 and X2 pairs.

be set (without loss of generality) at the center of the
lattice. We then place all other inactive and non-jailed
citizens, with properties H and R in Region 2 and 3, ran-
domly and uniformly outside this circle. Finally all citi-
zens with properties H and R in Region 1 are randomly
and uniformly placed on the square lattice.

We also observed that the residual jail terms for jailed
citizens show interesting patterns. If the distribution of
residual jail terms is plotted separately for jailed citizens
with properties in Region 2 and those with properties in
Region 3, we observe that the distribution for Region 2
jailed citizens is almost always uniform over the domain
[0, Jmax] (Fig. 8 (a,b)). The distribution for Region 3
jailed citizens, on the other hand, is nearly uniform, with
a density of about 25 for the parameter set (Table I) used
in this paper (Fig. 8 (c,d)). The upper limit of this latter
distribution can thus be estimated from the population

of Region 3 jailed citizens, i.e., X1 − (N2 −A2) in Fig. 4
(b).

B. Simulating the Reduced Model

Based on the above lifting procedure, we can construct
initial conditions for the entire system, with the pre-
scribed distribution of inherent properties H and R, and
with the state variables (positions, active status, resid-
ual jail terms) of all agents consistently initialized based
on the numbers of jailed and active citizens only. We
can then proceed to estimate the drift and diffusion co-
efficients in Eqn. (3) via brief computational bursts of
ensemble realizations of the original ABM and the for-
mulas in Eqn. (5) and (4). The ensemble size for per-
forming the ensemble average in Eqn. (5) is set to 200.
We estimated these coefficients as functions of X1 and
X2 on a two-dimensional grid with a spacing of 1 within
the domain [0, 300] × [0, 20] and a spacing of 10 other-
wise. Computations were not performed in the region
X1 + X2 < N2 since X1 and X2 cannot actively enter
that region. The coefficients for X1, X2 values not on
the grid are interpolated from the closest three grid val-
ues through a linear combination of linear (finite-element
basis) shape functions.
We now have obtained our effective reduced SDE, Eqn.

(3); to simulate it we also need boundary conditions in
X1-X2 space, which are set to be

if X2 becomes less than 0, set X2 = 0,

if X1 becomes less than 0, set X1 = 0, (9)

if X1 +X2 becomes less than N2, set X2 = N2 −X1.

The numbers of jailed and active citizens take only inte-
ger values, so X1 and X2 are “floored” to their nearest
integers after each temporal step in the stochastic simu-
lation of Eqn. (3).
Fig. 9 shows the time histories of X1 and X2 simu-

lated from the effective reduced SDE. They closely qual-
itatively resemble Fig. 3 and clearly exhibit punctu-
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FIG. 6. (Color) Some snapshots and heterogeneity measures of police officer position patterns between time 0 and 200 in a
single realization of simulation. (a) The time history for populations of jailed and active citizens. Green vertical bars stand
for the time steps at which the police officer position patterns shown have been obtained. (b-k) The snapshots of police officer
position patterns in a 10 × 10 grid of uniform cells. (l) The heterogeneity measure σ of the police officer position patterns.
Drastic police officer movement can be seen between time 4 and 20. More homogeneous and stationary position patterns
subsequently arise between time 20 and 200.

ated equilibria. We also plotted the distribution of the
“outburst times” (the times between two successive out-
bursts), and compared it to the one obtained from the
original ABM (Fig. 10). The first three moments of the
two distributions agree reasonably well (Table III). The
probability density of the numbers of jailed and active cit-
izens can now be computed by running the reduced simu-
lation up to very long times (say, 107 time steps); there is
little difference between the two simulation methods (Fig.

11). These small differences do not affect the validity of
the effective reduced SDE to replicate the punctuated
equilibrium state and its statistics. Moreover, simulation
of the SDE for 2 × 105 steps takes about 45 minutes,
whereas the original ABM requires over 17 hours for the
same simulation length (a difference factor of more than
20).
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FIG. 7. (Color) Two snapshots of active citizen position pat-
terns at time 1 and 3 in the simulation of Fig. 6. Red, cyan
and black dots represent active citizens, inactive citizens and
police officers, respectively. The active citizen positions can
be approximately enclosed by a circle with the radius r cal-
culated from Eqn. (8).

Method Mean Standard deviation Skewness
SDE 611.3 478.1 2.171
ABM 714.4 723.7 1.893

TABLE III. Comparison of the statistics (the first three mo-
ments) of the outburst time distribution between the true
(ABM) and reduced (SDE) models.

IV. JOINT PDF OF THE COARSE VARIABLES

AND MEAN OUTBURST TIME:

THE EFFECTIVE FOKKER-PLANCK AND

BACKWARD-KOLMOGOROV PDES

Now that an effective model in the form of a reduced
SDE has been obtained and validated, a number of math-
ematical/computational tools, in the form of associated

continuum partial differential equations, become avail-
able for the extraction of information about the system
behavior and statistics.

The Fokker-Planck equation corresponding to the SDE
Eqn. (3) describes the evolution of the joint probability
density function (PDF) of the numbers of jailed and ac-
tive citizens, P (X1, X2, t):

∂P

∂t
= −

∑

i

∂(µiP )

∂Xi

+
1

2

∑

i,j

∂2(DijP )

∂Xi∂Xj

. (10)

Obtaining such a PDF directly from the SDE would
require a large number of sample paths - that is, many
stochastic realizations, each for time t - this can now be
performed through a single, deterministic PDE compu-
tation. As t → ∞, P (X1, X2, t) approaches a station-
ary state (this can be visually verified by the fact that,
as the number of simulation time steps becomes increas-
ingly larger, the joint PDF of (X1, X2) pairs appears very
similar to that shown in Fig. 11 (a,c,e)). At stationarity
the left-hand side of the above PDE vanishes, leaving

−
∑

i

∂(µiP )

∂Xi

+
1

2

∑

i,j

∂2(DijP )

∂Xi∂Xj

= 0, (11)

which we use to solve directly for the stationary distri-
bution of the numbers of jailed and active citizens.

We note that no boundary condition corresponding to
the boundary condition (Eqn. (10)) of the SDE Eqn.
(3) is analytically known for the Fokker-Planck PDE.
In order to circumvent this lack of explicit boundary
conditions, we solve the Fokker-Planck equation in a
much larger domain (approximately, the entire positive
X1 half-plane); the values of the drift and diffusion co-
efficients in this extended domain come from the follow-
ing considerations: (a) we set the drift coefficient µ2 to
positive values in the region below the simulation do-
main, as shown in Fig. 5; this would correspond to
(X1,X2) trajectories of the SDE instantaneously “bounc-
ing back” to the original domain if they attempted to exit
it; (b) the diffusion coefficients Dij in the same region
have to be set appropriately to avoid significant spurious
oscillations when Eqn. (11) is solved. A large domain
Ω = [0, 300]× [−100, 100] encloses most observed trajec-
tories. We set homogeneous Neumann boundary condi-
tions for the Fokker-Planck PDE on the boundary ∂Ω;
the PDE now reads:

−div(A∇P + Pb) = 0 in Ω,

(A∇P + Pb) · n = 0 on∂Ω, (12)

where ∇ represents the gradient, and n stands for the
outward unit normal vector to ∂Ω. The matrix A and
the vector b are given by
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FIG. 8. (Color online) Distribution of residual jail terms for jailed citizens from Region 2 and 3 in Fig. 4 (a). (a) distribution
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FIG. 9. (Color) A stochastic path of jailed and active citizens
obtained from the simulation of the effective reduced SDE
(Eqn. (3)) subject to the boundary conditions Eqn. (10).

A =

(

−D11/2 −D12/2
−D12/2 −D22/2

)

, (13)

b =

(

µ1 −
1

2

∂D11

∂X1
−

1

2

∂D12

∂X2
, µ2 −

1

2

∂D22

∂X2
−

1

2

∂D12

∂X1

)T

.

The positive values for the drift coefficients in the re-
gion below the original domain are set to

µ1 = 0, µ2 = −X2 if X1 > N2 and X2 < 0, (14)

µ1 = 0, µ2 = N2 −X2 if 0 ≤ X1 < N2 and X1 +X2 < N2.

The diffusion coefficients in this region should have val-
ues comparable to those of the drift coefficients in or-
der to avoid spurious oscillations. We adopt the idea of
introducing additional isotropic artificial diffusion terms
[19] to the left-hand side of Eqn. (12) in the region
Γ = {(X1, X2) : X1 > N2, X2 < 0 or 0 ≤ X1 <
N2, X1 +X2 < N2}, i.e.,

D11 = D22 = −X2/2, D12 = 0 (15)

if X1 > N2 and X2 < 0,

D11 = D22 = (N2 −X2)/2, D12 = 0

if 0 ≤ X1 < N2 and X1 +X2 < N2.
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FIG. 10. (Color online) Comparison of the “outburst time” distributions from (a) the effective reduced SDE and (b) the original
ABM.

We use the same finite element formulation as in [20]
to solve Eqn. (12). Triangular elements on a uni-
form mesh are used for the discretization (Fig. 12 (a)).
The resulting stationary P (X1, X2) is normalized so that
∫

Ω
P (X1, X2)dX1dX2 = 1. Fig. 12 (b) shows the PDF

computed from Eqn. (12), whose profile closely approxi-
mates that obtained from long SDE simulations (Fig. 11
(e)).

Another continuum PDE, whose solution provides im-
portant information for the behavior of stochastic solu-
tions of our effective reduced SDE, is the corresponding
backward Kolmogorov equation. This equation can be
used to obtain the mean exit time τ(X1, X2), which is
defined as the mean time a path starting at (X1,X2) will
take to exit a domain D in X1-X2 space, and it reads
(e.g., see [20, 21])

∑

i

µi

∂τ

∂Xi

+
1

2

∑

i,j

Dij

∂2τ

∂Xi∂Xj

= −1, (16)

The domainD of interest here is [0,∞]×[−∞, 500]. To
avoid numerical difficulties in solving the very large set
of linear equations resulting from the finite element dis-
cretization of this entire domain, we confine the computa-
tional domain for Eqn. (16) to D̃ = [0, 600]× [−50, 500].
A Dirichlet boundary condition is prescribed atX2 = 500
and homogeneous Neumann boundary conditions are
used on the other sides of D̃. The reason we can set ho-
mogeneous Neumann boundary condition atX2 = −50 is
because X1, X2 in the negative X2 domain can instanta-
neously bounce back to the simulation domain (Fig. 5),
so that the mean exit time for negative X2 will be nearly
uniform along the X2 direction. The reformulated back-

ward Kolmogorov equation is then given by

−div(A∇τ) + b · ∇τ = −1 in D̃,

τ = 0 at X2 = 500, (17)

(A∇τ) · n = 0 at X1 = 0, X1 = 600, X2 = −50.

We again use the finite element formulation described
in [20] to solve the above equation. The drift and dif-
fusion coefficients at X1 close to N2 and X2 close to
zero have important contributions to the mean exit time
τ(X1, X2) for all (X1, X2) pairs. We thus choose to use
a nonuniform mesh, which has a (finer) size of 1 for
170 ≤ X1 ≤ 180 and 0 ≤ X2 ≤ 5 and a (coarser) size

of 5 elsewhere, to discretize the domain D̃. Triangular
elements are used to solve Eqn. (18) on this mesh (Fig.
13 (a)). The result for τ(X1, X2) is shown in Fig. 13 (b).
The mean exit time starting from (X1, X2) = (600, 0) is
approximately 510. When running many sample paths of
the effective reduced SDE, we observe that the value of
X1 in the resulting time histories peaks at around 3250.
The drift coefficient µ1 at X2 = 0 are all around −25 for
600 ≤ X1 ≤ 3250 - this would suggest that the trajec-
tory of X1 at such large X1 values will mostly tend to
“go back” towards X1 = 600. Observing that an out-
burst (the rise to 3250) occurs almost instantaneously,
using the above numbers to estimate the “return to qui-
escence” time by (3250 − 600)/25 = 106 and using the
obtained value of 510 for the mean exit time we obtain
an estimate of 510+ (3250− 600)/25 = 616 for the mean
outburst time, which agrees very well with the mean out-
burst time obtained from the SDE-based distribution of
outburst times in Table III.
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FIG. 11. (Color) Comparison of the PDF of the numbers of jailed and active citizens between the true (ABM) and the reduced
(SDE) models. (a) 3D surface of log10(PDF) simulated using the SDE; (b) 3D surface of log10(PDF) simulated using the ABM;
(c) 2D projected image of log10(PDF) simulated using the SDE. The region in the red box is zoomed in and shown in (e). (d)
2D projected image of log10(PDF) simulated using the ABM. The region in the red box is zoomed in and shown in (f). (e)
Zoomed-in image of the PDF simulated using the SDE in the subdomain [150, 300]× [−5, 50]; (f) Zoomed-in image of the PDF
simulated using the ABM in the same subdomain.
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FIG. 12. (Color) (a) Finite element mesh for solving Eqn. (12); (b) The resulting stationary PDF of the numbers of jailed and
active citizens.

FIG. 13. (Color) (a) Finite element mesh for solving Eqn. (18); (b) the mean exit times computed as a solution of Eqn. (18).

V. SUMMARY AND CONCLUSION

This paper explores the important issue of model re-
duction as a tool for the effective extraction of informa-
tion from detailed, “fine-scale” agent-based models of so-
cial phenomena. In particular, using an intricate civil vi-
olence ABM as our illustrative example, we showed how
to obtain an effective reduced model, here in the form of
a two-degree-of-freedom SDE. An important considera-
tion in such attempts at model reduction is the selection
of the “right variables” - the (hopefully) small set of ob-
servables from the ABM simulation in terms of which a
meaningful reduced description can in principle be ob-

tained. In our example we found that two such “coarse
variables”, the number of jailed citizens and the number
of active citizens could be used to formulate an effective
reduced model.

Through an appropriately designed lifting procedure –
linking variables between the reduced SDE (coarse) and
the original ABM (fine) level of description of our com-
plex system, and using the resulting coarse time-stepper,
we are able to estimate the drift and diffusion coeffi-
cients in the reduced effective SDE as functions of the two
coarse variables only. The sample paths of the numbers
of jailed and active citizens, as well as the statistics of the
outburst time distribution from the reduced SDE model
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closely resemble those obtained from the original (but sig-
nificantly more time-consuming) agent-based simulation.
We also demonstrated how to use continuum tools asso-
ciated with the reduced SDE model – in particular the
corresponding Fokker-Planck and backward Kolmogorov
equations – to directly and efficiently extract additional
useful information for the model behavior: we were able
to directly compute the stationary PDF of the numbers
of jailed and active citizens, as well as to estimate the
mean time between outbursts through the computation
of mean exit times.

Equation-free techniques are intended to accelerate
the (computational) extraction of information from a
fine scale model (here, an ABM interacting particle
model). Coarse projective integration, for example, ex-
ploits smoothness of the coarse behavior in time to com-
pute with the ABM for only short time intervals; and
techniques such as patch dynamics exploit smoothness of
the coarse observables in space in order to compute in
only parts of a model domain. To accurately gauge these
savings one should also include the cost of repeated lift-

ing and restriction; and, to be fair, one should also take
into account the initial outlay of effort to determine what
good coarse variables might be. It should be said, how-
ever, that certain tasks such as the location of unstable
stationary states, or transition points (saddles), would
be essentially impossible by direct simulation of the full
ABM, so the amount of computational savings is clearly
both problem dependent, and, for a given problem, com-
putational task-dependent. The conceptual benefits from
understanding that a complex model with many degrees
of freedom can in principle be coarse grained are many
and obvious – the equation-free approach is trying to cap-
italize on these benefits even when the coarse equations
we suspect/know/assume exist are not explicitly avail-
able.

Let us reiterate that qualitative observations from long
detailed simulations were incorporated in our lifting op-
erator - obtaining good fine-scale initial conditions for so
many agents and states based on only two scalar values
is a formidable task even when we suspect that only two
coarse variables will suffice. It is important to note that
the value of such model reduction techniques lies only
in the computational efficiency of extracting information
from the ABM model; the correctness of the extracted
information is completely determined by this original de-
tailed ABM model. If the ABM is physically accurate,
then the reduction approach can speed up the compu-
tational extraction of useful behavioral predictions and
statistics. If, on the other hand, the ABM model is
wrong, then its (wrong) macroscopic consequences can
be quickly found, and thus indirectly help modify the
model. It is important to observe that many of these

reduction steps take the form of a “wrapper”: an al-
gorithm that can be wrapped around the best agent-
based model one has at hand; changing the ABM –
making it more detailed, and/or more accurate – does
not affect these “wrappers”, so that they can be used
without change. In our case the “wrappers” were the
solvers of two-dimensional SDE and Fokker-Planck equa-
tion, with the values of the drift and diffusion coefficients
in the equations provided from short agent-based simula-
tion and estimation. For different problems and different
types of tasks, these “wrappers” are motivated by dif-
ferent types of coarse-grained models and algorithms -
if the coarse model is a deterministic ODE or PDE, ini-
tial value solvers (like forward Euler) become the “wrap-
pers” that help accelerate the temporal simulation of the
unavailable coarse model; fixed point solvers (based on
matrix-free linear algebra, like Newton-Krylov GMRES
iteration) become the wrappers that help locate coarse
stationary states; and eigensolvers (such as Arnoldi type
algorithms) become the wrappers that help quantify the
linearized stability of these states [22].
It is also important to note that, in our illustrative

example, we already had – from experience with the sim-
ulations – a reasonably good idea of what good “coarse
variables” might be. For problems where such a pri-

ori knowledge of the right macroscopic observables for
the reduction is not available, we expect that modern
data-mining (manifold learning) techniques like Diffusion
Maps [23, 24], or Isomap [25] can be used to suggest such
good “reduction coordinates”. It is worth noting that the
structure of the equation-free approach (and, in particu-
lar, the lifting step) does not allow easily for coarse mod-
els with memory (e.g., rate-type models of neural activ-
ity). One must instead discover additional state variables
(possibly higher-order spatial correlations) that embody
the same information we would have in a model with
less variables but also memory. Needless to say that the
longer the memory, the more additional state variables
we need (see the discussion in [26]).
We hope that the reduction approach we demonstrated

here can be extended to the coarse-graining of more de-
tailed models that manifest the same punctuated equi-
librium phenomenon in the social sciences as well as in
evolutionary biology.
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