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We develop a general method to detect hidden nodes in complexnetworks, using only time series from nodes
that are accessible to external observation. Our method is based on compressive sensing and we formulate a gen-
eral framework encompassing continuous and discrete-time, and evolutionary-game type of dynamical systems
as well. For concrete demonstration, we present an example of detecting hidden nodes from an experimental
social network. Our paradigm for detecting hidden nodes is expected to find applications in a variety of fields
where identifying hidden or black-boxed objects based on limited amount of data is of interest.
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The power of science lies in its ability to infer and predict
the existence of objects from which no direct information can
be obtained experimentally or observationally. A well known
example is to ascertain the existence of black holes of vari-
ous masses in different parts of the universe from indirect ev-
idence, such as X-ray emissions. In the field of complex net-
works, the problem of detectinghidden nodes can be stated,
as follows. Consider a network whose topology is completely
unknown but whose nodes consist of two types: one accessi-
ble and another inaccessible from the outside world. The ac-
cessible nodes can be observed or monitored, and we assume
that time series are available from each node in this group.
The inaccessible nodes are shielded from the outside and they
are essentially “hidden.” The question is, can we infer, based
solely on the available time series from the accessible nodes,
the existence and locations of the hidden nodes? Since no
data from the hidden nodes are available, nor can they be ob-
served directly, they act as some sort of “black box” from the
outside world. Despite recent works on uncovering network
topologies [1–6], to our knowledge, the problem of detecting
hidden nodes in complex networks has not been addressed.
Solution of the problem, however, has potential applications
in different fields of significant current interest. For example,
to uncover the topology of a terrorist organization and espe-
cially, various ring leaders of the network is a critical task in
defense. The leaders may be hidden in the sense that no direct
information about them can be obtained, yet they may rely on
a number of couriers to operate, which are often subject to
surveillance. Similar situations arise in epidemiology, where
the original carrier of a virus may be hidden, or in a biology
network where one wishes to detect the most influential node
from which no direct observation can be made.

In this paper, we present a completely data-driven,
compressive-sensing based [7] approach to inferring the ex-
istence and locations of hidden nodes in complex networks.
The general principle underlying our method can be under-
stood by referring to Fig. 1(a) where, for illustrative purpose, a
network of 20 nodes with directed interactions is shown. Sup-
pose nodes No.1 − 19 are accessible to the external world,
while node No. 20 (in gray) is hidden and thus inaccessible
from the outside. The hidden node has two neighbors: No. 9
and No. 18 (in green), and the remaining 17 nodes are marked

as red. Every red node thus has the property that time series
from itself andall its neighbors are available, but for each
green node, although time series from itself is available, the
same is not true for all its neighbors due to its link with the
hidden node. Generally, the time series can be regarded as be-
ing generated by the combination of nodal and coupling dy-
namics, and one wishes to base on the time series to predict the
various dynamical equations so that the dynamical processes
on various nodes and the network topology can be uncovered.
As we shall demonstrate, for a given node, this can indeed be
achieved provided that time series from the node and all its
neighbors are available. Referring to Fig. 1(a), this meansthat
the dynamical equations and the links from/to all red nodes
can be predicted. However, significant errors would arise in
the prediction of the green nodes due to incompleteness of in-
formation about their neighbors. By examining the prediction
errors of all accessible nodes, the ones that are connected to
the hidden node will then show anomalies, providing a way
to infer its existence and location (e.g., connected to the two
green nodes in Fig. 1(a).

The paradigm of compressive sensing [7] aims to recon-
struct a sparse vectora ∈ R

N from linear measurementsM
in the formM = G · a, whereM ∈ R

K andG is anK ×N
matrix. The compressive sensing theory [7] guarantees that,
when most components in the unknown vectora are zero, it
can be reconstructed by fewer measurements than the num-
ber of components. The unknown vectora can be solved,
for example, by a convex optimization procedure based onL1

norm. Our recent work [6] demonstrated that the problem of
data-based network reconstruction can be casted into the form
of M = G · a.

We consider networked systems for which the nodal dy-
namics, described by the vector functionFi(xi), can be sep-
arated from the interactions or coupling with other nodes
in the network, mathematically described by the coupling
function Hij(xi,xj). The system can then be written as
Mi = Fi(xi) +

∑N
j 6=i wijHij(xi,xj), whereMi is the sys-

tem response, either in discrete or continuous time. For exam-
ple, for discrete-time mapping system,Mi are the state vari-
ables at the next time step, while in continuous systemMi

are the derivatives of the corresponding variables. To illus-
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trate our method to detect hidden nodes in a concrete man-
ner, we assume that the nodal and coupling functions can be
written as some series expansion, e.g., power or Fourier se-
ries. In particular, we write:Fi(xi) =

∑

γ ã
(γ)
i g̃

(γ)
i (xi) and

Hij(xi,xj) =
∑

β a
(β)
ij g

(β)
ij (xi,xj), whereg̃(γ)i are the ex-

pansion bases associated withxi only, andg(β)ij are with re-
spect to bothxi andxj . Next we combine the basesg̃i(t) and

gij(t) at time t into a row vector, and the coefficientsa(α)i

anda(β)ij into a constant column vector. The time-series vec-
tor of responsesMi(t) for nodei can then be expressed by the
product of the matrixGi and theto-be-determined coefficient
vectorai, with Gi given by

Gi =









g̃i(t1) gi1(t1) · · · gij(t1) · · · giN (t1)
g̃i(t2) gi1(t2) · · · gij(t2) · · · giN (t2)

...
... · · ·

... · · ·

...
g̃i(tm) gi1(tm) · · · gij(tm) · · · giN (tm)









,(1)

whereg̃i(t) is the set of bases ofFi(xi), andgij(t) is the
set of expansion bases ofHij(xi,xj). Elements in the vector
Mi(t) contain system responsemi(t) at differentt. In partic-
ular, when the vectorai is determined by solvingM = G · a,
the dynamical equations for the set of corresponding variables
at all nodes become known. Note that the vectorai contains
all the coupling weights from other nodes toi as ingij(t) and
complete information about the nodal dynamical equations as
in g̃i(t). Previous works [6] demonstrated that solutions to the
compressive sensing problem can be obtained but only when
time series fromall nodes are available, i.e., when there is no
hidden object.

To devise a compressive-sensing based methodology for
detecting hidden nodes, we consider the case of one hidden
node (or one cluster of hidden nodes). Let nodei be one of the
immediate neighbors of the hidden node. Due to lack of time
series from the hidden node, the formM = G · a is violated
for nodei, despite the available time series from other nodes
in the network. That is, due to the missing time series from
the hidden node and consequently missing elements ina, it is
not possible to obtain the true solution of the dynamical equa-
tions of nodei. If a node does not neighbor any hidden node,
time series from itself and all its direct neighbors are avail-
able, rendering valid the formM = G · a for such a node.
The practical importance is that the errors in the prediction of
the dynamics of the immediate neighbors of the hidden node
will be much larger than those associated with nodes that do
not have any hidden node in their neighborhoods. The pre-
dicted characteristics of all neighboring nodes of the hidden
node will then show significant anomalies as compared with
those of other nodes. The anomalies can then be used to iden-
tify all nearest neighbors of the hidden node, which in turn
imply its existence and its position in the network.

While our general idea of detecting hidden nodes can be
formulated using different types of dynamical systems, to be
concrete we describe how this can be done using evolutionary-
game type of dynamics. Such dynamical processes can be
used to model generic agent-to-agent interactions in eco-
nomical, social, or even certain biological networks [8, 9].

(a)

(b)

(c) (d)

FIG. 1: (Color online.) (a) Illustration of a complex network with
a hidden node. (b) Representation of the true adjacency matrix, (c)
reconstructed adjacency matrix elements for nodes except the hidden
node based on time series from these nodes. (d) Varianceσ2 of the
reconstructed coefficient vectora for all nodes, calculated by using
10 different random segments from the available experimental time
series. The variances of the two green nodes (No. 9 and No. 18)are
much larger than those of the red nodes, indicating that theyare the
neighbors of the hidden node.

In an evolutionary-game system, the neighbors of the hid-
den node can be identified by utilizing the stability crite-
rion with respect to different measurements. More specifi-
cally, in an evolutionary-game system, at any time a player
can take on one of two strategies: cooperation (C) or defec-
tion (D), mathematically represented asS(C) = (1, 0)T and
S(D) = (0, 1)T , respectively. The payoffs of the two players
in a game are determined by their strategies and the payoff
matrix P. For example, for the classical prisoner’s dilemma
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game (PDG), the matrix elements areP11 = 0, P12 = 0,
P21 = b, andP22 = 0, where1 < b < 2 is a parameter
characterizing the temptation to defect. At each time step,
all agents in the network play the game with their neighbors
simultaneously and gain rewards. For agenti, the reward is
mi =

∑

j aijS
T
i PSj , whereSi andSj denote the strategies

of agentsi and j taken at the time andaij is the coupling
strength between them. After obtaining its payoff, an agent
updates its strategy according to its own and neighbors’ pay-
offs, attempting to maximize its payoff at the next round. We
assume that the strategy and payoff data of agents are avail-
able except those of the hidden node. In particular, we choose
gij(t) = ST

i (t) · P · Sj(t) and ignorẽgi, the payoff of node
i at different timet can be expressed asMi(t) = Gi · ai,
whereGi is to be constructed as specified in Eq. (1), and the
vectorai to be determined contains all interaction strength be-
tween nodesi and other accessible nodes in the network. The
network structure is uncovered aftera’s for all nodes are de-
termined.

As an example, we present results of experimentally detect-
ing a hidden node from a social network hosting evolutionary-
game dynamics. In the experiment, 20 participants from Ari-
zona State University played the prisoner’s dilemma game
(PDG) iteratively, with a pre-specified payoff parameter. The
player with the highest normalized payoff (total payoffs nor-
malized by their degrees) summed over time was the winner.
The players can gamble with all their nearest neighbors in the
pre-existing social network [Fig. 1(a)]. The network was de-
termined by surveying the friendships among those partici-
pants, and it exhibits some typical properties of real social
network, such as the much larger degree in some hub nodes.
During the experiment, the strategies of each player and the
gained payoff were recorded in all the 32 rounds, except for
the hidden node No. 20. The true adjacency matrix of accessi-
ble nodes is represented in Fig. 1(b), and the predicted matrix
is shown in Fig. 1(c). We see that the links of the two neigh-
boring nodes (No. 9 and No. 18) of the hidden node No. 20
cannot be predicted. Especially, the two nodes are predicted
to have links with almost all nodes in the network, which is
highly unlikely for a random network that is typically sparse.
While the predicted loss of sparsity of certain nodes is an indi-
cation that they might be in the neighborhood of some hidden
node, the condition is not sufficient in general, because of the
existence of hub nodes with significantly more links than av-
erage in a complex network. Other conditions must then be
sought in order to identify the neighbors of the hidden nodes.
Our idea is to exploit the stability of the predicted solution
with respect to different measurements used for compressive
sensing. In particular, for the neighboring nodes of the hid-
den node, due to the lack of information needed to solve the
underlying compressive-sensing problem, when different seg-
ments of the time series are used, the algorithm will yield dif-
ferent coefficient vectorsa. However, for a node not in the
immediate neighborhood of the hidden node, the predicted
vectora should be the same for different data segments, for
the corresponding coefficients with the hidden node are zero.
As shown in Fig. 1(d), the variances ina of nodes No. 9 and
No. 18 from a number of predictions are much larger than
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FIG. 2: (Color online.) For directed, weighted random networks
of 60 nodes and 100 nodes, prediction errorEnz as a function of
the ratioRm. The ratioRc as a function of the ratioRnz ≡

Nnz/(Nnz + Nz) is shown in the inset. The average connecting
probability of the network isp = 0.04, and the link weights are uni-
formly distributed between 1 and 6. The error bars are calculated
from 20 independent network realizations.

those (essentially zero) of other nodes. Violation of sparsity
in combination with the instability of the predicted solution
then allows us to identify all neighbors of the hidden node,
and consequently itself, with high confidence.

To systematically characterize the accuracy and efficiency
of our method to detect hidden nodes, we calculate the pre-
diction error of links of all nodes (except the hidden node and
its neighbors) in terms of the amount of required data. For an
individual node, the prediction error is defined as the ratioof
the absolute difference between the true adjacency matrix el-
ements of all links associated with this node and the predicted
elements to the nonzero true element values. The average over
all nodes, excluding the neighbors of the hidden node, gives
the total prediction errorEnz . To explore the effect of network
size, we study networks of systematically varying size, rang-
ing from 20 to 200 nodes. Figure 2 shows, for networks of 60
nodes and 100 nodes,Enz as functions of the required data,
which are the number of measurementsNm normalized by the
number of termsNnz +Nz in the unknown vectora. We see
that, for the network of 60 nodes, when the measurement ratio
exceeds 0.4,Enz is close to zero, demonstrating that 40% data
is sufficient to reconstruct the links and detect the location of
the hidden node. For the network of 100 nodes, the data re-
quirement is slightly smaller because the unknown coefficient
vector is sparser. To further explore the relation between the
data requirement andNnz/(Nnz +Nz), the sparsity measure
of the vectora to be predicted, we define a threshold of nor-
malized measurementRc required for full reconstruction of
the network dynamical system when the errorEnz is less than
10−2. The sparsity measure can actually be adjusted by vary-
ing the network size while keeping the average node degree
unchanged. As shown in the inset of Fig. 2, we observe that,
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FIG. 3: (Color online.) For a random network of 60 nodes in the
presence of noise, prediction errorEnz as a function of normalized
measurementsRm, after excluding neighbors of the hidden node.
Inset shows, forRm = 0.5 as the arrow indicates, the variances of
the coefficient vectors for all the nodes. There is only one hidden
node in all cases and its neighborhoods are node No. 4, No. 14
and No. 30, which correspond to the tall bars. Uniform noise of
amplitude 1% is added to the payoff vector and the measurement
matrix.

asa becomes more sparse, the measurement thresholdRc is
reduced accordingly. This also demonstrate the efficiency of
our method for different network scales. These results illus-
trate the power of our compressive-sensing based method to
locate hidden nodes with low data requirement.

We now address the effects of noise. As shown in Fig. 3, for
a network of 60 nodes, the prediction errors decrease with the
amount of the measurement data, with relative error of about
10% in the weights of the existing links. In this case, the links
for all nodes except the neighborhoods of the hidden node are
still predictable. The variances of the predicted vectors,as
shown in the inset of Fig. 3, are larger compared with those
in noiseless situation, but the neighborhoods of hidden node
still have significantly larger variances than the others, indi-
cating that the hidden node can still be detected reliably when

the noise amplitude is weak as compared with the coupling
strength of the hidden node. It is also possible to distinguish
the effects due to noise and hidden node. The idea is that,
when a hidden node is present, its influences on other nodes
in the network are distinct, while the effect of noise on differ-
ent nodes is statistically uniform and independent.

While we have demonstrated the principle of detecting hid-
den nodes using the setting of evolutionary-game dynamics,
our formulation is general and applies to other types of net-
work dynamics. For example, we have applied our method to
detecting hidden node in networks with continuous-time os-
cillatory nodal dynamics by expanding̃gi andgij into power
series and obtaining a similar matrixG, where the system re-
sponse is the derivatives of the corresponding variables [6].
The unknown coefficients vectorsa can then be solved, giv-
ing rise to full knowledge about the nodal and coupling dy-
namics. By examining the variances ina, we can confirm and
locate precisely the location of the hidden node in the network.
We have applied our method to both continuous- and discrete-
time oscillatory dynamics. Extensive numerical tests indicate
that the method is robust with respect to different complex-
network structures such as random, scale-free and clustered
topologies, and large variations in the network size as well.

In summary, we have developed a completely data-driven
approach to detecting hidden nodes in complex networks,
which are inaccessible to external observation or measure-
ment. The basic idea is to locate the immediate neighbors
of the hidden node through reconstruction of the dynamical
processes on these nodes that generate the time series or data.
Because of their direct links with the hidden node, information
used for the reconstruction is incomplete, leading to anoma-
lies and instabilities in the prediction of their dynamics,which
can then be used to infer that they are in the immediate neigh-
borhood of the hidden node. Our reconstruction process is
based on compressive sensing. Detecting hidden or black-
boxed objects is an extremely challenging but fascinating task
in science, and our work opens an avenue to addressing this
problem in complex network science and engineering.
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