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We develop a general method to detect hidden nodes in comptesorks, using only time series from nodes
that are accessible to external observation. Our methasisthon compressive sensing and we formulate a gen-
eral framework encompassing continuous and discrete-imgtevolutionary-game type of dynamical systems
as well. For concrete demonstration, we present an exanfigletecting hidden nodes from an experimental
social network. Our paradigm for detecting hidden nodexjeeted to find applications in a variety of fields
where identifying hidden or black-boxed objects based mitéid amount of data is of interest.

PACS numbers: 05.45.-a,89.75.-k

The power of science lies in its ability to infer and predict as red. Every red node thus has the property that time series
the existence of objects from which no direct information ca from itself andall its neighbors are available, but for each
be obtained experimentally or observationally. A well kmow green node, although time series from itself is availaltie, t
example is to ascertain the existence of black holes of varisame is not true for all its neighbors due to its link with the
ous masses in different parts of the universe from indirect e hidden node. Generally, the time series can be regarded as be
idence, such as X-ray emissions. In the field of complex neting generated by the combination of nodal and coupling dy-
works, the problem of detectinlgdden nodes can be stated, namics, and one wishes to base on the time series to preglict th
as follows. Consider a network whose topology is completelyarious dynamical equations so that the dynamical prosesse
unknown but whose nodes consist of two types: one accessbn various nodes and the network topology can be uncovered.
ble and another inaccessible from the outside world. The acAs we shall demonstrate, for a given node, this can indeed be
cessible nodes can be observed or monitored, and we assumehieved provided that time series from the node and all its
that time series are available from each node in this groumeighbors are available. Referring to Fig. 1(a), this melaats
The inaccessible nodes are shielded from the outside apd théhe dynamical equations and the links from/to all red nodes
are essentially “hidden.” The question is, can we infergldas can be predicted. However, significant errors would arise in
solely on the available time series from the accessible syodethe prediction of the green nodes due to incompleteness of in
the existence and locations of the hidden nodes? Since rformation about their neighbors. By examining the predicti
data from the hidden nodes are available, nor can they be olerrors of all accessible nodes, the ones that are connexted t
served directly, they act as some sort of “black box” from thethe hidden node will then show anomalies, providing a way
outside world. Despite recent works on uncovering networko infer its existence and location (e.g., connected to e t
topologies [1-6], to our knowledge, the problem of detartin green nodes in Fig. 1(a).
hidden nodes in complex networks has not been addressed.
Solution of the problem, however, has potential applicetio
in different fields of significant current interest. For exae)
to uncover the topology of a terrorist organization and espe
cially, various ring leaders of the network is a criticalkés when most components in the unknown veciare zero. it
defense. The leaders may be hidden in the sense that no direc? P '

information about them can be obtained. vet they may rely ot be reconstructed by fewer measurements than the num-
. ed.y y may rely ofh o of components. The unknown vectorcan be solved,
a number of couriers to operate, which are often subject t

. T N o : : for exam le, by a convex optimization procedure basefion
surveillance. Similar situations arise in epidemiologhene p'e, by P P 0

the original carrier of a virus may be hidden, or in a biologynorm. Our recent work [6] demonstrated that the problem of

network where one wishes to detect the most influential nodgata-based network reconstruction can be casted into tive fo

from which no direct observation can be made. OfM=G-a.

In this paper, we present a Comp|ete|y data-driven’ We consider networked SyStemS for which the nodal dy-
compressive-sensing based [7] approach to inferring the eXpamics, described by the vector functiBi(x;), can be sep-
istence and locations of hidden nodes in complex networksarated from the interactions or coupling with other nodes
The general principle underlying our method can be underin the network, mathematically described by the coupling
stood by referring to Fig. 1(a) where, for illustrative pasg,a  function H;;(x;,x;). The system can then be written as
network of 20 nodes with directed interactions is shown.-SupM; = F;(x;) + Zj]\;i w;jH;j(x;,%;), whereM,, is the sys-
pose nodes Nol — 19 are accessible to the external world, tem response, either in discrete or continuous time. Fanexa
while node No. 20 (in gray) is hidden and thus inaccessiblele, for discrete-time mapping systeivl; are the state vari-
from the outside. The hidden node has two neighbors: No. @bles at the next time step, while in continuous sysim
and No. 18 (in green), and the remaining 17 nodes are markeate the derivatives of the corresponding variables. Ta-llu

The paradigm of compressive sensing [7] aims to recon-
struct a sparse vectar € RY from linear measuremendd
in the formM = G - a, whereM € RX andG isanK x N
matrix. The compressive sensing theory [7] guarantees that



trate our method to detect hidden nodes in a concrete man-
ner, we assume that the nodal and coupling functions can be
written as some series expansion, e.g., power or Fourier se-

ries. In particular, we writeF;(x;) = > df.”)gl(”)(xi) and
Hyj(xi,%x5) = X4 a§.§?>g§f>(xi,xj), wherej\" are the ex-

pansion bases associated withonly, andgff) are with re-
spect to bothx; andx;. Next we combine the basgs(t) and
g;;(t) at timet into a row vector, and the coefficien;réo‘)
andagf) into a constant column vector. The time-series vec-

tor of kesponseMi(t) for nodei can then be expressed by the
product of the matrixG; and theto-be-determined coefficient

vectora;, with G; given by
gi(t1) galt) - gi(t1) - gin(t1) » Ll u 15 o
gi(t2) gal(ta) -+ gij(t2) -+ gin(t2) 3 5.. - - H N I
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whereg;(t) is the set of bases df;(x;), andg;;(¢) is the < ;N mu J L o

set of expansion bases Hf;; (x;, x;). Elements in the vector - I 0 » o

M, (t) contain system response; (¢) at differentt. In partic- - " o 3 |o

ular, when the vectas; is determined by solvinyI = G - a, 5 0 15 058 |o

the dynamical equations for the set of corresponding veesab (b) No. of Nodes 101 ©

at all nodes become known. Note that the veetocontains 2 5

all the coupling weights from other nodesitas ing;; (t) and f l. r.—r Z |©

complete information about the nodal dynamical equatiensa , 5 N [ ] 15 o

in &;(t). Previous works [6] demonstrated that solutions to the -5 l. - - HE B ©

compressive sensing problem can be obtained but only When§ = - 1 5r0

time series fronall nodes are available, i.e., when there isno 5 10 1.1 ©

hidden object. S m 0.5 o

To devise a compressive-sensing based methodology forZ N J - o

detecting hidden nodes, we consider the case of one hidden 15 0 1o 1

node (or one cluster of hidden nodes). Let notle one of the m : mm J " o0

immediate neighbors of the hidden node. Due to lack of time -05 10 10

series from the hidden node, the foivh = G - a is violated (C) 5 No ;?Nod:;s, (d) 32

for nodei, despite the available time series from other nodes
in the network. That is, due to the missing time series from
not possible to obtain the true solution of the dynamicatequ & hidden node. (b) Representation of the true adjacencybny
tions of node. If a node does not neighbor any hidden node’reconstructed adjacency matrix elements for nodes excehidden

i ies f itself and all its direct neiahb avai node based on time series from these nodes. (d) Variahoé the
Ime series ,rom : S_‘e and all Its direct neighbors are aval o .,nstrycted coefficient vectarfor all nodes, calculated by using
able, rendering valid the forfMl = G - a for such a node.

. ! ! ’ o 10 different random segments from the available experiaidime

The practical importance is that the errors in the prediotib  series. The variances of the two green nodes (No. 9 and Narés)

the dynamics of the immediate neighbors of the hidden nodguch larger than those of the red nodes, indicating that aheyhe

will be much larger than those associated with nodes that daeighbors of the hidden node.

not have any hidden node in their neighborhoods. The pre-

dicted characteristics of all neighboring nodes of the aidd

node will then show significant anomalies as compared with

those of other nodes. The anomalies can then be used to idelm an evolutionary-game system, the neighbors of the hid-

tify all nearest neighbors of the hidden node, which in turnden node can be identified by utilizing the stability crite-

imply its existence and its position in the network. rion with respect to different measurements. More specifi-
While our general idea of detecting hidden nodes can beally, in an evolutionary-game system, at any time a player

formulated using different types of dynamical systems,do b can take on one of two strategies: cooperation (C) or defec-

concrete we describe how this can be done using evolutienargion (D), mathematically represented &) = (1,0)7 and

game type of dynamics. Such dynamical processes can & D) = (0,1)7, respectively. The payoffs of the two players

used to model generic agent-to-agent interactions in ecdn a game are determined by their strategies and the payoff

nomical, social, or even certain biological networks [8, 9] matrix P. For example, for the classical prisoner’s dilemma



game (PDG), the matrix elements aPg; = 0, Pi» = 0, 0.8
Py = b, and Py, = 0, wherel < b < 2 is a parameter
characterizing the temptation to defect. At each time step

all agents in the network play the game with their neighbors
simultaneously and gain rewards. For agérthe reward is

m; = Zj aijSiTPSj, whereS; andS; denote the strategies

of agentsi and j taken at the time and,; is the coupling e 0.4}
strength between them. After obtaining its payoff, an agenlld
updates its strategy according to its own and neighbors’ pay
offs, attempting to maximize its payoff at the next round. We
assume that the strategy and payoff data of agents are ava

0.04 0.06 0.08
R
nz

able except those of the hidden node. In particular, we @oos 0.1" -0--N=100| |
gi;(t) = ST(t) - P - S,(t) and ignoreg;, the payoff of node ——N=60
¢ at different timet can be expressed 8d;(t) = G; - a;, o 006 o0 0?8 ©

whereG,; is to be constructed as specified in Eq. (1), and the
vectora,; to be determined contains all interaction strength be: m
tween nodes and other accessible nodes in the network. The
network structure is uncovered aft&€s for all nodes are de- FIG. 2: (Color online.) For directed, weighted random nekso
termined. of 60 nodes and 100 nodes, prediction erfy, as a function of
. the ratio R,,,. The ratio R. as a function of the ratidR,,. =

As an example, we presentresults of experimentally detecty, . /(N,.. + N.) is shown in the inset. The average connecting
ing a hidden node from a social network hosting evolutionary probability of the network is = 0.04, and the link weights are uni-
game dynamics. In the experiment, 20 participants from Ariformly distributed between 1 and 6. The error bars are caled|
zona State University played the prisoner’s dilemma gamdrom 20 independent network realizations.
(PDG) iteratively, with a pre-specified payoff parameteneT
player with the highest normalized payoff (total payoffs-no
malized by their degrees) summed over time was the winner.
The players can gamble with all their nearest neighborsan ththose (essentially zero) of other nodes. Violation of sipars
pre-existing social network [Fig. 1(a)]. The network was de in combination with the instability of the predicted sotrti
termined by surveying the friendships among those particithen allows us to identify all neighbors of the hidden node,
pants, and it exhibits some typical properties of real sociaand consequently itself, with high confidence.
network, such as the much larger degree in some hub nodes.To systematically characterize the accuracy and efficiency
During the experiment, the strategies of each player and thef our method to detect hidden nodes, we calculate the pre-
gained payoff were recorded in all the 32 rounds, except fodiction error of links of all nodes (except the hidden nodé an
the hidden node No. 20. The true adjacency matrix of accessits neighbors) in terms of the amount of required data. For an
ble nodes is represented in Fig. 1(b), and the predictedxmatrindividual node, the prediction error is defined as the rafio
is shown in Fig. 1(c). We see that the links of the two neigh-the absolute difference between the true adjacency mairix e
boring nodes (No. 9 and No. 18) of the hidden node No. 2@&ments of all links associated with this node and the predict
cannot be predicted. Especially, the two nodes are pretlicteelements to the nonzero true element values. The average ove
to have links with almost all nodes in the network, which isall nodes, excluding the neighbors of the hidden node, gives
highly unlikely for a random network that is typically spars the total prediction erraF,,.. To explore the effect of network
While the predicted loss of sparsity of certain nodesis dirin  size, we study networks of systematically varying sizegran
cation that they might be in the neighborhood of some hiddeiing from 20 to 200 nodes. Figure 2 shows, for networks of 60
node, the condition is not sufficient in general, because@ft nodes and 100 nodeg;,. as functions of the required data,
existence of hub nodes with significantly more links than av-which are the number of measurements normalized by the
erage in a complex network. Other conditions must then b@aumber of termsV,,. + N, in the unknown vectoa. We see
sought in order to identify the neighbors of the hidden nodesthat, for the network of 60 nodes, when the measurement ratio
Our idea is to exploit the stability of the predicted solatio exceeds 0.4F,, . is close to zero, demonstrating that4@ata
with respect to different measurements used for compressivis sufficient to reconstruct the links and detect the locatib
sensing. In particular, for the neighboring nodes of the hidthe hidden node. For the network of 100 nodes, the data re-
den node, due to the lack of information needed to solve thguirementis slightly smaller because the unknown coefficie
underlying compressive-sensing problem, when differegt s vector is sparser. To further explore the relation betwéen t
ments of the time series are used, the algorithm will yiefd di data requirementanty,,./(N,., + N,), the sparsity measure
ferent coefficient vectora. However, for a node not in the of the vectora to be predicted, we define a threshold of nor-
immediate neighborhood of the hidden node, the predictedhalized measuremerit,. required for full reconstruction of
vectora should be the same for different data segments, fothe network dynamical system when the etfy, is less than
the corresponding coefficients with the hidden node are.zerd 0~2. The sparsity measure can actually be adjusted by vary-
As shown in Fig. 1(d), the variances @nof nodes No. 9 and ing the network size while keeping the average node degree
No. 18 from a number of predictions are much larger tharunchanged. As shown in the inset of Fig. 2, we observe that,
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40 ‘ ‘ the noise amplitude is weak as compared with the coupling
0.8¢ & R =05 || 1 strength of the hidden node. It is also possible to distisigui
30 the effects due to noise and hidden node. The idea is that,
when a hidden node is present, its influences on other nodes
in the network are distinct, while the effect of noise on eliff
ent nodes is statistically uniform and independent.

nz

W g4t CID 101 1 While we have demonstrated the principle of detecting hid-

den nodes using the setting of evolutionary-game dynamics,

0 B 20 40 60 our formulation is general and applies to other types of net-
# of Nodes work dynamics. For example, we have applied our method to
) \ detecting hidden node in networks with continuous-time os-
0.1r @ Jg ® 9 cillatory nodal dynamics by expandirgg andg;; into power
@ @ y y y exXp 129 8ij p
oL— ‘ ‘ ‘ ‘ series and obtaining a similar mati, where the system re-
01 02 0.4 0.6 0.8 sponse is the derivatives of the corresponding variabls [6
Rm The unknown coefficients vectosscan then be solved, giv-
ing rise to full knowledge about the nodal and coupling dy-
FIG. 3: (Color online.) For a random network of 60 nodes in the NAMICS. By. examining th,e Var'ance,sanwe can ‘%Onf'fm and
presence of noise, prediction ertbr,. as a function of normalized l0cate precisely the location of the hidden node in the netwo
measurements,,, after excluding neighbors of the hidden node. e have applied our method to both continuous- and discrete-
Inset shows, foiR,, = 0.5 as the arrow indicates, the variances of time oscillatory dynamics. Extensive numerical testsdnati
the coefficient vectors for all the nodes. There is only oielin  that the method is robust with respect to different complex-
node in all cases and its neighborhoods are node No. 4, No. 1Aetwork structures such as random, scale-free and cldstere

and No. 30, which correspond to the tall bars. Uniform noife o topologies, and large variations in the network size as.well
amplitude % is added to the payoff vector and the measurement

matrix. In summary, we have developed a completely data-driven
approach to detecting hidden nodes in complex networks,
which are inaccessible to external observation or measure-

. ment. The basic idea is to locate the immediate neighbors
asa becomes more sparse, the measurement thre#holsl ¢ the hidden node through reconstruction of the dynamical

reduced accordingly. This also demonstrate the efficieficy 0, cesses on these nodes that generate the time seriea.or dat
our method for different network_scales. _These resultsdllu gocause of their direct links with the hidden node, inforiorat
trate the power of our compressive-sensing based method {e for the reconstruction is incomplete, leading to anoma
locate hidden nodes with low data requirement. lies and instabilities in the prediction of their dynamiaich

We now address the effects of noise. As shownin Fig. 3, foga, then be used to infer that they are in the immediate neigh-
a network of 60 nodes, the prediction errors decrease wéth thy, 5 b0 of the hidden node. Our reconstruction process is
amount of the measurement data, with relative error of abo ased on compressive sensing. Detecting hidden or black-

10% in the weights of the existing links. In this case, the links y5yaq objects is an extremely challenging but fascinatis t
for all nodes except the neighborhoods of the hidden node arg science, and our work opens an avenue to addressing this

still pre_dictabl_e. The v_ariances of the predicted vectass, problem in complex network science and engineering.
shown in the inset of Fig. 3, are larger compared with those

in noiseless situation, but the neighborhoods of hidderenod This work was supported by AFOSR under Grant No.
still have significantly larger variances than the othemdj-i FA9550-10-1-0083, and by NSF under Grants No. CDI-
cating that the hidden node can still be detected reliablgrwh 1026710 and No. BECS-1023101.
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