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The diffusion coefficients of proteins embedded in a lipid membrane are traditionally described by the hy-
drodynamic Saffman-Delbrück theory, which predicts a weak dependence of the diffusion coefficient on protein
radius,D ∼ lnR. Recent experiments have observed a stronger dependence,D ∼ 1/R. This has led to spec-
ulation that the primary sources of drag on the protein are not hydrodynamic, but originate in coupling to other
fields, such as lipid chain stretching or tilt. We discuss a generic model of a protein coupled to a nonconserved
scalar order parameter (e.g. chain stretching),and show that earlier results may not be as universal as previ-
ously believed. In particular, we note that the drag dependson the way the protein-order parameter coupling
is imposed. In this model,D ∼ 1/R can be obtainedif the protein is much larger than the order parameter
correlation length. However, if we modify the model to include advection of the order parameter, which is a
more appropriate assumption for a fluid membrane, we find thatthe entrainment of the order parameter by the
protein’s motion significantly changes the scaling of the diffusion coefficient. For parameters appropriate to
protein diffusion, the Saffman-Delbrück-like scaling isrestored, but with an effective radius for the protein that
depends on the order parameter’s correlation length. This qualitative difference suggests that hydrodynamic
effects cannot be neglected in the computation of drag on a protein interacting with the membrane.

PACS numbers: 87.16.dp,87.16.dj,47.63.mf,87.15.kt

Lipid bilayer membranes are a fundamental component of
biological cells, and play a role in many essential biological
processes, including compartmentalization of the cell andor-
ganelles, as well as cell signaling, in which the membrane is
the environment for the relevant membrane proteins [1]. In-
teractions between the membrane and embedded proteins may
alter the functioning of the proteins [2] as well as potentially
leading to protein aggregation [3]. The diffusion coefficient
of proteins in the membrane has traditionally been described
by the Saffman-Delbrück law [4–6], which predicts that the
diffusion coefficient of a protein should depend only logarith-
mically on the protein radius,D ∼ ln(R). This prediction
has be used to determine the size of membrane-embedded ob-
jects and protein aggregates [7, 8]. However, recent experi-
ments have measured protein diffusion coefficients that have
a stronger dependence on protein radius,D ∼ 1/R [9–11],
though this is not universally accepted [12, 13]. Naji, Levine,
and Pincus (NLP) suggested that this dependence could arise
from dissipative protein-lipid interactions, such as a coupling
to local lipid conformation (e.g. chain stretching or tilt)[14]
(Fig. 1). Démery and Dean (DD) have described an interesting
class of these “coupling models,” and shown that the case of
a linear coupling to a field with simple relaxational dynamics
can be solved exactly [15, 16]. The dynamics of proteins with
hydrophobic mismatch (i.e. a coupling to membrane thick-
ness) has also been treated by coarse-grained molecular dy-
namics simulations [13, 17],and the dynamics of proteins
with a preferred spontaneous curvature calculated with con-
tinuum approaches [18, 19].

We extend the approach of Démery and Dean [15, 16],
treating a model of a protein coupled to a nonconserved
“Model A” order parameterφ(r, t) [20, 21]. We apply this
coupling as a boundary condition, and show that this model
can be solved exactly to determine the additional drag from
the protein-lipid interaction. We then discuss some distinc-
tions between this model and the model originally suggested

by DD, which has identical Model A dynamics for the field,
but a linear protein-field coupling. We suggest that coupling
the external field to the protein via a boundary condition may
be more appropriate for describing the protein-lipid interac-
tion. We then extend the model to describe the coupling with
a nonconserved order parameter that is hydrodynamically ad-
vected(“Advected Model A”); the order parameter is then en-
trained by the protein, which significantly alters the magni-
tude and scaling properties of the diffusion coefficient. This
set of assumptions is more appropriate for a fluid membrane,
as it allows the membrane to flow in response to protein mo-
tion.

Our goal in all portions of this paper will be to deter-
mine the drag force on a protein moving with a fixed velocity
through an order parameter fieldφ(r, t). In Section I of the
paper, we will follow [15, 16] and assume that the order pa-
rameter field is not advected by the lipid flow around the pro-
tein, and that the lipid flow is not altered by the inhomogene-
ity of the order parameter. In that case, we find the drag force
due solely to the order-parameter interaction,Fint

drag = −ζIVp

whereVp is the particle velocity. The total drag will then be
ζtot = ζI + ζhydro, where by assumption the hydrodynamic
dragζhydro is just the usual Saffman-Delbrück drag [4], and
the diffusion coefficientD = kBT/ζtot by the Stokes-Einstein
relation [21, 22]. In Section II, we explicitly include the ad-
vection of the order parameter by the lipid flow around the
protein, and determine the total dragby integrating the stress
tensor around the protein.

We do not give the order parameterφ(r, t) a direct phys-
ical interpretation, but note that the Model A dynamics are
the simplest possible phenomenological model of a non-
conserved scalar lipid feature, such as lipid conformation
[2, 23–25]. The combination of the advection-diffusion and
hydrodynamic equations we present here are a very simplified
version of those used to model liquid crystals [26–28]. Ex-
tensions of this research to coupling to more complex lipid
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characteristics (e.g. tilt and thickness [29]), may be possible,
though the dynamics of these fields are still not completely
understood [30–32].

FIG. 1. (Color online). A: Schematic illustration of a protein-induced
distortion in a lipid membrane from top of membrane. Lipids within
a distance of roughlyξ of the protein may have altered properties,
such as chain conformation. B: One particular example of distor-
tion, in which hydrophobic mismatch leads to a change in membrane
thickness.

I. MODEL A DYNAMICS

Démery and Dean [15, 16] have suggested applying a sim-
ple dissipative model to describe the dynamics of a noncon-
served order parameter in a membrane. This model, which
we refer to as “Model A” dynamics (in the classification of
Hohenberg and Halperin [20]),describes the relaxation of the
order parameter to its equilibrium value with a phenomeno-
logical relaxation timeτ . Although scalar order parameters
with similar energetics have previously been used to describe
chain order in membranes (see, e.g. [24, 25, 33]), we do not
give a specific physical interpretation for the fieldφ, as we do
not have a good reason to believe that Model A is a realistic
physical model for the relaxation of any of these order param-
eters. The primary reason for working with Model A is that it
is the simplest possible dynamical model for a nonconserved
order parameter. Similar models have also been proposed phe-
nomenologically for the relaxation of the nematic order pa-
rameter [34, 35], though to reach the simple one-relaxation-
time approximation of Eq. 2 requires neglecting fluid flow.

We discuss this model to show in a simple context that the
drag on the protein depends on the way the coupling between
the protein and the order-parameter is treated, i.e. as a bound-
ary condition, as in most of this paper, or a linear interaction,
as in [15, 16]. This section also serves as an introduction to
the more complicated and realistic model of Section II, where
we will show explicitly that hydrodynamic effects cannot be
neglected.

Model A describes a scalar fieldφ(r, t) with a Hamiltonian

H = E

∫

d2r

[

1

2
φ2(r) +

ξ2

2
|∇φ|2

]

(1)

whereE is an energy density andξ the correlation length of
the field. The dynamics of this field are then given by

∂tφ(r, t) = −Γ
δH

δφ(r, t)
+ ν(r, t) (2)

= −ΓE
(

φ− ξ2∇2φ
)

+ ν(r, t) (3)

whereΓ is a phenomenological transport coefficient, with
1/ΓE ≡ τ the relaxation time of the system.ν(r, t) is a
Gaussian Langevin force with variance〈ν(r, t)ν(r′, t′)〉 =
2kBT Γδ(r − r′)δ(t − t′), as required by the fluctuation-
dissipation theorem [21]. For the remainder of the paper, we
will neglect the fluctuations; this point will be discussed in
Section III.

A. Model A with boundary condition

We determine the drag on a protein moving with a fixed ve-
locity Vp. The protein influences the order parameter around
it, which we represent by fixing the fieldφ to the valueφb on
the protein surface. Near the protein,φ will then take on a
value different from equilibrium value ofφ = 0 (Fig. 2).

If we change frames to the reference frame of the particle,
the equation of motion Eq. 2 becomes (at steady state, and
neglecting fluctuations)

−Vp · ∇φ = −
1

τ

(

φ− ξ2∇2φ
)

(4)

whereτ = 1/ΓE is the field’s relaxation time.We empha-
size here thatVp is simply the protein’s velocity, and in this
model we have not explicitly considered the advection of the
order parameter; this assumption will be examined in Section
II. We determine the fieldφ(r, t) perturbatively in the protein
velocityVp [36]. We takeVp = V0x̂ without loss of gener-
ality, and expandφ(r, t) ≈ φ(0)(r) + V0 φ(1)(r, t). To zeroth
order inV0, φ must be time-independent and radially sym-
metric. The boundary condition onφ is thatφ(r = R) = φb,
whereR is the protein radius (see Fig. 2), andφ(r) → 0 as
r → ∞. With these boundary conditions, we solve Eq. 4 to
zeroth order inV0 to find

φ(0)(r) = φb
K0(r/ξ)

K0(R/ξ)
(5)

whereKn(x) is thenth-order modified Bessel function of the
second kind. We note thatφ(r, t) is only defined forr ≥ R.
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FIG. 2. (Color online). Illustration of theφ(r, t) profile. For the
static protein (left),φ(r, t) = φ(0)(r) is given by Eq. 5. For a protein
moving at constant rightward velocity (right),φ(r, t) = φ(0)(r) +
V0φ(1)(r, θ). The contours shown are logarithmically spaced, i.e.
φ = φb at the thick contour (r = R), andφ = 0.1φb at the next
contour out.

To determine the drag force, we have to integrate the stress
tensor for the field around the inclusion. The stress tensorΠij

for theφ field can be derived by looking at small deformations
of the system, and determining the change in the energyH
[37, 38]. The result is [37–39]

Πij(r)/E = δij

[

1

2
φ2 +

ξ2

2
|∇φ|2

]

− ξ2(∇iφ)(∇jφ) (6)

i.e.∇·Π = δH
δφ ∇φ. The total force, which is in thêx direction

by symmetry, isFint
drag =

∮

dℓΠ · n̂ = F x̂,

F = R

∫ 2π

0

dθ Πxj(r = R, θ)n̂j (7)

where n̂j is the outward-pointing normal to the circle and
the Einstein summation convention is assumed. In principle,
we would need to determineφ(r) to first order inV0 to de-
termineF , as the force isO(V0); we do this calculation in
Appendix A. However, we can avoid explicitly calculating
φ(1) by using the steady-state equation Eq. 4, letting us set
∇ · Π = δH

δφ ∇φ = Γ−1 (Vp · ∇φ)∇φ. Thus, to first order,
∇ · Π will only depend onφ(0). By applying the divergence
theorem to Eq. 7,

Fint
drag = −

∫

r≥R

d2r∇ ·Π (8)

≈ −
1

Γ

∫

r≥R

d2rVp · ∇φ(0)∇φ(0) (9)

where the second line is correct to first order inV0. We could
equivalently have determined this equation by consideringthe
power dissipated (as in [18]),P = dH

dt =
∫

d2r δH
δφ(r)

dφ(r)
dt =

− 1
Γ

∫

d2r(Vp · ∇φ)
2 = Fint

drag ·Vp.
Eq. 9 can be integrated straightforwardly, and we find

Fint
drag = −ζIVp, with

ζI = ζcβ

[

βK0(β)
2 + 2K0(β)K1(β)− βK1(β)

2

2K0(β)2

]

(10)

whereβ = R/ξ is the ratio of the protein radius to the inter-
face width, which is the relevant unitless measure of the pro-
tein size;ζc = πφ2b/Γ is the characteristic scale of the drag.
The interaction dragζI has the asymptotic behavior

ζI/ζc ∼

{

− 1/2+γE+ln(β/2)

[γE+ln(β/2)]2
β ≪ 1

β/2 β ≫ 1
(11)

whereγE ≈ 0.5772 . . . is the Euler-Mascheroni constant.
These asymptotic results and the exact result are plotted in
Fig. 3.

We see that we recover theζI ∼ R scaling in the limit
R ≫ ξ, as predicted by NLP’s scaling arguments. We also
observe thatζI has a weak (logarithmic) dependence onR for
R ≪ ξ.

While the largeR dependence ofζI on R is clearly pre-
dicted by the scaling arguments of NLP, the dependence on
ξ (ζI ∼ 1/ξ) is less obvious. However, it is a consequence
of dimensional analysis along with NLP’s predictionζI ∼ R.
The only independent parameters in our model areR, ξ, Γ, τ ,
andφb; constructing a variable with the units of drag shows
us thatζI = Γ−1f(R/ξ, φb), as we see in Eq. 10. Thus, as
ζI can only depend onR andξ throughβ = R/ξ, ζI ∼ R
impliesζI ∼ 1/ξ. In other words, as the interface widthξ is
decreased, the dragζI increases. This singular behavior is a
remnant of the unphysical assumption that the lipids’ velocity
is uncorrelated with the protein velocity; in a fluid membrane,
the increasing stress near the protein will lead to lipid flow, as
we will see in Section II, which will change this behavior.

When will the order parameter-induced drag be the primary
source of drag? Our initial assumption in this section is that
the presence of order parameter inhomogeneities does not af-
fect the lipid flow around the protein, or the hydrodynamic
drag; this assumption is obviously suspect, and we will ad-
dress it in Section II. However, with this assumption, the total
drag on the protein isζtot = ζI + ζhydro, with ζhydro given
by the Saffman-Delbrück drag [4, 5, 40], if the protein is in
a free membrane, or by the Evans-Sackmann [41] or Stone-
Ajdari [42] theories for proteins in supported membranes. For
proteins,ζhydro ∼ ηm, whereηm is the membrane’s surface
viscosity [4]. If ζI is given by Eq. 10, then for a fixed radius
R, the interaction drag will be much larger than the hydrody-
namic drag ifχ ≫ 1, whereχ ≡ φ2b/ηmΓ. In Section II, we
will see thatχ is still a relevant parameter when advection is
included, and that the order parameter drag can be neglected
if χ ≪ 1; however,χ ≫ 1 is not sufficient to make hydrody-
namics irrelevant.

B. Model A with linear interaction: comparison with D émery
and Dean result

Démery and Dean also study Model A dynamics (as well
as other dissipative models), but couple the protein to the field
with a linear interaction, rather than a boundary condition. We
show that their model as formulated in [15, 16] results in a dif-
ferent drag than the boundary-condition model, but that their
result is sensitive to the method used to choose the strengthof
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FIG. 3. (Color online). The drag from interaction with the external
field (Eq. 10) in the boundary condition model scales linearly with
protein size for proteins with a radius much larger than the field’s
correlation length (R ≫ ξ). However, in the limitR ≪ ξ, ζI ∼

1/ ln(R) ( Eq. 11).

the linear protein-field interaction. If we make a differentpre-
scription for this interaction, the DD results match with our
approach in Section I A.

The DD model considers a membrane inclusion with po-
sition Rp(t) = Vpt interacting with a classical fieldφ(r, t)
with a Gaussian HamiltonianH = H0 +Hint(t),

H0 =
1

2

∫

ddrφ(r)∆φ(r) (12)

Hint(t) = h

∫

ddrφ(r)K(r −Rp(t)) (13)

where∆ is a positive self-adjoint operator andK(r) is an
“envelope” function localized nearr = 0 and with the charac-
teristic sizeR, e.g.K(r) = 1

2πR2 e
−r2/2R2

. For simplicity of
calculation, DD treatK(r) as applying a cutoff in momentum
space,Kk = θ(π/R − k) for the Model A coupling, whereθ
is the Heaviside function. The Fourier transform conventions
used here arefk =

∫

d2re−ik·rf(r), f(r) =
∫

d2k
(2π)2 e

ik·rfk.
The class of dissipative models studied by DD is

∂tφ = −Γ
δH

δφ(r)
+ ν(r, t) (14)

whereΓ is a positive self-adjoint operator andν is a Langevin
force obeying the fluctuation-dissipation relation.

In two dimensions, Démery and Dean findFint
drag =

−∂Hint
∂Rp

= −ζDD
I Vp, with

ζDD
I = h2

∫

d2k

(2π)2
k2x|Kk|

2

∆2
kΓk

(15)

where for Model A,∆k = E(1+ k2ξ2) andΓk = Γ (see Eqs.
1-2).

DD set h by requiring that the static insertion energy,
Eins = −h2

4π

∫∞

0 dkk|Kk|
2/∆k scale as a line energy,Eins =

−2πγIR. With the choiceKk = θ(π/R − k), we find that

h2 = 16π2γIERξ
2/ ln(1 + πξ2/R2). EvaluatingζI from

Eq. 15, we find

ζDD
I = ζDD

c β

[

1−
π2

(π2 + β2) ln (1 + π2/β2)

]

(16)

whereβ = R/ξ andζDD
c = 2πγI

ΓξE is the characteristic scale of
the drag in the DD model. For small and large proteins, this
result takes on the asymptotic forms,

ζDD
I /ζDD

c ∼

{

β 1+2 log β/π
2 log β/π β ≪ 1

π2

2
1
β β ≫ 1

(17)

The DD model predicts that the drag coefficient will in-
crease with protein radiusR only if R ≪ ξ, whereξ is the
correlation length. DD do not consider the limit ofR ≫ ξ
explicitly, but if we assume that the formKk = θ(π/R − k)
is still appropriate, the DD model predicts that the drag coeffi-
cient will actuallydecreaseas1/R. This should be contrasted
with the behavior determined from the boundary-condition
coupling (Eq. 11), which crosses over from logarithmic be-
havior forR ≪ ξ to ζI ∼ R asR ≫ ξ. We argue that
our model is more consistent with the scaling analysis of [14],
which requiresR ≫ ξ as a necessary condition to guarantee
thatζI ∼ R.
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FIG. 4. (Color online). The DD model [16], Eq. 16 predicts a drag
coefficientζDD

I that scales linearly in protein size forR ≪ ξ, but
if we extend it naively into the limitR ≫ ξ, ζDD

I decreases with
increasing protein size (Eq. 17).

The inconsistency between the results of DD and the re-
sults of Section I A and the scaling analysis of NLP [14]re-
sults from the different handling of the protein-field interac-
tion (boundary condition for Section I A or linear coupling for
DD). However, by exploiting the freedom to choose the enve-
lope functionK(r) and the interaction scaleh, we can make
the DD model consistent with the boundary-condition model.
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We first note that Eq. 15 can be rewritten as

ζDD
I =

∫

d2k

(2π)2
k2x
Γk

∣

∣

∣
φDD
(0)(k)

∣

∣

∣

2

(18)

=
1

Γ

∫

d2r
∣

∣

∣
x̂ · ∇φDD

(0)(r)
∣

∣

∣

2

(Model A) (19)

whereφDD
(0) is the static profile for the DD model,φDD

(0)(k) =

−hKk/∆k. φDD
(0) is the steady-state solution to Eq. 14, i.e.

it minimizesH0 + Hint. Eq. 19 holds only for the specific
case of Model A, whenΓk = Γ. By comparison to Eq. 9,
the DD approach and the boundary-condition model will give
identical results ifφDD

(0)(r) = φ(0)(r), whereφ(0) is the equi-
librium field from the boundary condition model (Eq. 5). This
means that if the envelope functionK(r) is chosen so that the
distortion around the protein matches that of the boundary-
condition model of Section I A, the drag will be identical to
that of the boundary-condition model (Eq. 10). We can also
ensure thatζI = ζDD

I without changing the envelope function
by changing the prescription forh, e.g. by choosingh such
that
∫

R2

d2r
∣

∣

∣
x̂ · ∇φDD

(0)(r)
∣

∣

∣

2

=

∫

r≥R

d2r
∣

∣x̂ · ∇φ(0)(r)
∣

∣

2
(20)

One could certainly be skeptical about the process of as-
signingh to be a complicated function ofR; after all, as is
clear from Eq. 15, the choice ofh can completely determine
ζDD
I . We note that it is also possible to get scaling consistent

with Section I A (ζI ∼ 1/ lnβ for β ≪ 1) by weaker assump-
tions. One possible way is using the cutoff functionKk =
θ(π/R− k), and then choosingh to ensure that the boundary

conditionφDD
(0)(r = R) = −h

2πEξ2

∫ π/β

0 du J0(uβ)
u

1+u2 = φb
holds. In this case,

ζDD
I /ζc =

1

2

ln
[

1 + π2

β2

]

− π2

π2+β2

(

∫ π/β

0
du J0(uβ)

u
1+u2

)2 (21)

where, as in Section I A,ζc = πφ2b/Γ. Numerically evaluating
Eq. 21 shows thatζDD

I /ζc ≈ −1.0097/ ln(β) for β ≪ 1 (with
maximum relative error3× 10−3 for β from 10−12 to 10−6),
consistent with the scaling of Eq. 10 forβ ≪ 1.

We also argue that the procedure for determiningh used
in [16] may not be appropriatefor other reasons. We note
that the suggested requirementEins ∼ R is not reasonable
for all values ofR/ξ. Throughout [16], DD assume that
R ≪ ξ (the deformation is much larger than the protein);
if this is the case, the deformed area surrounding the pro-
tein will be roughlyπξ2 − πR2 ≈ πξ2, and we would ex-
pect only a weak dependence of the insertion energy on the
protein size. More explicitly, within the boundary condition
model of Section I A, the insertion energy will be given by
Eins ≡ H [φ(0)] = πEφ2bξ

2βK1(β)/K0(β), with β = R/ξ.

ForR ≪ ξ we find thatEins ≈ −πEξ2φ2b [γE + ln(β/2)]
−1,

showing a weak dependence onR, as suggested by our rough
estimate.

II. EFFECTS OF HYDRODYNAMIC ADVECTION OF
ORDER PARAMETER (ADVECTED MODEL A)

Both our model of Section I A and that of DD assume that
the order parameterφ is not advected by fluid flow, i.e. that
lipids are at rest, even near the translating protein (Fig. 5).
This assumption is apparent in Eq. 4. In addition, the models
of Section I do not allow the material to flow in response to
the applied stressΠ; they describe a solid. These assumptions
are not generally appropriate for lipid membranes in their fluid
phase, which are well-described by hydrodynamic theories [4,
43]. In particular, molecular dynamics simulations show that
lipids near a diffusing protein are entrained by the protein, and
have velocities correlated to the protein motion [44]. If some
lipids within ξ of the protein move in concert with the protein,
the distortion ofφ(r, t) due to protein motion and therefore
the dragζI will be significantly reduced (Fig. 5, right). The
hydrodynamic flow caused by the stressΠ will also lead to
an alteration of the drag on the protein due to hydrodynamic
dissipation.

"Solid" Fluid

FIG. 5. (Color online). Lipid velocities plotted in the frame moving
with the protein. The dark central circle is the protein, andthe lighter
circle the region withφ(r) significantly different from 0. The models
of Section I make the assumption that the lipids are at rest relative to
the protein, i.e. that they have velocity−Vp in the protein’s rest
frame; this is illustrated in the left panel. In a fluid membrane, the
lipid velocity will be entrained by the protein motion (right). The
distortion of the profileφ(r)will be significantly reduced in this case,
compared to that of Section I.

If φ is advected by a velocity field in the membranevm, we
describe the dynamics of the fieldφ, in the protein’s reference
frame as (in steady state)

(vm −Vp) · ∇φ(r) = −Γ
δH

δφ
(22)

= −
1

τ

(

φ− ξ2∇2φ
)

(23)

where nowvm is the membrane velocity measured in the lab
frame, i.e.vm = Vp at r = R, andvm → 0 asr → ∞. We
will work in polar coordinatesvm(r, θ) = vrmr̂ + vθmθ̂. This
advection-diffusion model,which we call “Advected Model
A” , is the simplest possible model to represent the dynam-
ics of a nonconserved order parameter in afluid lipid bilayer
membrane.
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The total drag force on the protein is (see, e.g. [27, 45] for
similar calculations)

Fdrag =

∮

dℓ (σ +Π) · n̂ (24)

where the integral is around the boundary of the protein,n̂

is the outward-pointing normal,Π is the composition stress
tensor (Eq. 6) andσ the hydrodynamic stress tensor,

σij = −Pδij + ηm

(

∂vim
∂rj

+
∂vjm
∂ri

)

(25)

whereP is the membrane surface pressure andηm the mem-
brane surface viscosity. In Section I, we only calculated one
piece ofFdrag, Fint

drag =
∮

dℓΠ · n̂ (Eq. 7). Our approach in
this section will be to calculateFdrag from Eq. 24, and then
determineζtot, i.e.

Ftotal
drag= −ζtotVp (26)

We have, in Eq. 26, included the possibility of there being
additional sources of drag beyond that in Eq. 24, i.e.Ftotal

drag =
Fdrag+Fadditionalwith Fdrag from Eq. 24. The “intrinsic drag”
that Evans and Sackmann include [41] is of this form, and we
will treat this term below; we also will include an appropriate
intrinsic drag of this sort in our calculations ofζtot.

To determinevm andP , we have to solve the Stokes equa-
tions appropriate for a membrane taking into account the body
force ∇ · Π = δH

δφ ∇φ exerted by the field on the fluid.
Within the Saffman-Delbrück picture of a membrane as a two-
dimensional fluid surrounded by a bulk three-dimensional
fluid, the membrane Stokes equations are [4, 5, 43, 46–48]

ηm∇2vm −∇P +K ∗ vm +∇ ·Π = 0 (27)

∇ · vm = 0 (28)

where(K ∗ vm)(r) =
∫

d2r′ K(r− r′)vm(r′) is the the trac-
tion from the outside fluid and the boundary conditions are
vm = Vp on r = R andvm → 0 asr → ∞. In a free-
floating membrane surrounded on both sides by a fluid with
viscosityηf , the Fourier transform of the convolution term is
given by{K ∗ vm}q = −2ηfq vm(q), i.e. K(q) = −2ηfq.
This nonlocal term makes solving the mobility problem diffi-
cult [5]. We will treat the similar case of a membrane above
a solid substrate (Fig. 6), which in some limits reduces to a
significantly simpler problem. The kernelK(q) then takes the
form [46, 49]

K(q) = −ηfq coth (qH)− ηfq (29)

For wavelengths long compared toH (q ≪ 1/H), this re-
duces to the formK(q) = −ηf/H , i.e. a linear drag,
K ∗ vm = −

ηf

H vm [41, 42]. In fact, this approximation may
be appropriate as long asH is small compared to the Saffman-
Delbrück length scaleLsd = ηm/2ηf [42]. This “Brinkman
equation” model can also be derived from treating the thin
layer of fluid between the membrane and the solid substrate
in the lubrication approximation [42]. Though strictly speak-
ing this approximation describes a supported membrane, we

expect the hydrodynamics to be in qualitative agreement with
that of a free membrane for objects of sizeR ≪ LH , where
L2
H ≡ 2LsdH ; see [50, 51] and references therein. For ex-

ample, we note that the hydrodynamic drag in this theory will
have the same functional form as the Saffman-Delbrück law
[4] in the limit of R ≪ LH , but withLH instead ofLsd the
relevant length scale.

FIG. 6. (Color online). Illustration of protein of radiusR diffusing
in membrane a heightH above a substrate, surrounded by fluid with
viscosityηf . We have also indicated the distorted region near the
membrane, with characteristic sizeξ.

In the absence of coupling between the protein and the or-
der parameter (i.e.φb = 0), the bare hydrodynamic drag is
[41]

ζEvans-Sackmann= πηmǫ

[

2ǫ+
4K1(ǫ)

K0(ǫ)

]

(30)

whereǫ ≡ R/LH . We emphasize that Eq. 30 includes the
effect of the intrinsic drag with the substrate, which adds a
drag force ofFadditional= −πR2bpVp [41], wherebp is a phe-
nomenological drag coefficient. We have included this term in
Eq. 30, settingbp = ηf/H , which is appropriate for a mem-
brane separated by a thin layer of fluid from a substrate. This
term accounts for the drag on the bottom of the protein; see
[41, 42] for details. We also include this term in our numerical
calculations ofζtot for Advected Model A, so thatζtot is equal
to Eq. 30 when the coupling to the order parameter vanishes
(φb = 0).

In principle, the advection equation (Eq. 22) and the mem-
brane Stokes equations (Eqs. 27-28) must be solved simul-
taneously in order to determinevm, φ(r) andP . However,
we can again exploit the simplicity of the order parameter dy-
namics and use Eq. 22 to calculate the forcefφ = δH

δφ ∇φ =

− 1
Γ (vm −Vp) · ∇φ∇φ. To linear order inV0, this force only

depends on the static profileφ(0), and we can eliminate Eq. 22.

If we rescale variables, definingρ = r/R andu = vm/V0,
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we find, to linear order inV0,

∇2u−∇P ′ − ǫ2u− χ r̂r̂ · (u− x̂)β2K
2
1 (βρ)

K2
0 (β)

= 0 (31)

∇ · u = 0 (32)

where the derivatives are now with respect toρ, andP ′ is the
unitless pressure. We now see that the velocity profile around
the protein will depend on three dimensionless groups,ǫ, β,
andχ, whereǫ = R/LH andβ = R/ξ as above. The “drag
ratio” χ ≡ φ2b/ηmΓ is the ratio of the naive scale of the in-
teraction dragζI ∼ φ2b/Γ to the naive scale of the hydrody-
namic drag,ζhydro ∼ ηm. By this, we mean that the naive
model of Section I A (or that of Démery and Dean applied to
Model A) predicts that the scale of the drag induced by the
order-parameter interaction isφ2b/Γ, i.e. that the ratio of the
order parameter drag to the hydrodynamic drag will scale as
χ. However, increasingχ will also increase the effect that the
order parameter has on the lipid flow near the protein, i.e. the
last term in Eq. 31 becomes large ifχ≫ 1.

In order for the coupling between the protein and the order

parameter field to alter the drag coefficient significantly, we
must haveχ ≫ 1. In this region of parameter space, the
flow field vm will necessarily be modified, and we will have
to solve Eq. 31 numerically. Since the Stokes equations we
use are two-dimensional, it turns out to be convenient to use
the streamfunction representation foru [52]. We represent
u(ρ, θ) = ∇× [ψ(ρ, θ)ẑ], i.e.

uρ =
1

ρ

∂

∂θ
ψ(ρ, θ) (33)

uθ = −
∂

∂ρ
ψ(ρ, θ) (34)

which automatically satisfies the incompressibility require-
ment. We know by the linearity of the problem and the sym-
metry ofVp, ψ = Y (ρ) sin θ. By taking the curl of Eq. 31,
we find

∇4ψ−ǫ2∇2ψ+χ

(

Y (ρ)

ρ
− 1

)

β2

ρ

K2
1(βρ)

K2
0 (β)

sin θ = 0 (35)

Or, explicitly working out the derivatives,

Y ′′′′(ρ) + 2
Y ′′′(ρ)

ρ
−

(

3

ρ2
+ ǫ2

)

Y ′′(ρ) +

(

3

ρ3
−
ǫ2

ρ

)

Y ′(ρ)−

(

3

ρ4
−
ǫ2

ρ2

)

Y (ρ) + χ

(

Y (ρ)

ρ
− 1

)

β2

ρ

K2
1(βρ)

K2
0 (β)

= 0 (36)

This fourth-order ODE has boundary conditions set by
the boundary conditions onvm, which arevrm = V0 cos θ
and vθm = −V0 sin θ at r = R, and vrm = 0, vθm = 0
as r → ∞; these transform toY (1) = Y ′(1) = 1 and
Y (∞) = Y ′(∞) = 0. This boundary value problem is rel-
atively straightforward, though it does require us to resolve a
large range of length scales; we must resolve the velocity field
over the region[1, 1 + 1/β] whereφ(0) is significantly differ-
ent from zero, but the domain of the whole problem[1, ρmax]
may be large, as we must haveρmax ≫ 1/ǫ. We use MAT-
LAB’s boundary value solver bvp4c to determineY (ρ). We
use an initial guess ofY (ρ) = 1/ρ with a logarithmically-
spaced initial mesh.

OnceY (ρ) is determined, we need to calculate the total
drag force, Eq. 24. We can do this in two major routes: 1)
directly via Eq. 24, or 2) applying an identity derived from
the reciprocal theorem [52–54]. Each route has separate ad-
vantages: if we use Eq. 24 directly, we do not need to de-
termineφ(1) explicitly, but if we use the reciprocal theorem
identity, we need to determineφ(1), but do not need to de-
termine the full membrane stress tensorσ or the membrane
pressureP . We determine the drag with both methods to en-
sure consistency (Appendix B). As a check on the accuracy of
the solver and the drag calculation, forχ = 0, we reproduce
the Evans-Sackmann result Eq. 30 with a maximum relative
error of5× 10−5 for ǫ from 10−5 to 105. These errors are for
the direct method; the reciprocal theorem method uses the ex-
act result Eq. 30, and does not provide an independent check
if χ = 0.

A. Implications for protein diffusion coefficients

The experiments of Gambin et al. measure the diffusion
of proteins and protein complexes with radii ranging from
0.5 − 2 nm [9], finding thatD ∼ 1/R (i.e. ζ ∼ R) over
this range. Experimentally measured membrane surface vis-
cosities are of the order of10−7−10−5 poise cm [40, 55–58],
corresponding to Saffman-Delbrück lengths (Lsd = ηm/2ηf )
of roughly 0.1 − 10 microns, much larger than the protein
radius. The relevant hydrodynamic regime for describing pro-
teins is thusR ≪ Lsd. Many features of this limit are re-
produced by our Brinkman equation model of Eq. 31. In par-
ticular, the Saffman-Delbrück drag and the Evans-Sackmann
drag have the same scaling whenR ≪ Lsd andR ≪ LH ;
for ǫ = R/LH ≪ 1, the Evans-Sackmann drag has the
form ζEvans-Sackmann≈ 4πηm [log(2/ǫ)− γE ]

−1, in compari-
son withζsd = 4πηm [log(2Lsd/R)− γE ]

−1 for R ≪ Lsd.
We wish to explore the question: can the interaction with the
order parameter alone change the scaling ofζ to ζ ∼ R in the
regionǫ ≪ 1? Within our model of Section I A and that of
DD, the answer is yes. However, we will find that including
the advection of the lipids will qualitatively change the size of
the effect, showing that (within our model), order parameter
interactions are insufficient to explain the experimental data
of [9].

In our model of Section I A, we found that the order-



8

parameter interaction led toζtot ∼ R in the limit of R ≫ ξ
(β ≫ 1) andχ≫ 1; we will start by examining this region of
parameter space.We can determine some of the characteristic
features of the velocity profileuρ(ρ, θ) = ρ−1Y (ρ) cos θ sim-
ply from Eq. 31. We see that the order-interaction term acts
as an effective drag on the radial part ofu relative to the pro-
tein’s radial velocity,̂r · x̂ = cos θ. However, asK1(βρ) will
decay quickly forρ ≫ 1/β, this drag is only effective for a
small region near the protein. Ifβ ≫ 1, we would expect that
the order-interaction drag is negligible beyond a distanceρ∗,
where(ρ∗ − 1) ∼ 1

2β log
[

bχβ2
]

whereb is an arbitrary con-
stant. In our numerical results, we see that for strong protein-
order parameter coupling,χ ≫ 1, the radial velocity near the
protein is nearly constant for a significant distance (Fig. 7).
This suggests the idea of an “effective radius” - that the order-
induced drag essentially perfectly entrains the lipids within a
characteristic distance of the protein, and the total drag should
be simplyζEvans-Sackmann(ǫReff/R). Our estimate from above
suggests that(Reff/R− 1) ∼ 1

β

[

logχ+ log bβ2
]

for β ≫ 1.

We find below that(Reff/R − 1) ∼ 1
β can also be a useful

fitting form more generally;this is unsurprising, as it suggests
that the effective radius is just the protein radius plus a dis-
tance on the order of the interface widthξ, i.e.Reff ≈ R+ c ξ.
However, we note that this is only a rough estimate, andin
fact will break down for largerβ or ǫ; this will be addressed
further in Section II B.
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FIG. 7. (Color online). Asχ = φ2
b/Γηm is increased, the lipids near

the protein are increasingly correlated to the protein velocity, and the
radial velocity profileuρ is constant over the “effective radius” of the
protein, which increases weakly with increasingχ. For this figure,
β = 1, ǫ = 10−2, andρmax = 100/ǫ (the entire domain is not shown
in this figure).

At largeχ, the total drag increases roughly linearly with
logχ (Fig. 8). By comparison, the theory of Section I A pre-
dicts thatζI/ηm ∼ χ (Eq. 10); entrainment significantly re-
duces the effect of the order parameter coupling. In fact, even
increasing the coupling strengthφ2b by ten orders of magni-
tude produces a smaller than10% change in the total drag.
This weak dependence is consistent with the “local entrain-
ment” argument given above: if we solve for the effective ra-
dius as defined byζtot(ǫ, χ) = ζEvans-Sackmann(ǫReff(χ)/R), we
find that it scales aslogχ for χ≫ 1 (Fig. 8).

What is the effect of changing the size of the protein? For
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FIG. 8. (Color online). Asχ = φ2
b/Γηm is increased, the total drag

on the proteinζtot (Eq. 26)increases only slowly, roughly aslog χ;
this is very different from the theory of Section I A, which predicts
that the drag should be linearly proportional toχ (Eq. 10). We can
fit these results to an effective radius theory as suggested above, with
Reff/R = 1 + c1 + c2 log χ with c1 = −0.25 andc2 = 0.045. In
this simulation,ǫ = 10−3, β = 10, andρmax = 100/ǫ.

the model of Section I A, we found that the interaction drag
ζI depended on the protein radiusR only in the combination
β = R/ξ. This will not be the case for the total drag in our
hydrodynamic model. We can determine the total drag as we
either vary the interface width (Fig. 9), or vary the protein
radius (Fig. 10).

If we vary the correlation lengthξ while holding the protein
radius fixed, we find that smaller drag layers will lead to a
smaller total drag on the particle (Fig. 9). This may seem
unsurprising, but should be contrasted with the result in the
absence of hydrodynamics, Eq. 10, where the interaction drag
ζI is proportional toR/ξ, and thus smaller correlation lengths
ξ lead to larger drags.

If we increase the protein radius, holding the interface
width ξ and the hydrodynamic lengthLH fixed, we see that
the drag increases (Fig. 10), but not nearly as much as would
be predicted by the model of Section I A. We find that as
R ≫ ξ, the effect of the order parameter coupling vanishes,
and the total drag simply reduces to the hydrodynamic Evans-
Sackmann drag, Eq. 30. This behavior, as well as that of
Fig. 9, can be well-explained by a description of the protein
locally entraining the nearby lipids, as mentioned earlier. The
total drag coefficients can be simply fit to an “effective radius”
model withReff = R + cξ, with c a constant.

The effects of the order parameter interaction are most
obvious for large correlation lengths. In Fig. 11, we show
streamlines for flow past a protein with and without the order
parameter coupling. In this example, the correlation length ξ
is ten times the protein radius, making the “effective size”of
the protein very large compared to the protein’s physical size.

As we can see from Fig. 10 and Fig. 8, in the limit ofR ≫ ξ
andR ≪ LH , there is not a significant change in the total
drag, and there is not a qualitative change in the scaling of
the drag with radiusR; instead, there is a weak dependence
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FIG. 9. (Color online). If we vary the correlation length ofφ, ξ,
while holding the radiusR and the hydrodynamic length scaleLH

fixed (corresponding to varyingβ while holdingǫ fixed), we see that
smaller drag layers lead to smaller total dragζtot (Eq. 26)on the par-
ticle. This should be contrasted with the result in the absence of
hydrodynamics, Eq. 10, in which thinner layers lead to larger gradi-
ents and thus larger drags.ǫ = 10−3 andχ = 106 for the data in this
figure. This is well fit to an effective radius ofReff/R = 1 + c/β
with c = 3.22.

10
−5

10
−4

10
−3

10
−21

1.5

2

2.5

3

R/L
H

ζ to
t/η

m

 

 

Evans−Sackmann

Effective radius fit

Numerical results

FIG. 10. (Color online). As the radius of the particle is increased, the
additional drag from the order interaction becomes negligibleandζtot

(Eq. 26) approachesζEvans-Sackmann. In this figure, we varyR while
keepingξ andLH fixed; we thus varyβ and setǫ = 10−4β, so that
ǫ ≪ 1 for the entire range ofǫ studied(β ranges from 0.1 to 100).
χ = 106 for this figure. This is well fit to an effective radius of
Reff/R = 1 + c/β with c = 3.73.

that can be characterized in terms of an “effective radius” on
the order of the protein size plus the interface sizeξ. This
behavior holds even in the limit ofχ ≫ 1. This answers our
central question: order parameter interactions, at least in this
model, are not sufficient to cause the experimentally observed
result [9]ζtot ∼ R.

As far as we can tell, even asχ≫ 1, we do not recover the
model of Section I A, which predicts a linear increase inζI

ξ

FIG. 11. (Color online). Streamlines for flow around a protein;
streamlines are shown in the protein’s rest frame. For the left panel,
χ = 0, i.e. there is no order-parameter coupling, and the flow re-
flects the physical size of the protein (central gray circle). In the
right panel, there is strong order-parameter coupling,χ = 105, with
a thick interface,β = 0.1 (ξ = 10R), and show that flow is mod-
ified, resembling a particle with a much larger effective size. The
order parameter profileφ(0)(ρ) is also shown (grayscale shading).
ǫ = 0.01 for both cases.

with χ. This result is perhaps not surprising, as the models of
Section I A and DD assume that lipid motion near the protein
is completely uncorrelated to the protein (Fig. 5); this limit
is not reached by increasingχ, which only tends to increase
the entrainment of lipids near the protein (Fig. 7). The neglect
of advection and hydrodynamics in the models of Section I A
and that of [15, 16] are therefore not well justified.

B. Other interesting features of the model with advection

Though our primary interest in this model was to consider
the limit relevant to the experiments on proteins of Gambin et
al. [9], i.e. R ≪ LH or ǫ ≪ 1, where the analogy to free
membranes is best, our model (Eq. 36) also describes dynam-
ics of larger objects in a supported membrane,ǫ > 1. In this
limit, the simple “effective size” picture is not as useful in de-
termining the drag on a membrane-embedded object. We plot
the total drag on the protein as a function ofR/LH for various
values ofξ/LH andχ in Fig. 12 and Fig. 13. We see that for
R sufficiently large, the Evans-Sackmann result applies, as for
the case ofǫ≪ 1 above.

A striking exception to the “effective radius” idea also
occurs for objects larger than the hydrodynamic correlation
lengthLH ; we find that in this limit, the total drag depends
non-monotonicallyon the interface widthξ, with an initial in-
crease in drag followed by a decrease (Fig. 14). This runs
counter to the intuition from above, where larger values of
ξ lead to the lipids near the protein becoming increasingly
entrained, and hence larger drags. However, in the limit of
ǫ ≫ 1, increasingξ does not necessarily increase the local
entrainment of lipids. In fact, the range of entrainment de-
creases at largeξ. We show this explicitly in Fig. 15, where
we plot the lipid velocity field near the protein as well as the
distortionφ(0)(r). Though this is initially unintuitive, an ef-
fect of this sort should not be altogether surprising. The drag
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FIG. 12. (Color online). As the radius of the object increases, the
additional drag from the order parameter interaction becomes negli-
gible and the total dragζtot (Eq. 26) approaches the Evans-Sackmann
result asR ≫ ξ, LH . Drag is shown as a function ofR/LH = ǫ,
with LH andξ held fixed. For this figure,χ = 103. Only points with
β < 103 are shown, for reasons of computation time.
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FIG. 13. (Color online). Increasingχ increases the total dragζtot

on the protein, but does not change the qualitative featuresfrom that
shown in Fig. 12. For this figure,χ = 105, Only points withβ < 103

are shown, for reasons of computation time.

force on the lipids due to the composition interaction takesthe
form of a force density proportional to thegradientof φ(0)(r),
fφ = −Γ−1(vm−Vp)·∇φ(0)∇φ(0). Asξ increases, the order
parameter fieldφ(0)(r) becomes increasingly uniform, and the
order-parameter drag is less effective at entraining locallipids
(Fig. 15). However, this limit does not appear to have any im-
mediate physical relevance, since it refers to distortionsthat
are orders of magnitude larger than the protein they surround.

III. DISCUSSION

We have presented a model that describes the drag on a
protein due to its coupling to a non-conserved order parame-
ter. Our model, though it uses the same underlying Model A
dynamics as that of Démery and Dean [15, 16], couples the
protein to the order parameter by imposing a boundary condi-
tion, and calculates the force via the stress tensor. This model
shows that the interaction dragζI scales linearly in the protein
radiusR if R is much larger than the order parameter correla-
tion length, but has a much weaker, logarithmic, dependence
onR for R ≪ ξ. We attribute the difference between our re-
sult and that of Démery and Dean tothe different handling of
the protein-order parameter interaction, and show that by al-
tering their method of assigning the linear coupling parameter
h we can make the two methods consistent.

We also note that Démery and Dean have also calculated
the drag force at large particle velocitiesVp, which we have
not done. However, we suspect that our model of Section I A
will also differ from the linear coupling model of Démery and
Dean in terms of the nonlinear response. In [16], the distortion
in φ caused by the object-field interaction vanishes as1/Vp

at large velocities, but because of the boundary condition we
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FIG. 14. (Color online). The total drag on the proteinζtot (Eq. 26)
can be non-monotonic inξ, the size of the distortion of theφ field.
The velocity field of the points marked A, B, and C are shown in
Fig. 15. For this simulation,ǫ = 10 andχ = 105, and we set
ρmax = max(100, 100/β) whereβ = R/ξ; this result is insensitive
to increases inρmax and refinements of the mesh.
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A: R/ξ = 10 B: R/ξ = 0.005 C: R/ξ = 10−6

FIG. 15. (Color online). Lipid flow fields near the protein aresuperimposed over the distortion in the order parameter,φ(0)(r), which is shown
as a color map, ranging from light (φ = φb) to dark (φ = 0). Velocities are plotted relative to the protein’s velocity. In the leftmost image
(A), the distortion is small, and does not strongly affect the velocities. In the center image (B), the distortion is large, extending far beyond the
region shown, but still shows noticable gradients near the protein. In this limit, lipids are significantly correlated to the protein over a larger
range than shown in A. In (C), the distortion is yet larger, and the gradient near the protein has decreased; lipids near the protein are not as
entrained as in (B). The velocities have the same scale for (A),(B) and (C).

have chosen, there will always be a non-vanishing distortion
in φ, though it may occur in a boundary layer near the protein,
as in calculations of the nonlinear microrheological drag in
colloidal model systems [53, 59].

Extending the model past dissipative dynamics to include
advection of the order parameter (Section II), we discover that
the hydrodynamics of Advected Model A significantly change
the total drag on the protein, and hydrodynamics cannot be
neglected in a consistent way.We find that once the fluid na-
ture of the membrane is included, the protein-lipid complex
acts like a protein with a larger effective radius, i.e. the lipids
near the protein are almost completely entrained,at least for
the most physically relevant parameters. This effective radius
depends linearly on the order parameter correlation lengthξ,
but only weakly on the strength of the order parameter cou-
pling. If the advection is included, the coupling to the or-
der parameter does not change the drag scaling from logarith-
mic to linear in radius; there are quantitative, but not qualita-
tive, deviations from the Evans-Sackmann result.Within Ad-
vected Model A, coupling to an order parameter as proposed
by [14, 15] is not sufficient to explain the experimentally ob-
served diffusion coefficient scalingD = kBT/ζtot ∼ 1/R
[9]. However, this may be a limitation of the the very sim-
ple model we have used; simulations of microrheology exper-
iments in three-dimensional cholesteric liquid crystals have
observed significant deviations from the Stokes drag,includ-
ing adifferent dependence on particle size [60].

The work we have presented here is only an initial step to-
ward more detailed understanding of the dynamics of protein-
lipid coupling. However, because of the significant difference

between the simplest possible Model A approach and a more
detailed calculation that includes the in-plane membrane hy-
drodynamics, we argue that future calculations should, as we
have done in Section II, address the hydrodynamic advection
of the order parameter, as well as the effects of the inhomo-
geneity of the order parameter on lipid flows within the mem-
brane. In particular, the dynamics of membrane tilt (see [29]
and references within) may be able to be described using con-
tinuum theories for liquid crystal dynamics [26, 61]; to our
knowledge, this approach has not yet been attempted, though
relevant work has been done on the simulation of liquid-
crystal elastomerswith free boundaries[62]. An additional
feature absent from our advective model is the potential de-
pendence of membrane viscosity on the order parameter; if
ηm(φ) is not constant, the drag coefficient of the protein may
be modified [63].

Throughout this paper, we have neglected explicit fluc-
tuations in the order parameter; this is effectively a zero-
temperature assumption, i.e. that〈φ2〉 ≈ 〈φ〉2. We note that
for nonlinear couplings, there may be an additional “Casimir
drag” caused by the suppression of thermal fluctuations [64];
this mechanism may also be relevant to the boundary condi-
tion coupling we use, as the stress tensor is nonlinear inφ.
This effect will not appear in linear coupling models [15, 16].
The effects of this Casimir drag are also an interesting areaof
future study.

Coarse-grained molecular dynamics simulations [13, 17,
44, 65–68] may also be able to address the problem we have
described here. However, we note that these models may not
be quantitatively accurate in describing in-plane flow; mem-
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brane surface viscosities measured in coarse-grained models
[69] can be one to two orders of magnitude below their exper-
imental values [40, 55–58].

To summarize, we have three central points. First, even
with the same underlying dynamics, we get a different drag
than that of Démery and Dean [15] if we handle the protein-
field interaction in a different way. Second, we show that the
effects of advection cannot be neglected in a straightforward
way; there is a qualitative difference between models that al-
low lipids to flow in response to order inhomogeneities and
those that do not. Finally, within the simple model we de-
velop, the protein-membrane interaction alone cannot explain
the experimentally observed scaling of protein diffusion co-
efficient with radius; for parameters that describe a protein,
the effect of the order parameter interaction is only to give
the protein an “effective size” set by the size of the membrane
distortion.
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Appendix A: Explicit calculation of linear distortion in φ

We explicitly calculate the order parameter profileφ(r, t)
to first order in the velocityV0 for the model of Section I A.
The equation of motion is (in steady state)

−Vp · ∇φ = −
1

τ

(

φ− ξ2∇2φ
)

(A1)

We wish to solve to linear order,φ(r) = φ(0) + V0φ(1).
We showed in the main body of the paper thatφ(0)(r) =

φb
K0(r/ξ)
K0(R/ξ) . We then find thatφ(1) satisfies the equation

−x̂ · ∇φ(0) = −
1

τ

(

φ(1) − ξ2∇2φ(1)
)

(A2)

The solution to this equation will have the formφ(1)(r, t) =
f(r) cos(θ), with boundary conditionsf(r = R) = 0,
f(r) → 0 asr → ∞. f(r) then satisfies a modified inho-
mogeneous Bessel equation,

ξ2
[

f ′′ +
1

r
f ′ −

1

r2
f

]

− f =
τ

ξ
φb
K1(r/ξ)

K0(R/ξ)
(A3)

This equation is solved by

f(r) =
φbτ

2ξ2

[

RK1(r/ξ)

K1(R/ξ)
−
rK0(r/ξ)

K0(R/ξ)

]

(A4)

The total drag force, which is in thêx direction by symme-
try, is (withΠ from Eq. 6)

F = R

∫ 2π

0

dθ Πxj(r = R, θ)n̂j (A5)

wheren̂j is the outward-pointing normal to the circle. Per-
forming this calculation to first order inV0, we find F =
−ζIVp, with

ζI = πRE ξ2f ′(R)φ′(0)(R) (A6)

Plugging the known forms off(r) andφ(0) into the equation
yields Eq. 10.

Appendix B: Calculating hydrodynamic and interaction drag:
direct and reciprocal methods

The total drag force on the protein is

Fdrag=

∮

dℓ (σ +Π) · n̂ (B1)

where the integral is around the boundary of the protein,n̂ the
outward-pointing normal,Π is the stress tensor for the order
parameter (Eq. 6) andσ the hydrodynamic stress tensor,

σij = −Pδij + ηm

(

∂vim
∂rj

+
∂vjm
∂ri

)

(B2)

whereP is the membrane surface pressure andηm the mem-
brane surface viscosity.We note that there is also a poten-
tial intrinsic drag term between the protein and the substrate;
see the main text and [41, 42] for details.We can calculate
the total drag force in two main ways: 1) directly evaluating
the integral around the protein’s boundary, and 2) using the
reciprocal theorem. In the direct evaluation method, we can
determine the interaction drag either by explicitly findingthe
O(Vp) correction to the concentration field,φ(1), or using the
divergence theorem. The major advantage to the direct eval-
uation method is that the explicit solution of the advection-
diffusion equation can be avoided, which reduces the number
of boundary value problems to be solved.

1. Direct calculation using surface pressure

In order to calculateFhydro
drag =

∮

dℓ σ · n̂, we need to deter-
mine the surface pressureP . We can use the approach of [41];
we know by the symmetry of the problem thatP ′(ρ, θ) =

h(ρ) cos θ. We noteθ̂ · ∇P ′ = − 1
ρh(ρ) sin θ, and so we can

extracth(ρ) directly from theθ̂ component of Eq. 31,

h(ρ) =
2

ρ2
Y (ρ)−

2 + ρ2ǫ2

ρ
Y ′(ρ)+Y ′′(ρ)+ρY ′′′(ρ). (B3)

This is exactly the result of [41], as there is noθ̂ component
to the composition-induced drag at linear order. We can then
perform the angular integral

F
hydro
drag · x̂ = R

∫ 2π

0

[σρρ cos θ − σρθ sin θ] (B4)
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yieldingFhydro
drag = −ζhydroVp, with

ζhydro = πηm
(

Y ′′′(1)− ǫ2
)

. (B5)

The interaction component of the drag can be computed ei-
ther by explicitly determining the stress tensorΠ to linear or-
der inVp, or by using the advection-diffusion equation, as in
Section I A.

a. Determining linear correctionφ(1)

In order to determine the linear correction to the equi-
librium order parameter field, we can solve the advection-
diffusion equation Eq. 22 perturbatively inVp, similarly to
the procedure used in Section A. To linear order inVp, with
φ(ρ) = φ(0)(ρ) + φbτg(ρ) cos θ,

[

g′′ +
1

ρ
g′ −

1

ρ2
g

]

− β2g = β3

(

1−
Y

ρ

)

K1(ρβ)

K0(β)
(B6)

The boundary conditions on this boundary-value problem
areg(1) = 0 andg(ρ) → ∞ asρ → ∞. This is straightfor-
ward to solve numerically onceY (ρ) is found via the method
in the main paper; we use bvp4c for this problem as well.

The functiong(ρ) can also be used with Eq. A6 to deter-
mine the interaction drag,

ζI/ηm = −χ
π

β

K1(β)

K0(β)
g′(1). (B7)

b. DeterminingζI without calculatingφ(1)

The interaction component of the drag can be computed
without explicitly findingφ(1). First, by the divergence the-
orem, we note

Fint
drag=

∮

dℓΠ · n̂ (B8)

= −

∫

r≥R

d2r∇ ·Π (B9)

We can use Eq. 22 to determineδHδφ ∇φ = − 1
Γ (vm − Vp) ·

∇φ∇φ. To linear order inV0, this force only depends on the
static profileφ(0), giving us

Fint
drag =

1

Γ

∫

r≥R

d2r (vm −Vp) · ∇φ(0)∇φ(0) (B10)

= π
Vp

Γ

∫ ∞

1

dρ ρ

(

Y (ρ)

ρ
− 1

)

K2
1 (ρβ)

K2
0 (β)

(B11)

i.e.

ζI/ηm = πχ

∫ ∞

1

dρ ρ

(

1−
Y (ρ)

ρ

)

K2
1 (ρβ)

K2
0(β)

(B12)

2. Reciprocal theorem method

The integral
∮

dℓ (σ + Π) · n̂ may also be evaluated sim-
ply by using an identity derived from the reciprocal theorem
[52] of low-Reynolds number fluid mechanics (see [53, 54]
and references within). This trick lets us determine the total
drag force on an object in a fluid flowv in terms of a simpler
“reference” flowṽ in the same geometry.

Suppose thatv andṽ are two vector fields defined over the
volumeV outside a surfaceS, and∇ · v = ∇ · ṽ = 0. Then
let σ andσ̃ be the hydrodynamic stress tensors corresponding
to v and ṽ, i.e. σij = −P (r)δij + η [∂ivj + ∂jvi], σ̃ij =

−P̃ (r)δij + η [∂iṽj + ∂j ṽi]. Then
∫

dSn̂ · [v · σ̃ − ṽ · σ] =

∫

dV [ṽ · (∇ · σ)− v · (∇ · σ̃)]

(B13)
where the normalŝn point out from the surface. This result
can be derived in any dimension using the divergence theo-
rem.

We can use this to reformulate the integralFdrag =
∮

dℓ (σ+Π)·n̂; in this case, the surfaceS is just the perimeter
of the protein,r = R, and the volumeV is the region outside
of the protein,r > R. We letv be a solution to the drag
problem of the membrane Stokes equation including the com-
position force∇ · Π, i.e. v obeys Eq. 27 with the boundary
conditionsv = Vp at r = R, andv → 0 asr → ∞. We then
choosẽv to be the Evans-Sackmann solution [41], i.e. the so-
lution of Eq. 27 with∇ ·Π = 0 with the boundary conditions
ṽ = Ṽp atr = R, andṽ → 0 asr → ∞.

As the membrane Stokes equation (Eq. 27) can be written
as∇ · σ +∇ · Π−

ηf

H vm = 0, we find

∇ · σ = −∇ ·Π+
ηf
H

v (B14)

∇ · σ̃ =
ηf
H

ṽ (B15)

Using these results, and noting that on the boundary of the
protein,v = Vp andṽ = Ṽp, we can simplify the reciprocal
theorem relation (Eq. B13), finding

Ṽp·

∮

dℓn̂·σ−

∫

r≥R

d2rṽ·(∇ ·Π) = −Vp·

∮

dℓn̂·σ̃ (B16)

Noting ṽ · (∇ · Π) = ∇ · (ṽ ·Π) − ∇ṽ : Π (where∇ṽ :
Π = (∂iṽj)Πij ) and applying the divergence theorem,

Ṽp ·

∮

dℓn̂ · [σ + Π] = −Vp ·

∮

dℓn̂ · σ̃−

∫

r≥R

d2r∇ṽ : Π.

(B17)
or

Ṽp · Fdrag= −ζEvans-SackmanñVp ·Vp −

∫

r≥R

d2r∇ṽ : Π

(B18)
We note thatζEvans-Sackmannas used in this equation does

not include the “intrinsic drag” term addressed above, and so
is smaller than Eq. 30 byπηmǫ2. This equation writes the
drag on the protein only in terms of the reference flow and the
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composition stress tensorΠ. To determineΠ to leading order
in Vp, we will have to solve the advection-diffusion equation

numerically. Once this is done, and we knowφ(1)(ρ, t) =
φbτg(ρ) cos(θ), Eq. B18 yieldsFdrag= −ζtotVp, with

ζtot/ηm =
1

ηm
ζEvans-Sackmann+ χ

∫ ∞

1

dρ
π

β

K1(ρβ)

K0(β)

1

ρ2
{

[g(ρ)− 2ρg′(ρ)] [Y (ρ)− ρY ′(ρ)] + ρ2g(ρ)Y ′′(ρ)
}

(B19)

3. Comparison of different calculation methods

We have found that as long as we solve the Stokes equa-
tions on a sufficiently large domain that the boundary condi-
tionsY (ρmax) = Y ′(ρmax) = 0 can reasonably be applied, the
different solution techniques agree well (Fig. 16).
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FIG. 16. (Color online). Calculation ofζtot does not depend strongly
on the numerical method used. The maximum relative difference
between these methods is4 × 10−5. Parameters in this calculation
are the same as Fig. 8.
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