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The diffusion coefficients of proteins embedded in a lipidhmbeane are traditionally described by the hy-
drodynamic Saffman-Delbriick theory, which predicts akwapendence of the diffusion coefficient on protein
radius,D ~ In R. Recent experiments have observed a stronger dependeneel /R. This has led to spec-
ulation that the primary sources of drag on the protein atdidrodynamic, but originate in coupling to other
fields, such as lipid chain stretching or tilt. We discuss @egie model of a protein coupled to a nonconserved
scalar order parameter (e.g. chain stretchiag)l show that earlier results may not be as universal as-previ
ously believed. In particular, we note that the drag depemdthe way the protein-order parameter coupling
is imposed In this model,D ~ 1/R can be obtainedf the protein is much larger than the order parameter
correlation length. However, if we modify the model to indduadvection of the order parameter, which is a
more appropriate assumption for a fluid membrane, we findtltieaéntrainment of the order parameter by the
protein’s motion significantly changes the scaling of thiudion coefficient. For parameters appropriate to
protein diffusion, the Saffman-Delbriick-like scalingéstored, but with an effective radius for the protein that
depends on the order parameter’s correlation length. Timditgtive difference suggests that hydrodynamic
effects cannot be neglected in the computation of drag ooteiprinteracting with the membrane.

PACS numbers: 87.16.dp,87.16.dj,47.63.mf,87.15.kt

Lipid bilayer membranes are a fundamental component oby DD, which has identical Model A dynamics for the field,
biological cells, and play a role in many essential biolagic but a linear protein-field coupling. We suggest that couplin
processes, including compartmentalization of the cell@nd the external field to the protein via a boundary condition may
ganelles, as well as cell signaling, in which the membrane i®e more appropriate for describing the protein-lipid iater
the environment for the relevant membrane proteins [1]. Intion. We then extend the model to describe the coupling with
teractions between the membrane and embedded proteins mayonconserved order parameter that is hydrodynamically ad
alter the functioning of the proteins [2] as well as potdhtia vected(“Advected Model A’} the order parameter is then en-
leading to protein aggregation [3]. The diffusion coeffitie trained by the protein, which significantly alters the magni
of proteins in the membrane has traditionally been desdribetude and scaling properties of the diffusion coefficientisTh
by the Saffman-Delbriick law [4—6], which predicts that theset of assumptions is more appropriate for a fluid membrane,
diffusion coefficient of a protein should depend only lotfari  as it allows the membrane to flow in response to protein mo-
mically on the protein radiusD ~ In(R). This prediction tion.
has be used to Qeterminethe size of membrane-embedded (?b'Our goal in all portions of this paper will be to deter-
jects and protein aggregates [7, 8]. However, recent experinine the drag force on a protein moving with a fixed velocity
ments have measured protein diffusion coefficients thag¢ hthhrough an order parameter fieldr, t). In Section | of the
a stronger dependence on protein radills~ 1/R [9-11],  paper, we will follow [15, 16] and assume that the order pa-
though this is not universally accepted [12, 13]. Naji, i 5 meter field is not advected by the lipid flow around the pro-
and Pincus (NLP) suggested that this dependence could ariggn and that the lipid flow is not altered by the inhomogene-
from dissipative protein-lipid interactions, such as a@owy iy of the order parameter. In that case, we find the drag force
to local lipid conformation (e.g. chain stretching or tiity4] due solely to the order-parameter interactiBfjt,, = —; V

. p . . . B P
(Fig. 1). Démery and Dean (DD) have described an intergstinyhere v is the particle velocity. The total drag will then be
cla}ss of thesg coupllqg modelsz and shown.that the case Oéftot = ¢/ + Cnyaror Where by assumption the hydrodynamic
a linear coupling to a field with simple relaxational dynasnic drag Chyaro is just the usual Saffman-Delbriick drag [4], and
can be solved exactly [15, 16]. The dynamics of proteins withy, o giffsion coefficien — kpT /(o by the Stokes-Einstein
hydrophobic mismatch (i.e. a coupling to membrane thickyg|ation [21, 22]. In Section II, we explicitly include thela
ness) has also been treated by coarse-grained molecular dysction of the order parameter by the lipid flow around the

namics simulations [13, 17knd the dynamics of proteins potein, and determine the total drag integrating the stress
with a preferred spontaneous curvature calculated with contgnsor around the protein

ti hes[18, 19]. . .
inuum approaches | ] We do not give the order parametgfr, ¢) a direct phys-

We extend the approach of Démery and Dean [15, 16]ical interpretation, but note that the Model A dynamics are
treating a model of a protein coupled to a nonconservethe simplest possible phenomenological model of a non-
“Model A’ order parameter(r,t) [20, 21]. We apply this conserved scalar lipid feature, such as lipid conformation
coupling as a boundary condition, and show that this modef2, 23—-25]. The combination of the advection-diffusion and
can be solved exactly to determine the additional drag fronlmydrodynamic equations we present here are a very simplified
the protein-lipid interaction. We then discuss some distin version of those used to model liquid crystals [26—28]. Ex-
tions between this model and the model originally suggestetensions of this research to coupling to more complex lipid



characteristics (e.g. tilt and thickness [29]), may be ibss We discuss this model to show in a simple context that the
though the dynamics of these fields are still not completelydrag on the protein depends on the way the coupling between
understood [30-32]. the protein and the order-parameter is treated, i.e. as@dou

ary condition, as in most of this paper, or a linear intexagti
as in [15, 16]. This section also serves as an introduction to
the more complicated and realistic model of Section I, veher
we will show explicitly that hydrodynamic effects cannot be
neglected.

Model A describes a scalar fieftlr, ¢) with a Hamiltonian

2
H= g/d% Ba;?(r) + %|V¢|2 (1)

wheref is an energy density anfthe correlation length of
the field. The dynamics of this field are then given by

)
Oro(r,t) = _FWZt) +v(r,t) 2

=-T€ (¢ — V?) + v(r,1) ()

whereT" is a phenomenological transport coefficient, with
1/TE = 7 the relaxation time of the systemv(r,t) is a
Gaussian Langevin force with varian¢e(r, t)v(r/,t')) =
2kpTTo(r — r')d(t — t'), as required by the fluctuation-
dissipation theorem [21]. For the remainder of the paper, we
will neglect the fluctuations; this point will be discussed i
Section Ill.

R

A. Model A with boundary condition

FIG. 1. (Color online). A: Schematic illustration of a pristénduced
distortion in a lipid membrane from top of membrane. Lipidshin We determine the drag on a protein moving with a fixed ve-
a distance of roughly of the protein may have altered properties, |ocity V,,. The protein influences the order parameter around
;uch_as c_hain conforma}tion_. B: One particular example dabdis it, which we represent by fixing the fieldto the valuep, on

thn, in which hydrophobic mismatch leads to a change in nram# the protein surface. Near the proteifwill then take on a
thickness. value different from equilibrium value af = 0 (Fig. 2).

If we change frames to the reference frame of the particle,
the equation of motion Eq. 2 becomes (at steady state, and
neglecting fluctuations)

I. MODEL A DYNAMICS

1
—Vp Vo= (¢ —&V30) 4)
Démery and Dean [15, 16] have suggested applying a sim- _ . S

ple dissipative model to describe the dynamics of a noncon¥nérer = 1/I'€ is the field's relaxation time\Ve empha-
served order parameter in a membrane. This model, whichiZ€ here thaV, is simply the protein’s velocity, and in this
we refer to as “Model A’ dynamics (in the classification of model we have not explicitly considered the advection of the
Hohenberg and Halperin [200lescribes the relaxation of the order parameter; this assumption will be_ exammEd In Sectio
order parameter to its equilibrium value with a phenomenol!- We determine the field(r, ¢) perturbatively in the protein
logical relaxation timer. Although scalar order parameters VelOCity V;, [36]. We takeV,, = Vox without loss of gener-
with similar energetics have previously been used to descri ality, and expand(r, t) ~ ¢@)(r) + Vo ¢()(r, ). To zeroth
chain order in membranes (see, e.g. [24, 25, 33]), we do n(ﬂrde_r in Vo, ¢ must be t|me_-_|ndepe_zndent and radially sym-
give a specific physical interpretation for the fieldas we do ~ Metric. The boundary condition afiis thaté(r = R) = ¢,
not have a good reason to believe that Model A is a realistidvn€reft is the protein radius (see Fig. 2), andr) — 0 as

physical model for the relaxation of any of these order param’ — ¢ With these boundary conditions, we solve Eq. 4 to

eters. The primary reason for working with Model A is that it zeroth order ir to find
is the simplest possible dynamical model for a nonconserved Ko(r/€)
order parameter. Similar models have also been proposed phe b0y (r) = ¢bm (5)

nomenologically for the relaxation of the nematic order pa-
rameter [34, 35], though to reach the simple one-relaxationwherek,, (z) is then"-order modified Bessel function of the
time approximation of Eq. 2 requires neglecting fluid flow.  second kind. We note théir, ¢) is only defined for > R.
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whereg = R/¢ is the ratio of the protein radius to the inter-

face width, which is the relevant unitless measure of the pro
tein size;¢. = w¢7/T is the characteristic scale of the drag.

The interaction drag; has the asymptotic behavior

_ 1/2+~vg+In(B/2)
/o Perinap O <1 (11)
B8/2 B>1
whereyg =~ 0.5772... is the Euler-Mascheroni constant.

These asymptotic results and the exact result are plotted in
Fig. 3.

Vp=0 Vp#0 We see that we recover thg ~ R scaling in the limit

R > ¢, as predicted by NLP’s scaling arguments. We also

FIG. 2. (Color online). lllustration of the)(r, ¢) profile. Forthe  gpserve thaf; has a weak (logarithmic) dependencef®for
static protein (Ieft)¢(r, 1) = ¢(0)(r) is given by Eq. 5. Foraprotein  p <&

moving at constant rightward velocity (righty(r,t) = ¢(0)(r) + ; )
Voo (1)(r,6). The contours shown are logarithmically spaced, i While the largel? dependence of; on R is clearly pre

. - € dicted by the scaling arguments of NLP, the dependence on

for?toﬁl; ca)t;he thick contouri( = 1), and¢ = 0.1¢, at the next. & (¢r ~ 1/¢) is less obvious. However, it is a consequence
of dimensional analysis along with NLP’s prediction~ R
The only independent parameters in our modeliye, T, 7,

To determine the drag force, we have to integrate the stressd ¢,; constructing a variable with the units of drag shows
tensor for the field around the inclusion. The stress tefigpr  us that¢; = I'"' f(R/¢, ¢p), as we see in Eq. 10. Thus, as
for the¢ field can be derived by looking at small deformations¢; can only depend o and¢ through3 = R/¢, ¢ ~ R
of the system, and determining the change in the enéfgy implies(; ~ 1/¢. In other words, as the interface widghs
[37, 38]. The resultis [37—39] decreased, the drag increases This singular behavior is a

1 ¢2 remnant of the unphysical assumption that the lipids’ vigjoc
ILij(r) /€ = 0 {5(;52 + 3|V¢|2] — E*(V;0)(V;¢) (6) isuncorrelated with the protein velocity; in a fluid membean
the increasing stress near the protein will lead to lipid flasv
ie. V.II = ‘;—HV¢. The total force, which is in the direction ~ We will see in Section II, which will change this behavior.
by symmetr; i § 0Tl A = Fx, When will the order parameter-induced drag be the primary
1 drag source of drag? Our initial assumption in this section i¢ tha
2m the presence of order parameter inhomogeneities does-not af
F= R/ df 1,;(r = R,0)n; (7)  fect the lipid flow around the protein, or the hydrodynamic
0 drag; this assumption is obviously suspect, and we will ad-
wheren; is the outward-pointing normal to the circle and dress itin Section Il. However, with this assumption, thalto
the Einstein summation convention is assumed. In pringipledrag on the protein igot = (7 + Chydro, With Chydro given
we would need to determing(r) to first order inV, to de- by the Saffman-Delbriick drag [4, 5, 40], if the protein is in
termine F, as the force ig)(1;); we do this calculation in a free membrane, or by the Evans-Sackmann [41] or Stone-
Appendix A. However, we can avoid explicitly calculating Ajdari [42] theories for proteins in supported membranes. F
#(1) by using the steady-state equation Eq. 4, letting us setroteins,hydgro ~ 7m, Wheren,, is the membrane’s surface
V.11 = %Wb =T"1(V,-V¢)Vé. Thus, to first order, viscosity [4]. If {; is given by Eq. 10, then for a fixed radius
V - I will only depend ong(q). By applying the divergence R, the interaction drag will be much larger than the hydrody-

theorem to Eq. 7, namic drag ify > 1, wherey = ¢7/n,,,I". In Section I, we
will see thaty is still a relevant parameter when advection is
Fgwrtag: _/ &E2rv 10 (8) !ncluded., and that the orqler parameter drag can be neglected
>R if x < 1; however,xy > 1 is not sufficient to make hydrody-
1 ) namics irrelevant.
~ — = / d ’I”Vp . V(b(o) V(b(o) (9)
r r>R
where the second line is correct to first ordeiin We could  B. Model A with linear interaction: comparison with D émery
equivalently have determined this equation by considetiag and Dean result
power dissipated (as in [18]) = & = [ d%r 511) dolr) —
fd2 (V, - V)2 F'é‘rta Vp. Démery and Dean also study Model A dynamics (as well
Eq 9 can be mtegrated straightforwardly, and we findas other dissipative models), but couple the protein to éie fi
F'cﬂtag = —(;V,, with with a linear interaction, rather than a boundary conditidi

show that their model as formulated in [15, 16] results infa di
ferent drag than the boundary-condition model, but that the
result is sensitive to the method used to choose the strefigth

BKo(B)* +2Ko(B)K1(8) — BK1(B)*
2Ko(B)?

1 =Cp (10)
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h? = 16m2y;ERE?/ In(1 + €2/ R?). Evaluating¢; from
10 ‘ ‘ ‘ Eq. 15, we find

—Exact result ) 9
o Large R asymptotic A Db __ DD _ 0
10" b o Small R asymptotic ¢ 1 r - CC ﬁ |:1 (71-2 + [-32) In (1 + 7T2/['32) (16)

wheres = R/¢ and(PP = QF’% is the characteristic scale of
the drag in the DD model. For small and large proteins, this
result takes on the asymptotic forms,

) ) ) 14+2log B/m
10,07 107" 10° 10 10° CPD /CED ~ B , 2log B/ A<l (17)
RIE 53 B>1

FIG. 3. (Color online). The drag from interaction with thetexal

field (Eq. 10) in the boundary condition model scales lineaith The DD model predicts that the drag coefficient will in-
protein size for proteins with a radius much larger than te&ls crease with protein radiuB only if R < &, where¢ is the
correlation length & > ). However, in the limitR < & (r ~  correlation length. DD do not consider the limit & > ¢
1/In(R) (Eq. 11). explicitly, but if we assume that the fordi, = 6(r/R — k)

is still appropriate, the DD model predicts that the dragftoe
cient will actuallydecreases1/R. This should be contrasted
with the behavior determined from the boundary-condition
coupling (Eqg. 11), which crosses over from logarithmic be-
havior for R <« £to (f ~ RasR > ¢ We argue that
“our model is more consistent with the scaling analysis of,[14
which requiresk > ¢ as a necessary condition to guarantee

the linear protein-field interaction. If we make a differeng-
scription for this interaction, the DD results match withrou
approach in Section 1 A.

The DD model considers a membrane inclusion with po
sition R, (t) = V,t interacting with a classical field(r, t)

with a Gaussian HamiltoniaH = Hy + Hin(t), that¢; ~ R.
1
Ho =5 [ d'ro() a0t (12)
; 10 ‘
Hin(t) = h/d ro(r)K(r — Ry(t)) (13) —Exact result
o Large R asymptotic
where A is a positive self-adjoint operator ar(r) is an 10° | | © Small R asymptotic g
“envelope” function localized near= 0 and with the charac- |
teristic sizeR, e.g. K (r) = ﬁe”z/wz. For simplicity of o
calculation, DD treaf{ (r) as applying a cutoff in momentum 2&” 104
space Ky = 0(w/R — k) for the Model A coupling, wheré F
is the Heaviside function. The Fourier transform convergio
used here arg = f-d27°.€71k'rf(r), flr) = f %?Zk'rfk. 10267
The class of dissipative models studied by DD is
oH
Orp = —T—— + v(r,t 14 107 ‘ ‘ ‘
t(b 6¢(I‘) ( ) ( ) 10-2 10—1 ]F-;/);) 101 lo2
wherel is a positive self-adjoint operator amds a Langevin
force obeying the fluctuation-dissipation relation. FIG. 4. (Color online). The DD model [16], Eq. 16 predicts agir
In two dimensions, Démery and Dean fi ”rtag = coefficient¢PP that scales linearly in protein size fdt < &, but
—9Hw — _ DDV with if we extend it naively into the limitR > ¢, ¢P° decreases with
IR, rooe increasing protein size (Eq. 17).
DD _ 2/ d2k kilKkP (15)
! (2m)?2 AfTk The inconsistency between the results of DD and the re-

sults of Section | A and the scaling analysis of NLP [1&]
where for Model AAy = (1 +k%¢?) andl'x = I' (see Egs.  sults from the different handling of the protein-field irger

1-2). N o _ tion (boundary condition for Section | A or linear couplira f
DD set i by requiring that the static insertion energy, DD). However, by exploiting the freedom to choose the enve-
Eips = — 1L Js° dkk|Kyx|*/ Ay scale as a line energiins =  lope functionk (r) and the interaction scale we can make

—2myrR. With the choiceKy = 6(n/R — k), we find that  the DD model consistent with the boundary-condition model.



We first note that Eq. 15 can be rewritten as Il. EFFECTS OF HYDRODYNAMIC ADVECTION OF

ORDER PARAMETER (ADVECTED MODEL A)
DD _ / d*k k_azc
=) (2n)? Iy
1 2 s oD (o |2
=T /d X Vo (r)’ (Model A)  (19)  |ipids are at rest, even near the translating protein (Fig. 5
This assumption is apparent in Eq. 4. In addition, the models
where ?OE; is the static profile for the DD mod ?(B(k) = of Secti(_)n | do not allow the material to flow in response to
Y WING ¢.(30.3 is the steady-state solution to Eq. 14, i.e the applied stresd; they describe a solid. These assumptions

it minimizes Ho + Hyr. Eq. 19 holds only for the specific are not generally appropriate for lipid membranes in theidfl

case of Model A wher I'. By comparison to Eq. 9 phase, which are well-described by hydrodynamic theodies [
’ k — . . y

” o~ 43]. In particular, molecular dynamics simulations showatth
the DD approach and the boundary-condition model will glveIipids near a diffusing protein are entrained by the prqtaird

Ss e D : -
'_de_m'ca! results | (0) (r) = ¢(0)(x), V_V_hereQS(O) is the equi . have velocities correlated to the protein motion [44]. lifr&o
librium field from the boundary condition model (Eq. 5). This jisigs within £ of the protein move in concert with the protein,

means that if the envelope functiéf(r) is chosen so thatthe ¢ gistortion ofe(r, ) due to protein motion and therefore
distortion around the protein matches that of the boundaryg,o dragc; will be significantly reduced (Fig. 5, right). The
condition model of Section | A, the drag will be identical to hydrodynamic flow caused by the stragswill also lead to

that of the boundDa[L)ry-gondition model (Eq. 10). We can alsqy, gteration of the drag on the protein due to hydrodynamic
ensure thaf; = ¢7° without changing the envelope function dissipation.

by changing the prescription fdr, e.g. by choosing such
that

/ d*r
R2

signing h to be a complicated function ai; after all, as is
clear from Eq. 15, the choice &f can completely determine

#0300 (18)

Both our model of Section | A and that of DD assume that
the order parametef is not advected by fluid flow, i.e. that

% VP3| = / Pr[%- Vo 0] (20)

with Section | A {; ~ 1/1n 8 for 5 < 1) by weaker assump-
tions. One possible way is using the cutoff functifip =

6(m/R — k), and then choosing to ensure that the boundary SOIId “““““"I‘:'ll’J'ia'”””""
conditiong() (r = R) = %foﬂ/ﬂ du Jo(uf) 3z = ¢

holds. In this case, FIG. 5. (Color online). Lipid velocities plotted in the franmoving
with the protein. The dark central circle is the protein, &mallighter

;| In {1 + ”—Z} _ 27r2 . circle the region withy(r) significantly different from 0. The models
JDD/Cc S A m+h . (21)  of Section I make the assumption that the lipids are at réive to

2 (fw//i du J (uB)L) the protein, i.e. that they have velocityV, in the protein’s rest
0 0 T4u? frame; this is illustrated in the left panel. In a fluid memiathe

lipid velocity will be entrained by the protein motion (righ The
where, as in Section | K. = 7¢7 /T'. Numerically evaluating distortion of the profiles(r) will be significantly reduced in this case,
Eq. 21 shows thatP® /¢. ~ —1.0097/ In(B) for 3 < 1 (with  compared to that of Section |.
maximum relative erro3 x 103 for 3 from 10~!2 to 1079),
consistent with the scaling of Eq. 10 for« 1. If ¢ is advected by a velocity field in the membrang, we
We also argue that the procedure for determiningsed  describe the dynamics of the fiejdin the protein’s reference
in [16] may not be appropriat®r other reasons We note  frame as (in steady state)

that the suggested requireméhits ~ R is not reasonable SH

for all values of R/¢. Throughout [16], DD assume that (Vin = V) - Vo(r) = —Fé— (22)
R < ¢ (the deformation is much larger than the protein); ¢

if this is the case, the deformed area surrounding the pro- _ 1 (¢ — €2V?9) (23)
tein will be roughlyz¢2 — 7R? ~ =¢2, and we would ex- T

pect only a weak dependence of the insertion energy on th&@here nowv,, is the membrane velocity measured in the lab
protein size. More explicitly, within the boundary conditi  frame, i.e.v,,, = V,, atr = R, andv,, — 0 asr — co. We
model of Section | A, the insertion energy will be given by will work in polar coordinatesr,, (r, ) = v’ + v% 6. This

Eins = H(¢(0)] = nE€5&*BK1(B)/Ko(B), with 3 = R/E. advection-diffusion modelwhich we call “Advected Model
For R < ¢ we find thatFEins ~ —7EE%¢7 [vr + In(8/2)]"", A, is the simplest possible model to represent the dynam-
showing a weak dependence Bnas suggested by our rough ics of a nonconserved order parameter iftuéd lipid bilayer
estimate. membrane.



The total drag force on the protein is (see, e.g. [27, 45] forexpect the hydrodynamics to be in qualitative agreemettt wit

similar calculations) that of a free membrane for objects of siRe< Ly, where
L%I = 2L, H; see [50, 51] and references therein. For ex-
Fdrag = j{dg (c+1I) - (24)  ample, we note that the hydrodynamic drag in this theory will
have the same functional form as the Saffman-Delbruck law

[4] in the limit of R < Ly, but with Ly instead ofL,, the

where the integral is around the boundary of the protéin,
relevant length scale.

is the outward-pointing normal] is the composition stress
tensor (Eg. 6) and the hydrodynamic stress tensor,

J J
oij = —P(Sij + Mm ((f?avm + (va> (25) .
i o superfluid r]f
whereP is the membrane surface pressure apdhe mem- E R
brane surface viscosity. In Section |, we only calculated on - >

piece ofFgrag, F‘(;‘r‘ag = §dlII- i (Eq. 7). Our approach in
this section will be to calculat®yrag from Eq. 24, and then

determin€g, i.€.
Ffjor?g; = —(otVp (26) ' H

subfluid r)f

We have, in Eq. 26, included the possibility of there being
additional sources of drag beyond that in Eq. 24, EgQ =
Farag+ FadditionaiWith Farag from Eq. 24. The “intrinsic dgrag”
that Evans and Sackmann include [41] is of this form, and w
will treat this term below; we also will include an appropeia
intrinsic drag of this sort in our calculations Qf:. FIG. 6. (Color online). lllustration of protein of radius diffusing

To determinev,,, and P, we have to solve the Stokes equa- in membrane a heightf above a substrate, surrounded by fluid with
tions appropriate for a membrane taking into account the bodviscosityn;. We have also indicated the distorted region near the
force V- I = 24V¢ exerted by the field on the fluid. membrane, with characteristic sige
Within the Saffman-Delbriick picture of a membrane as a two-

dimensional fluid surrounded by a bulk three-dimensional he ab ¢ lina b h . dth
fluid, the membrane Stokes equations are [4, 5, 43, 46-48] In the al Sence of coupling etween the protem. and t € or-
der parameter (i.e¢, = 0), the bare hydrodynamic drag is

V2V — VP +Kxv, + V-1 =0 (7) [41]
V V=0 (28)

where(K « v,,,)(r) = [ d*' K(r — r’)v,, (r’) is the the trac- (Evans-Sackmanfr= 77 € {26 + Kole)
tion from the outside fluid and the boundary conditions are

v, = Vponr = Randv,, — 0asr — oo. In a free- ) ]
floating membrane surrounded on both sides by a fluid wityvheree = R/Ly. We emphasize that Eq. 30 includes the
viscosityn, the Fourier transform of the convolution term is €ffect of the intrinsic drag W2'th the substrate, which adds a
given by {K  v,n }q = —207q vim(q), i.e. K(q) = —2n;q. drag force of aqgitonas = —7Rb, V), [41], whereb, is a phe-
This nonlocal term makes solving the mobility problem diffi- "omenological drag coefficient. We have included this term i
cult [5]. We will treat the similar case of a membrane aboveEd- 30, setting, = 7/, which is appropriate for a mem- -
a solid substrate (Fig. 6), which in some limits reduces to Jrane separated by a thin layer of fluid from a substrate. This

significantly simpler problem. The kerrilq) then takes the ~ t€rm accounts for the drag on the bottom of the protein; see
form [46, 49] [41, 42] for details. We also include this term in our numatic

calculations of},; for Advected Model A, so thaj, is equal
K(q) = —nsqcoth (¢H) — nsq (29) to Eq. 30 when the coupling to the order parameter vanishes
(¢p = 0).
In principle, the advection equation (Eqg. 22) and the mem-
brane Stokes equations (Egs. 27-28) must be solved simul-
taneously in order to determine,,, ¢(r) and P. However,

For wavelengths long compared # (¢ < 1/H), this re-
duces to the forniK(q) = —n,/H, i.e. a linear drag,

K*v,, = _”—H{vm [41, 42]. In fact, this approximation may

be appropriate as long &is small compared to the Saffman- ; ; o

" - e we can again exploit the simplicity of the order parameter dy
Delbrl_Jck"Iength scaldsq = nm /21y [42]. This “Brinkman o ies and use Eqg. 22 to calculate the fafige= 32V¢ =
equation” model can also be derived from treating the thin ®

layer of fluid between the membrane and the solid substrate T (Vim = Vp) - V@V 6. To linear order in;, this force only
in the lubrication approximation [42]. Though strictly se ~ d€Pends on the static profilg,), and we can eliminate Eq. 22.

ing this approximation describes a supported membrane, we If we rescale variables, defining= /R andu = v,/ V%,



we find, to linear order i, parameter field to alter the drag coefficient significantlg, w
must havey > 1. In this region of parameter space, the
Ki(Bp) 0 (31 flow field v,,, will necessarily be modified, and we will have
K2(3) (31) to solve Eq. 3_1 numerical!y. Since the Stokes eqqations we
Vou=0 (32) use are two—dlm_enS|onaI, it turns out to be convenient to use
the streamfunction representation f@r[52]. We represent

u(p,0) = V x [(p, 0)z], i.e.

V?u - VP — u — x it - (u — %)5?

where the derivatives are now with respecpt@nd P’ is the

unitless pressure. We now see that the velocity profile atoun 19
the protein will depend on three dimensionless grodp$, up = —%10(% 0) (33)
andy, wheree = R/Ly and = R/ as above. The “drag p 5
ratio” x = ¢2/n,,I" is the ratio of the naive scale of the in- up = ——1(p, ) (34)
teraction drag; ~ ¢7/T to the naive scale of the hydrody- dp

namic drag,hydro ~ 7m- By this, we mean that the naive
model of Section | A (or that of Démery and Dean applied to
Model A) predicts that the scale of the drag induced by th - . :
order-parameter interaction ¢g /T, i.e. that the ratio of the ewgtfrim)fvp, ¥ = Y(p)sind. By taking the curl of Eq. 31,
order parameter drag to the hydrodynamic drag will scale as
x. However, increasing will also increase the effect that the Y (p) B2 K2 (Bp) .
order parameter has on the lipid flow near the protein, ie. th Vi — V34 x (— - ) 7% sinf = 0 (35)
last term in Eq. 31 becomes largeyf> 1. 0

In order for the coupling between the protein and the ordeOr, explicitly working out the derivatives,

which automatically satisfies the incompressibility regui
ment. We know by the linearity of the problem and the sym-

This fourth-order ODE has boundary conditions set by
the boundary conditions ow,,, which arev], = V{cosf

andv?, = —Vysinf atr = R, andvl, = 0, 0%, = 0

asr — oo; these transform td/(1) = Y’(1) — 1 and A. Implications for protein diffusion coefficients

Y (00) = Y’(00) = 0. This boundary value problem is rel-

atively straightforward, though it does require us to resal The experiments of Gambin et al. measure the diffusion

large range of length scales; we must resolve the veloclty fie of proteins and protein complexes with radii ranging from
over the regionl, 1 + 1/] whereg o, is significantly differ- 0.5 — 2 nm [9], finding thatD ~ 1/R (i.e. ¢ ~ R) over

ent from zero, but the domain of the whole problEnyma  this range. Experimentally measured membrane surface vis-
may be large, as we must haygax > 1/e. We use MAT-  cosities are of the order ¢f)~7 — 10~ poise cm [40, 55-58],
LAB's boundary value solver bvp4c to determikiép). We  corresponding to Saffman-Delbriick lengttis { = 7,, /2n;)

use an initial guess of (p) = 1/p with a logarithmically-  of roughly 0.1 — 10 microns, much larger than the protein
spaced initial mesh. radius. The relevant hydrodynamic regime for describirag pr

OnceY (p) is determined, we need to calculate the totalt€ins is thusk < L, Many features of this limit are re-
drag force, Eq. 24. We can do this in two major routes: 1)Produced by our Brinkman equation model of Eq. 31. In par-
directly via Eq. 24, or 2) applying an identity derived from ticular, the Saffman-Derruck drag and the Evans-Sackman
the reciprocal theorem [52-54]. Each route has separate affag have the same scaling whan< L,; and R < Lp;
vantages: if we use Eq. 24 directly, we do not need to defor € = R/Lx < 1, the Evans-Sackmalnn drag has the
termineg;, explicitly, but if we use the reciprocal theorem form Cevans-sackmani® 477, [log(2/¢) —vp] . in compari-
identity, we need to determing;, but do not need to de- son with(,q = 471, [log(2Lsa/R) — A/E]’l for R < L.
termine the full membrane stress tensoor the membrane We wish to explore the question: can the interaction with the
pressure”. We determine the drag with both methods to en-order parameter alone change the scalingtf{ ~ R in the
sure consistency (Appendix B). As a check on the accuracy afegione < 1? Within our model of Section | A and that of
the solver and the drag calculation, fpr= 0, we reproduce DD, the answer is yes. However, we will find that including
the Evans-Sackmann result Eq. 30 with a maximum relativéhe advection of the lipids will qualitatively change theesbf
error of5 x 107° for e from 10~° to 10°. These errors are for the effect, showing that (within our model), order paramete
the direct method; the reciprocal theorem method uses the einteractions are insufficient to explain the experimentthd
act result Eg. 30, and does not provide an independent cheak [9].
if x = 0. In our model of Section IA, we found that the order-



parameter interaction led t@; ~ R in the limit of R > ¢

(8 > 1) andy > 1; we will start by examining this region of
parameter spac&Ve can determine some of the characteristic
features of the velocity profile,(p, 8) = p=1Y (p) cos 6 sim-

ply from Eqg. 31. We see that the order-interaction term acts
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as an effective drag on the radial partwofelative to the pro-
tein’s radial velocityf - X = cos 6. However, agd<; (5p) will c o
decay quickly forp > 1/p, this drag is only effective for a M§ K2
small region near the protein. #f > 1, we would expect that
the order-interaction drag is negligible beyond a distasice
where(p* — 1) ~ 55 log [bx/3*] whereb is an arbitrary con-
stant. In our numerical results, we see that for strong prote
order parameter coupling, > 1, the radial velocity near the 1.75-
protein is nearly constant for a significant distance (Fig. 7
This suggests the idea of an “effective radius” - that theeprd
induced drag essentially perfectly entrains the lipidsimia
characteristic distance of the protein, and the total dnagsl
be simply(evans-sackmare Reft/ R). Our estimate from above
suggests thatRer/ R — 1) ~ & [log x + logB?] for 33> 1. that the drag should be linearly proportionaltqEq. 10). We can

- - 1 fit these results to an effective radius theory as suggesiaceawith
We find below thaf e/ 1 . 1.) s Cah _also b? a useful Refi/R = 1 4 ¢1 + c2log x with 1 = —0.25 andcz = 0.045. In
fitting form more generallythis is unsurprising, as it suggests s simulationg = 102, 3 = 10, andpmax = 100/c.

that the effective radius is just the protein radius pluss di
tance on the order of the interface width.e. Reff =~ R+ c&.
However, we note that this is only a rough estimate, end
fact will break down for larges or ¢; this will be addressed
further in Section II B.

1.8r o

d
00000000

FIG. 8. (Color online). Asy = ¢7 /T'n,,, is increased, the total drag
on the proteini: (Eq. 26)increases only slowly, roughly dsg ;
this is very different from the theory of Section | A, whicheglicts

the model of Section I A, we found that the interaction drag
(r depended on the protein radifsonly in the combination

B = R/¢. This will not be the case for the total drag in our
hydrodynamic model. We can determine the total drag as we
either vary the interface width (Fig. 9), or vary the protein

R ] radius (Fig. 10).
08l T e | If we vary the correlation lengthwhile holding the protein
EI:.I‘ e radius fixed, we find that smaller drag layers will lead to a
o 0.61 =0 S . i smaller total drag on the particle (Fig. 9). This may seem
3Q | X= . T | unsurprising, but should be contrasted with the result & th
>>04r .- x=10 absence of hydrodynamics, Eq. 10, where the interactiogn dra
0.2 —x=10% T N (r is proportional taR/&, and thus smaller correlation lengths
¢ lead to larger drags.
foo 161 102 If we increase the protein radius, holding the interface

p width ¢ and the hydrodynamic lengthy; fixed, we see that

the drag increases (Fig. 10), but not nearly as much as would
FIG. 7. (Color online). Asy = ¢?/I'n,» is increased, the lipids near be predicted by the model of Section IA. We find that as
the protein are increasingly correlated to the proteingigipand the R > ¢, the effect of the order parameter coupling vanishes,
radial velocity profileu, is constant over the “effective radius” of the and the total drag simply reduces to the hydrodynamic Evans-
protein, which increases weakly with increasipg For this figure,  Sackmann drag, Eq. 30. This behavior, as well as that of
B =1,e=10"? andpmax = 100/e (the entire domain is not shown Fig. 9, can be well-explained by a description of the protein
in this figure). locally entraining the nearby lipids, as mentioned earlidre

total drag coefficients can be simply fit to an “effective reli

At large x, the total drag increases roughly linearly with model withReft = R + c¢, with ¢ a constant.
log x (Fig. 8). By comparison, the theory of Section | A pre- The effects of the order parameter interaction are most
dicts that(; /n., ~ x (Eg. 10); entrainment significantly re- obvious for large correlation lengths. In Fig. 11, we show
duces the effect of the order parameter coupling. In faemev streamlines for flow past a protein with and without the order
increasing the coupling strengtf by ten orders of magni- parameter coupling. In this example, the correlation leiggt
tude produces a smaller than% change in the total drag. is ten times the protein radius, making the “effective siat”
This weak dependence is consistent with the “local entrainthe protein very large compared to the protein’s physiaad.si
ment” argument given above: if we solve for the effective ra- As we can see from Fig. 10 and Fig. 8, in the limitRfs ¢
dius as defined bgioi(€, X) = Cevans-sackmari€Refi(X)/R), we  and R < Ly, there is not a significant change in the total
find that it scales akg  for xy > 1 (Fig. 8). drag, and there is not a qualitative change in the scaling of
What is the effect of changing the size of the protein? Forthe drag with radius?; instead, there is a weak dependence
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FIG. 9. (Color online). If we vary the correlation length of &,
while holding the radius® and the hydrodynamic length scale;
fixed (corresponding to varying while holdinge fixed), we see that
smaller drag layers lead to smaller total dtag(Eq. 26)on the par-
ticle. This should be contrasted with the result in the absenf
hydrodynamics, Eq. 10, in which thinner layers lead to lagyadi-
ents and thus larger drags= 10~% andy = 10° for the data in this
figure. This is well fit to an effective radius dter/R = 1 + ¢/8
with ¢ = 3.22.

—Evans—-Sackmann
---Effective radius fit
o Numerical results

2.5¢

-2
10
R/ L,

FIG. 10. (Color online). As the radius of the particle is imased, the
additional drag from the order interaction becomes negkgind o
(Eg. 26) approache&evans-sackmann IN this figure, we varyR while
keeping¢ and Ly fixed; we thus vary and set = 10~4/3, so that

e < 1 for the entire range of studied(s ranges from 0.1 to 100)
x = 10° for this figure. This is well fit to an effective radius of
Reif/ R = 1+ ¢/B with ¢ = 3.73.

FIG. 11. (Color online). Streamlines for flow around a protei
streamlines are shown in the protein’s rest frame. For th@émel,

x = 0, i.e. there is no order-parameter coupling, and the flow re-
flects the physical size of the protein (central gray circlé) the
right panel, there is strong order-parameter couplings 10°, with

a thick interfaces = 0.1 (¢ = 10R), and show that flow is mod-
ified, resembling a particle with a much larger effectiveesiZ’he
order parameter profile ) (p) is also shown (grayscale shading).
e = 0.01 for both cases.

with x. This result is perhaps not surprising, as the models of
Section | A and DD assume that lipid motion near the protein
is completely uncorrelated to the protein (Fig. 5); thisitim

is not reached by increasing which only tends to increase
the entrainment of lipids near the protein (Fig. 7). The aegl

of advection and hydrodynamics in the models of Section | A
and that of [15, 16] are therefore not well justified.

B. Other interesting features of the model with advection

Though our primary interest in this model was to consider
the limit relevant to the experiments on proteins of Gambin e
al. [9],i.e. R <« Ly ore < 1, where the analogy to free
membranes is best, our model (Eqg. 36) also describes dynam-
ics of larger objects in a supported membrang, 1. In this
limit, the simple “effective size” picture is not as usefulde-
termining the drag on a membrane-embedded object. We plot
the total drag on the protein as a function®fL 5 for various
values of¢ /Ly andx in Fig. 12 and Fig. 13. We see that for
R sufficiently large, the Evans-Sackmann result appliexmas f
the case of < 1 above.

A striking exception to the “effective radius” idea also
occurs for objects larger than the hydrodynamic corretatio
length L 5; we find that in this limit, the total drag depends
non-monotonicallyn the interface widtl§, with an initial in-
crease in drag followed by a decrease (Fig. 14). This runs
counter to the intuition from above, where larger values of

that can be characterized in terms of an “effective radius” 0 ¢ |ead to the lipids near the protein becoming increasingly

the order of the protein size plus the interface sjzeThis
behavior holds even in the limit of > 1. This answers our
central question: order parameter interactions, at |eatti$

entrained, and hence larger drags. However, in the limit of
e > 1, increasingé does not necessarily increase the local
entrainment of lipids. In fact, the range of entrainment de-

model, are not sufficient to cause the experimentally oleserv creases at large We show this explicitly in Fig. 15, where

result [9] Cior ~ R.

As far as we can tell, even as>> 1, we do not recover the
model of Section | A, which predicts a linear increasejn

we plot the lipid velocity field near the protein as well as the
distortion¢ gy (r). Though this is initially unintuitive, an ef-
fect of this sort should not be altogether surprising. Thragdr
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FIG. 12. (Color online). As the radius of the object increasbe FIG. 13. (Cplor online). Increasing increas_es _the total drag
additional drag from the order parameter interaction besoregli- on the protgln, but doeg npt change t?e qualltaFlve fgaftmasthz;tt
gible and the total drago: (Eq. 26) approaches the Evans-Sackmanns‘hOWn in Fig. 12. For this figure, = 1.0 ’ iny points with3 < 10
result ask > £, L. Drag is shown as a function @t/Ly = «, are shown, for reasons of computation time.
with Lz and¢ held fixed. For this figurey = 10°. Only points with
B < 10? are shown, for reasons of computation time.

force on the lipids due to the composition interaction takes

form of a force density proportional to tigeadientof ¢ (r),

£, = —F*l(vm—Vp)-V@O)V(;S(O). As¢ increases, the order
parameter fieldb o) (r) becomes increasingly uniform, and the
order-parameter drag is less effective at entraining lizials
(Fig. 15). However, this limit does not appear to have any im-
mediate physical relevance, since it refers to distortitias
are orders of magnitude larger than the protein they sudoun

Ill. DISCUSSION  10*

We have presented a model that describes the drag on o 0q
protein due to its coupling to a non-conserved order parame 3 o %
ter. Our model, though it uses the same underlying Model A o °°ooo c
dynamics as that of Démery and Dean [15, 16], couples the ~_E o °°o°°J
protein to the order parameter by imposing a boundary condi g 2r o
tion, and calculates the force via the stress tensor. Thaemo d
shows that the interaction drggscales linearly in the protein
radiusR if R is much larger than the order parameter correla-
tion length, but has a much weaker, logarithmic, dependenc o
on R for R < &. We attribute the difference between our re- 0° ; ;
sult and that of Démery and Deantte different handling of 10° 10 10" 10 10
the protein-order parameter interaction, and show that-by a &L,
tering their method of assigning the linear coupling parame
h we can make the two methods consistent. FIG. 14. (Color online). The total drag on the protéin (Eq. 26)

We also note that Démery and Dean have also calculatechn be non-monotonic ig, the size of the distortion of the field.
the drag force at large particle velociti®s,, which we have  The velocity field of the points marked A, B, and C are shown in
not done. However, we suspect that our model of Section | Aig. 15. For this simulations = 10 andx = 10°, and we set
will also differ from the linear coupling model of Démerydin  Pmax = Max(100, 100/5) wheres = R/¢; this result is insensitive
Dean in terms of the nonlinear response. In [16], the digtort [0 INcreases impmaxand refinements of the mesh.
in ¢ caused by the object-field interaction vanisheg 8¢,
at large velocities, but because of the boundary conditien w

O00g
o o Numerical results

—Evans—Sackmann
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FIG. 15. (Color online). Lipid flow fields near the protein atgperimposed over the distortion in the order parametgy(r), which is shown
as a color map, ranging from light»(= ¢3) to dark (¢ = 0). Velocities are plotted relative to the protein’s velgcitn the leftmost image
(A), the distortion is small, and does not strongly affeet Welocities. In the center image (B), the distortion is éamgxtending far beyond the
region shown, but still shows noticable gradients near tioéem. In this limit, lipids are significantly correlated the protein over a larger
range than shown in A. In (C), the distortion is yet larged #ime gradient near the protein has decreased; lipids negrttein are not as
entrained as in (B). The velocities have the same scale fp(Bpand (C).

have chosen, there will always be a non-vanishing distortio between the simplest possible Model A approach and a more
in ¢, though it may occur in a boundary layer near the proteindetailed calculation that includes the in-plane membrane h
as in calculations of the nonlinear microrheological dmnag i drodynamics, we argue that future calculations should,&as w
colloidal model systems [53, 59]. have done in Section Il, address the hydrodynamic advection

Extending the model past dissipative dynamics to incIudeOf the order parameter, as well as the effects of the inhomo-

advection of the order parameter (Section II), we discdvat t geneity of the _order parameter on lipid flows within_ the mem-
the hydrodynamics of Advected Model A significantly Changebrane' In parﬂcul_ar,_ the dynamics of membran_e tilt (sg@ [29
the total drag on the protein, and hydrodynamics cannot b nd references within) may be able to be described using con-

neglected in a consistent waWe find that once the fluid na- inuum theorigs for liquid crystal dynamics [26, 61]; to our
ture of the membrane is included, the protein-lipid complexknOWIedge' this approach has not yet be_en atte_mpted,_thqugh
acts like a protein with a larger effective radius, i.e. fipés relevant work has .been done on .the simulation .O.f liquid-
near the protein are almost completely entrairegdeast for crystal elastomersiith free bouqdar|e$62]._ An addltlongl

the most physically relevant parameterhis effective radius feature absent from our ac_ivecu_ve model is the potential d.e_—
depends linearly on the order parameter correlation lefigth pendence of membrane viscosity on _the order parameter; if
but only weakly on the strength of the order parameter couym((b) IS not constant, the drag coefficient of the protein may
pling. If the advection is included, the coupling to the or- be modified [63].

der parameter does not change the drag scaling from logarith Throughout this paper, we have neglected explicit fluc-
mic to linear in radius; there are quantitative, but not g@al tuations in the order parameter; this is effectively a zero-
tive, deviations from the Evans-Sackmann reswithin Ad-  temperature assumption, i.e. tHaf) ~ (¢)2. We note that
vected Model A, coupling to an order parameter as proposefbr nonlinear couplings, there may be an additional “Cassimi
by [14, 15] is not sufficient to explain the experimentally-ob drag” caused by the suppression of thermal fluctuations [64]
served diffusion coefficient scalin® = kpT/(ot ~ 1/R  this mechanism may also be relevant to the boundary condi-
[9]. However, this may be a limitation of the the very sim- tion coupling we use, as the stress tensor is nonlinea in
ple model we have used; simulations of microrheology experThis effect will not appear in linear coupling models [15].16
iments in three-dimensional cholesteric liquid crystadsdn  The effects of this Casimir drag are also an interesting afea
observed significant deviations from the Stokes diagjud-  future study.

ing adifferent dependence on particle size [60]. Coarse-grained molecular dynamics simulations [13, 17,

The work we have presented here is only an initial step to44, 65—-68] may also be able to address the problem we have
ward more detailed understanding of the dynamics of preteindescribed here. However, we note that these models may not
lipid coupling. However, because of the significant diffse  be quantitatively accurate in describing in-plane flow; mem
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brane surface viscosities measured in coarse-grainedlsnodevherer; is the outward-pointing normal to the circle. Per-
[69] can be one to two orders of magnitude below their experforming this calculation to first order iy, we find F =
imental values [40, 55-58]. —(r'Vp, with

To summarize, we have three central points. First, even
with the same underlying dynamics, we get a different drag (1 =wRE §2f’(R)¢’(O) (R) (A6)
than that of Demery and Dean [15] if we handle the protein-
field interaction in a different way. Second, we show that thep|ugging the known forms of (r) and¢,q) into the equation
effects of advection cannot be neglected in a straightfoiwa yields Eq. 10.
way; there is a qualitative difference between models that a
low lipids to flow in response to order inhomogeneities and
those that do not. Finally, within the simple model we de- appendix B: Calculating hydrodynamic and interaction drag:
velop, the protein-membrane interaction alone cannotéxpl direct and reciprocal methods
the experimentally observed scaling of protein diffusion ¢
efficient with radius; for parameters that describe a pmtei
the effect of the order parameter interaction is only to give
the protein an “effective size” set by the size of the memeéran
distortion. Forag= %dé (o +1I) -1 (B1)

The total drag force on the protein is

where the integral is around the boundary of the proigiine
outward-pointing normalll is the stress tensor for the order

) o parameter (Eqg. 6) andthe hydrodynamic stress tensor,
We thank David Dean, Paul Atzberger, and Phil Pincus for

useful conversations and suggestions. This work was sup- Ml vl

ported in part by the NSF (grant nos. CHE-0848809, CHE- oij = —Pbij + m ( 5. T 67&71) (B2)

032168) and the BSF (grant no. 2006285). B.A.C. acknowl- / !

edges the support of the Fannie and John Hertz Foundation.yhere P is the membrane surface pressure apdhe mem-

brane surface viscosityWe note that there is also a poten-

tial intrinsic drag term between the protein and the subestra

see the main text and [41, 42] for detaid/e can calculate

the total drag force in two main ways: 1) directly evaluating
We explicitly calculate the order parameter profiler,t)  the integral around the protein’s boundary, and 2) using the

to first order in the velocity, for the model of Section IA.  reciprocal theorem. In the direct evaluation method, we can
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Appendix A: Explicit calculation of linear distortion in ¢

The equation of motion is (in steady state) determine the interaction drag either by explicitly findihe
1 - O(V,) correction to the concentration field, ), or using the
—Vp- Vo= s (¢’ -V ¢) (A1) divergence theorem. The major advantage to the direct eval-

uation method is that the explicit solution of the advection
diffusion equation can be avoided, which reduces the number
of boundary value problems to be solved.

We wish to solve to linear order(r) = ¢y + Vo).
We showed in the main body of the paper thig§)(r) =

by f:((;//?) We then find that ) satisfies the equation

A 1 1. Direct calculation using surface pressure
—%X Vo) = - (pa) — EV30(1)) (A2) g P
The solution to this equation will have the forsmy ) (r, t) = In order to calculatd® s® = § df o - &, we need to deter-

f(r)cos(9), with boundary conditionsf(r = R) = 0, mine the surface pressuRe We can use the approach of [41];
f(r) — 0 asr — oo. f(r) then satisfies a modified inho- we know by the symmetry of the problem th&t(p,0) =

mogeneous Bessel equation, h(p) cosf. We noted - VP' = —Lh(p)sin6, and so we can

A Ky(r/¢) extracth(p) directly from thed component of Eq. 31,
ey tr- g -r-fotl e "
This equation is solved by h(p) = p—22Y(p) — 2jLiY’(p)+Y”(p)+pY’”(p). (B3)
f(?") o @ |:RK1(T/€) _ TKO(T/é.) (A4) .
262 | Ky (R/€)  Ko(R/€) This is exactly the result of [41], as there is fi@omponent

to the composition-induced drag at linear order. We can then

The total drag force, which is in thedirection by symme- perform the angular integral

try, is (with II from Eq. 6)

2m 27
F=R / df T,;(r = R,0)f; (A5) Fi % =R / [0,y cos0 — gpgsinb]  (B4)
0 0
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2?’:&0 = —ChydroVp, With 2. Reciprocal theorem method

yielding F
Chydro = Tm (Y(1) — €7) . (B5) The integral$ d¢ (o + II) - i may also be evaluated sim-
ply by using an identity derived from the reciprocal theorem
The interaction component of the drag can be computed ef52] of low-Reynolds number fluid mechanics (see [53, 54]
ther by explicitly determining the stress ten$bto linear or-  and references within). This trick lets us determine thaltot
der in'V,, or by using the advection-diffusion equation, as indrag force on an object in a fluid flowin terms of a simpler
Section | A. “reference” flowv in the same geometry.
Suppose that andv are two vector fields defined over the
volumeV outside a surfacs, andV - v =V - v = 0. Then
a. Determining linear correctiorby let o andé be the hydrodynamic stress tensors corresponding
tov andv, i.e. Oij = —P(I‘)(Sm‘ + 77[81-1)]— +8jvi], &ij =
In order to determine the linear correction to the equi-—P(r)5ij +1[0:0; 4 0;0:]. Then
librium order parameter field, we can solve the advection-
diffusion equation Eq. 22 perturbatively ¥, similarly to /dSﬁ- [v-6—-V.0]= /dV V- (V-0)=v-(V-5)]
the procedure used in Section A. To linear ordeVip, with (B13)

#p) = ¢ (p) + Pu7g(p) cost, where the normals& point out from the surface. This result
T . Y\ Ki(o8) can be derived in any dimension using the divergence theo
9" +-9 —=g9| -Bg=p5"(1-— (B6)  rem. _ .
P P p) Ko(B) We can use this to reformulate the integBlg =
d¢ (o +1I)-11; in this case, the surfacgis just the perimeter
f the proteiny = R, and the volumé’ is the region outside
_ . ) of the protein,s > R. We letv be a solution to the drag
ward to solve numerically once(p) is found via the method  roplem of the membrane Stokes equation including the com-
in the main paper; we use bvp4c for this problem as well. position forceV - I, i.e. v obeys Eq. 27 with the boundary
The functiong(p) can also be used with Eq. A6 to deter- ¢gnditionsy — V, atr = R, andv — 0 asr — cc. We then

The boundary conditions on this boundary-value proble
areg(l) = 0 andg(p) — oo asp — oo. This is straightfor-

mine the interaction drag, choosev to be the Evans-Sackmann solution [41], i.e. the so-
lution of Eq. 27 withV - IT = 0 with the boundary conditions
Cz/an—szl(ﬂ) '(1). (B7) v=V,atr=R,andv — 0asr — oo.
B Ko(B) As the membrane Stokes equation (Eq. 27) can be written
asV-o+ V-1l — v, =0, we find
b. Determining; without calculatings,) V.o—=-V-T+ %V (B14)
The interaction component of the drag can be computed V.= %\7 (B15)
without explicitly finding¢y. First, by the divergence the-
orem, we note Using these results, and noting that on the boundary of the
protein,v = V,, andv = V,,, we can simplify the reciprocal
Fic;wrtag: ?{dEH R (B8) theorem relation (Eq. B13), finding
_ B2rv I (B9) \"fp-jédéﬁ.a—/ drv.(V-1) = —V,,-?{deﬁ-& (B16)
B "SR r>R

Notingv - (V-1II) = V- (v-II) — Vv : II (whereVv :

H _ 1
We can use Eq. 22 to determu%%v(b = —5(Vm = V) - IT = (9,9,)11;;) and applying the divergence theorem,

V¢Ve. To linear order inly, this force only depends on the

static profile¢(), giving us . ?{ deh-[o + 10 = —V,. ?{ i -G — / 2rve - 1L
r>R

. 1 B17
Pi=§ [ Frv.=V,) Voo Voo  (BL0) (B17)
Vv, /°° (Y(p) ) K2 (o) . .
=T— dpp -1 (B11) V,  Farag= — . -V —/ d*rvv . 10
r /), P Kg (ﬁ) P drag CEvans Sackmaer p oh rvv
_ (B18)
I.e. We note that(gyans-sackman@S Used in this equation does

0o v 5 not include the “intrinsic drag” term addressed above, and s
Cr/nm = ﬁx/ dpp <1 _ ﬂ) ﬁ (B12) is smaller than Eq. 30 byn,,€2. This equation writes the
1 P K5 (8) drag on the protein only in terms of the reference flow and the



14

composition stress tensbi. To determindlI to leading order numerically. Once this is done, and we knaw,(p,t) =
in 'V, we will have to solve the advection-diffusion equation ¢, 7g(p) cos(d), Eq. B18 yieldsF grag = — (ot Vp, With

’ % [I(;o(fﬁﬂ)) % {la(0) =209 (DI [Y (p) = Y (0] + P9(p)Y " ()} (BLY)

1 o0
<tot/ Nm = n_CEvans—Sackmanrﬂ‘ X /
1

m

3. Comparison of different calculation methods

We have found that as long as we solve the Stokes equa-
tions on a sufficiently large domain that the boundary condi-
tionsY (pmax) = Y’ (pmax) = 0 can reasonably be applied, the
different solution techniques agree well (Fig. 16).

o
1.9r o Reciprocal theorem method o
, Direct method, implicit @ o
@
1.88" _ L °
o Direct method, explicit ) o
..1.86 °
2 0
NS
| o
1.84 o
o
1.82r- o
-]
1.8-
6000000000 ‘
10° 10° 10° 10 10° 10°
X

FIG. 16. (Color online). Calculation @f.: does not depend strongly
on the numerical method used. The maximum relative diffegen
between these methodsds< 10~°. Parameters in this calculation
are the same as Fig. 8.
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