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We present a generalization of a population density approach for modeling and analysis of stochastic gene
expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which
transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual
mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form
with exponential dwell times has been used to explain experimental estimates of the discrete distribution of
random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T0

and T1 respectively, are independent random variables drawn from any specified distributions. Consequently,
the probability per unit time of switching out of a state depends on the time since entering that state. Our method
exploits a connection between the fully discrete random process and a related continuous process. We present
numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA
autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function
from Monte Carlo simulations of labaratory data do not allow one to distinguish between underlying models with
exponential and non-exponential dwell times in some relevant parameter regimes. However, in these parameter
regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates
the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is
required in general to characterize gene switching.
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I. INTRODUCTION

There is a recent surge of interest in stochastic gene expression and its implications for random cell fate in development
(reviewed by Johnston and Desplan [1]) and stochastic switching of cell phenotype [2–10].

We present here a generalized model for stochastic burst-like transcription. This model in its simplest form was used by Raj
et al. [11] to explain and quantify their experimental estimate of the distribution of random mRNA copy number, for several
different transcripts, over a population of genetically homogeneous eukaryotic cells in culture. We will take a population density
approach in which a direct calculation of a probability density function describes the distribution of state variables across a
population (ensemble) of cells.

Variability among individuals in a population of organisms arises from a number of causes. Those most commonly thought of
are genetic variation, in which differences in DNA sequence lead to different phenotypes, and environmental variation, in which
individual organisms alter their behavior in different surroundings and conditions. Recent studies speak to the question of what
would happen if those sources of variability were eliminated. There is now abundant evidence, as reviewed by Kærn et al. [12],
Raser and O’Shea [13], and Larson et al. [14], showing that even isogenic populations grown in homogeneous conditions are
prone to significant phenotypic variability.

Previous theoretical studies of stochastic gene expression have focused on quantifying variation in mRNAs and proteins
found in isogenic populations of cells, either through the calculation of moments of random copy number [15–18] or by finding
expressions for the distributions themselves [19–22]. Recently, eigenfunction methods have been introduced as a theoretical and
computational tool in modeling gene networks [23, 24]. The population density approach has previously been applied to the
problem of stochastic gene expression without explicit consideration of the stochasticity of gene-state switching [19]. Pedraza
and Paulsson studied the effect of non-exponential waiting times between transcriptional bursts on the stationary variance in
protein abundance [25]. They found that protein noise was insensitive to the distribution of waiting time in the inactive gene
state, in an instantaneous burst model. Other theoretical studies have focused on the control of noise by feedback [16, 18, 26],
an aspect of stochastic gene expression that is omitted in this work.

In the case of constitutively active genes, mRNA and protein synthesis and decay are the key discrete, stochastic events
leading to cell-to-cell variability in mRNA and protein levels [16, 17, 27], and models based on these events have indeed
proven successful in prokaryotic organisms [7, 28]. However, a growing body of experimental evidence, both direct [21, 29,
30] and indirect [31–34], shows that many, if not most, higher eukaryotic genes themselves stochastically transition between
transcriptionally active and transcriptionally inactive states. In this scenario, transcription occurs in bursts, and this introduces
another significant (often dominant) source of variability. There are examples of such behavior in bacteria [28, 29], although
other work indicates that this is not always the case [7]. Single-mRNA counting experiments in yeast [35] provide evidence for
gene switching in the case of a transcriptionally regulated gene but not for constitutively active genes.

In many previous models of stochastic gene expression the processes of gene activation and inactivation have been modeled
with first order kinetics [10, 11, 15, 22, 31, 36–40]. This corresponds to exponentially distributed gene-state dwell times.
Because the initiation of transcription and gene inactivation by chromatin remodeling are known to involve several kinetic
steps [37, 41–43], the assumption of exponential dwell times seems unlikely to be correct. The likelihood method of Suter et
al. [44], applied to experimental data, allowed them to infer non-exponential dwell times in the inactive gene state in particular.
Thus, by generalizing the gene-state switching model, a more realistic description of the physical system is possible. Our
generalization allows us to determine if the first order switching model simply provides a crude but servicible approximation or
if the steady-state mRNA distributions depend only weakly on the kinetic details of gene switching. Furthermore we can explore
the extent to which temporal data in the form of the steady-state autocovariance function can be used to disambiguate candidate
kinetic models.

II. MODEL AND RESULTS

We study a model for stochastic gene activation and inactivation, stochastic transcription, and molecular degradation of
mRNA. This extends the first order gene-state kinetics of many previous models to more general gene-state switching mod-
els. The reaction scheme is summarized by the reaction diagram:

I
dwell time T0

←→ A
dwell time T1

(1)

A
ν
−→ A + mRNA (2)

mRNA
δ
−→ Ø (3)

A gene of interest fluctuates randomly, Eq. (1), between an active state A, in which transcription occurs, and an inactive state
I, in which transcription cannot occur. The phrase “transcriptional burst” refers to the synthesis of mRNA during active-gene
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epochs separated by periods in which the gene is transcriptionally inactive.
In Eq. (1), T0 and T1 are random variables with probability densities fT0 and fT1 respectively. When the gene is in the active

state, Eq. (2), the synthesis of mRNA molecules is governed by a Poisson process, with a probability per unit time of a synthesis
event equal to ν. Each mRNA molecule is stochastically degraded, Eq. (3), with probabilities per unit time, per molecule, of δ.

There are two discrete state variables in the stochastic system, Eqs. (1)–(3): M(t), the random number of mRNA molecules
at time t; Z(t), a dichotomous random variable, where Z(t) = 0 if the gene is in the inactive (off) state I, and Z(t) = 1 if the
DNA is in the active (on) state A at time t. In addition there are two continuous random variables: S 0, the time since entering
the inactive state, and S 1, the time since entering the active state. In the corresponding, analogous, continuous random mRNA
model, motivated below, the discrete gene-state variable, Z, is the same, and we refer to the continuous mRNA random variable
as Y(t). Initial conditions for this stochastic process are irrelevant since we will only consider the steady state of this system.

A. Link between the discrete and continuous mRNA models

As pointed out by Iyer-Biswas et al. [38], a probability mass function for the discrete random mRNA copy number, M, can
be derived from the probability density function for the continuous random mRNA copy number, Y , in an analogous continuous
mRNA problem. A more general use of this connection will be a theme of this paper. We emphasize that, in the present paper,
the continuous mRNA problem does not serve as an approximate model in any sense. Rather, it serves a key mathematical role
in the derivation of exact mRNA distributions in the fully discrete problem.

In both problems (continuous and discrete mRNA), the gene-state variable switches stochastically between the active and
inactive states. The continuous mRNA model has previously been studied in the case of exponentially distributed gene-state
dwell times [36]. In this model, transcription and degradation of mRNA are deterministic processes for any given history of the
dichotomous random gene-state function, Z(t); the continuous mRNA copy number, Y(t), is random only because the gene-state
function is random.

The random differential equation for the continuous mRNA copy number is

dY
dt

= ν Z(t) − δY, (4)

where Z(t) is the dichotomous random gene-state function. For any given gene-state history function Z(t), Eq. (4) can be solved
analytically. Given the specific initial condition that Y(t = 0) = 0,

Y(t) =

∫ t

0
ν Z(t′) exp

(
− (t − t′) δ

)
dt′. (5)

We define fY (y, t) to be the probability density function for Y(t), i.e. fY (y, t) dy = Pr{Y(t) ∈ (y, y + dy)}. It is worth noting that
the continuous mRNA copy number cannot exceed ν/δ, provided that Y(t = 0) ∈ [0, ν/δ], because ν/δ is the steady-state value
that Y approaches when the gene is fixed in the active state. Consequently, Y(t) ∈ [0, ν/δ] for all t.

In the discrete mRNA version of the reaction scheme depicted in Eqs. (1)–(3) the synthesis and degradation events occur at
points in time. Synthesis occurs with probability per unit time, ν Z(t), and each synthesis event increases the mRNA copy number
by 1. Degradation occurs with probability per unit time, per molecule, δ, and each degradation event decreases the mRNA copy
number by 1. The solution for the probability mass function for the random mRNA copy number M(t) in this classical birth
and death process [45], with any given Z(t), is a Poisson probability mass function at each point in time with a mean given by
Y(t), as defined in Eq. (5), i.e., the solution to the corresponding continuous mRNA problem above. This can be derived by first
writing down the master equation for pM|Z(·)(m, t; Z(·)), which can be solved by use of the probability generating function to give
pM|Z(·)(m, t; Z(·)) = e−Y(t) Y(t)m

m! with Y(t) given by Eq. (5). Thus, the unconditioned probability mass function for M(t) is given by

pM(m, t) =

∫ ν/δ

0
pM|Y (m; y) fY (y, t) dy

=

∫ ν/δ

0

ym

m!
e−y fY (y, t) dy, for m ∈ Z ≥ 0, (6)

in which fY (y, t) depends on the initial distribution of S 0, S 1, and Z. Knowledge of fY (y, t) for the continuous mRNA problem
fully specifies the probability mass function for mRNA copy number in the discrete problem. Details of this representation of
pM(m, t) were given by Iyer-Biswas [46]. Note that Eq. (6) reflects the fact that, in the fully discrete problem, the random mRNA
copy number M is not bounded, even though its continuous analog Y is bounded by ν/δ.

Before studying the arbitrary dwell times model in detail, we review results for the simpler case of exponential dwell times.
Karmakar and Bose [36] found the steady-state solution for f∞Y (y), in the case of exponential dwell times fT0 (t0) = λe−λt0 and
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fT1 (t1) = γe−γt1 , to be a beta density function with shape parameters λ/δ and γ/δ, and scale parameter ν/δ:

f∞Y (y) =
1
ν/δ

Γ
(
λ/δ + γ/δ

)
Γ
(
λ/δ

)
Γ
(
γ/δ

) (
y
ν/δ

)λ/δ−1 (
1 −

y
ν/δ

)γ/δ−1

, (7)

for y ∈ [0, ν/δ].

With this solution for f∞Y (y) in hand, one can find the corresponding steady-state probability mass function for the discrete
mRNA problem, f∞M (m), by substituting the explicit expression for f∞Y (y), Eq. (7), into Eq. (6) to obtain

p∞M(m) =

∫ ν/δ

0

ym

m!
e−y 1

ν/δ

Γ
(
λ/δ + γ/δ

)
Γ
(
λ/δ

)
Γ
(
γ/δ

) (
y
ν/δ

)λ/δ−1 (
1 −

y
ν/δ

)γ/δ−1

dy. (8)

Eq. (8) is a Poisson-beta distribution [47], which can also be written in terms of the confluent hypergeometric function 1F1,
as originally stated by Raj et al. [11] and also later verified independently by Shahrezaei and Swain [22]. In a tour de force,
Iyer-Biswas et al. [38] derived an analytical expression for the corresponding time-dependent probability generating function.
The steady-state probability generating function was obtained previously by Peccoud and Ycart [15].

The remainder of this paper explores many powerful consequences of Eq. (6).

B. Formulation of the problem with arbitrary gene-state dwell times

Following the work of Iyer-Biswas et al. [38], we exploit the Poisson connection stated in Eq. (6) to solve for the distribution
of discrete mRNA copy number M by first solving for the density of the continuous random variable Y . In the gene switching
problem with non-exponential dwell times, the probability per unit time of switching out of a state depends on the time since
entering that state. Consider the off state for example. If the dwell times T0 in the off state are independent random variables with
density function fT0 (t0) and S 0(t) is the random elapsed time since entering the off state, then Pr { switch on in (t, t + dt) | S 0(t) =

s0 } = hT0 (s0) dt, where hT0 is the hazard function for the random variable T0; hT0 (s0) = fT0 (s0)/F̃T0 (s0) and F̃T0 (s0) is the
complementary cumulative distribution function. Note that when a gene is in the off state dS 0

dt = 1 and similarly for a gene in the
on state dS 1

dt = 1.
The evolution of population density in the continuous mRNA problem is governed by a conservation of probability. The

partial differential equations for the continuous random mRNA copy number in the inactive and active states are

∂

∂t
fY,Z,S 0 (y, 0, s0, t) = −

∂

∂y
[
− δ y fY,Z,S 0 (y, 0, s0, t)

]
−
∂

∂s0

[
1 · fY,Z,S 0 (y, 0, s0, t)

]
−hT0 (s0) fY,Z,S 0 (y, 0, s0, t), (9)

∂

∂t
fY,Z,S 1 (y, 1, s1, t) = −

∂

∂y
[
(ν − δ y) fY,Z,S 1 (y, 1, s1, t)

]
−
∂

∂s1

[
1 · fY,Z,S 1 (y, 1, s1, t)

]
−hT1 (s1) fY,Z,S 1 (y, 1, s1, t). (10)

The s variables record the elapsed time since the gene switched states. The first two terms on the right-hand side of each
equation correspond to the divergence of the probability flux. The synthesis and degradation dynamics give rise to an advective
probability flux in the first term in each equation. The evolution of elapsed time since entering the inactive and active states, with
unit velocity, gives rise to the advective probability flux in the second term in each equation. The third term in each equation
represents a sink due to the gene switching between its inactive and active states. The dynamics of the two probability densities
are coupled only through the boundary conditions at s = 0 which follow.

At the instant a gene in the off state switches on, the elapsed time in the on state, S 1, is equal to zero, and similarly for a switch
in the opposite direction. A consequence is a probability flux in the s0 and s1 directions at s0 = 0 and s1 = 0, respectively. This
flux has contribution from members of the population with elapsed times in the state being exited:

fY,Z,S 0 (y, 0, s0 = 0, t) =

∫ ∞

0
hT1 (s1) fY,Z,S 1 (y, 1, s1, t) ds1, (11)

fY,Z,S 1 (y, 1, s1 = 0, t) =

∫ ∞

0
hT0 (s0) fY,Z,S 0 (y, 0, s0, t) ds0. (12)
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We solve for the steady state of this system, Eqs. (9)–(12), numerically. To this end, we write the equations in dimensionless
form. Time and elapsed time in a particular gene state are scaled by the rate at which mRNA is degraded: τ = δt and σ = δsi; and
the continuous mRNA variable is scaled by its maximum value: x = δ

ν
y. The subscript on σ is dropped and σ is understood to be

the elapsed time in whichever gene state is relevant. After introducing two scaled densities, v(x, σ) = ν
δ

fY,Z,S 0 ( ν
δ
x, 0, σ

δ
, t → ∞)

and u(x, σ) = ν
δ

fY,Z,S 1 ( ν
δ
x, 1, σ

δ
, t → ∞), as well as scaled hazard functions, hT0 (σ) = hT0 (σ

δ
)/δ and hT1 (σ) = hT1 (σ

δ
)/δ, the

equations become

∂v
∂σ
− x

∂v
∂x

=
(
1 − hT0 (σ)

)
v, (13)

∂u
∂σ

+ (1 − x)
∂u
∂x

=
(
1 − hT1 (σ)

)
u, (14)

v(x, 0) =

∫ ∞

0
hT1 (σ) u(x, σ) dσ, (15)

u(x, 0) =

∫ ∞

0
hT0 (σ) v(x, σ) dσ. (16)

Each of Eqs. (13) and (14) are linear, first order partial differential equations which can be solved analytically within σ > 0
by the method of characteristics in terms of the function values at σ = 0 with σ parameterizing the characteristics. This problem
can be reduced to a pair of integral equations for the unknowns immediately after a gene switch when σ = 0, v0(x) ≡ v(x, 0) and
u0(x) ≡ u(x, 0). The details appear in Appendix A. The result is the eigenfunction problem

v0(x) =
1

1 − x

∫ x

0
fT1

(
log

(
1 − x0

1 − x

))
u0(x0) dx0, (17)

u0(x) =
1
x

∫ 1

x
fT0

(
log

( x0

x

))
v0(x0) dx0. (18)

Solving for u0(x) and v0(x) allows one to compute the solution, u(x, σ) and v(x, σ). Also, the steady-state marginal mRNA
densities, vss(x) =

∫ ∞
0 v(x, σ) dσ and uss(x) =

∫ ∞
0 u(x, σ) dσ, can be extracted from v0(x) and u0(x) by computing the integrals

(see Appendix A)

vss(x) =
1
x

∫ 1

x
F̃T0

(
log

( x0

x

))
v0(x0) dx0, (19)

uss(x) =
1

1 − x

∫ x

0
F̃T1

(
log

(
1 − x0

1 − x

))
u0(x0) dx0. (20)

Note that Eqs. (17) and (18) are homogeneous and to obtain a unique solution, the total probability condition
∫ 1

0 (uss(x) +

vss(x)) dx = 1 must be used.
For all but the most trivial dwell time densities, the integral equations, Eqs. (17) and (18), must be solved numerically. We

discretized the integrals with the trapezoidal rule to form a finite linear system. The discretized equations, with discrete linear
operator acting on the discretized samples of v0(x) and u0(x), can be viewed as an eigenvector problem with eigenvalue that
should be equal to one. However, the relevant matrix does not have an eigenvalue of exactly one. We observe empirically
that the largest, in modulus, of its eigenvalues approaches one as the number of grid points increases. We take the eigenvector
corresponding to the eigenvalue nearest to one as the solution to the discretized problem. This eigenvector is computed using
the inverse power method. Alternatively, a least squares minimizer to the eigenvector problem can be used. Both methods result
in numerical schemes that approach the solution of the continuous problem as the grid is refined. This claim can be explicitly
verified by comparison to the known steady-state solution, Eq. (7), in the case of exponential dwell times.

The steady-state solution of the continuous mRNA problem for arbitrary dwell time densities allows one to study the steady-
state solution of the discrete mRNA problem with arbitrary dwell time densities. The same distributions could be estimated with
Monte Carlo simulations, but the above procedure is considerably faster for a given level of accuracy.

C. Model solutions

We use two different gene-state dwell time models to illustrate solutions of the general model described above. A common
gene-state switching model is one in which the gene-state dwell times are exponentially distributed, fT0 (t0) = λe−λt0 and fT1 (t1) =

γe−γt1 . This corresponds to simple, first order kinetics of the gene-state switching. A second gene-state switching model will be
considered in which the dwell times in the active and inactive states have a gamma distribution, fTi (ti) = tki−1

i e−ti/θi/(Γ(ki)θ
ki
i ).
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FIG. 1. Steady-state mRNA distributions for four sets of parameters of the exponential dwell times model and the gamma dwell times model:
(δ/λ, δ/γ) and (k0, θ0δ, k1, θ1δ) with ν/δ = 10 for both models. The probability mass function for the random mRNA copy number in the fully
discrete problem for the exponential dwell times model (black bars) and the gamma dwell times model (white bars) are shown along with
the parent probability density function from the continuous problem for the exponential dwell times model (solid) and the gamma dwell time
model (dashed). The left column corresponds to fast activation (FA) and the right to slow activation (SA), while the first row corresponds to
fast inactivation (FI) and the second to slow inactivation (SI).

The shape parameter, k, and the scale parameter, θ, take on positive values. The exponential dwell times model is recovered when
k0 = 1 = k1. For integer k, such a distribution can be thought of as a sum of k independent exponentially distributed random
variables each with a mean of θ. If gene activation and inactivation were governed by numerous small steps, with similar rates,
that are nearly irreversible, the gamma distribution for the gene-state dwell times would be a good approximation. Additionally,
the motivation for such a dwell time distribution is to account for a refractory period in each state. Experimental evidence [44]
suggests that there exists such a refractory period, at least in the inactive gene state.

Fig. 1 displays the steady-state probability mass function, p∞M(m), for random mRNA copy number for four sets of parameter
values for each of the two models along with the parent probability density function for the corresponding continuous mRNA
problem, f∞Y (y). We refer to f∞Y (y) as the parent probability density function because f∞Y (y) can be thought of as giving rise
to the discrete mRNA distribution though Eq. (6). All parameters are reported in ratio to the mRNA degradation rate, δ, and
are displayed above each panel. In all cases, ν/δ = 10, which represents a moderately fast transcription rate. The upper row
has parameters that correspond to fast inactivation of the gene, while the lower row has parameters for slow gene inactivation.
The left column corresponds to fast activation and the right to slow activation. As a point of reference, the parameter regime of
slow gene activation (small λ/δ), fast gene inactivation (large γ/δ), and fast transcription (large ν/δ) corresponds to measure-
ments of eukaryotic cells by Raj et al. [21]; slow gene activation, fast gene inactivation, and slow transcription corresponds to
measurements in bacteria by Golding et al. [29].

Note that for slow gene inactivation rate (lower row), the parent beta density function shows a sharp peak at ν/δ. In the
discrete model, by contrast, there cannot be a sharp peak at ν/δ. The sharp peak in the parent beta density function is smoothed
because the probability mass function is a weighed average of Poisson distributions. The physical basis for this smoothing can
be thought of as Poisson variation about a mean of ν/δ during prolonged active-gene epochs.
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Within each panel of Fig. 1, the exponential dwell times model is compared with the gamma dwell times model to observe the
effect of changes to the dwell times model. The mean dwell time in the active and inactive gene states are selected to be same in
each case. The probability mass functions nonetheless appear qualitatively similar. Later in this paper, we address the question
as to what extent can experimental data be used to reject the model of exponential dwell times in favor of the gamma distributed
dwell times.

As another demonstration of the generality of our approach, we studied the model of Tang [48] in which the inactive gene
state is considered to have two sequential steps with exponentially distributed durations and means 1/κ and 1/λ. The inactive
dwell time density is given by fT0 (t0) = κλ

λ−κ

(
e−κt0 − e−λt0

)
. The active dwell time density is exponential, fT1 (t1) = γe−γt1 . Suter et

al. [44] showed that maximum likelihood estimates of gene-state paths are consistent with this model and these authors inferred
parameter values for various genes. Typical values from the Suter et al. [44] study were κ = 0.04/min, λ = 0.04/min, γ = 0.1/min,
ν = 0.25/min, and δ = 0.01/min. With these values, the steady-state copy number probabilities are pM(m) = 0.07, 0.13, 0.15,
0.14, 0.13, 0.10, 0.08, 0.06, 0.04, 0.03, 0.02 for m = 0, . . . , 10. The mean and standard derivation are 4.2 and 3.1 respectively.
The calculations of Tang give time-dependent moments, while our method gives the steady-state copy-number distribution. Our
computed steady-state moments agree with those of Tang.

D. Ambiguity in the steady-state distributions

Although exponentially distributed gene-state dwell times are commonly used (cf. references above), some experimental
evidence (see [44]), suggests that the switching dynamics are more complicated. The numerous steps involved in transcriptional
regulation are discussed by Pedraza and Paulsson [25]. Given that most experimental techniques available today observe the
number of mRNA molecules and not gene state, the natural question arises as to how data involving mRNA copy number can
reveal details of the gene-state switching. It is worth noting that when activation and inactivation are very fast relative to the
decay rate of mRNA molecules, a Poisson probability mass function will be a good approximation to the distribution of mRNA
copy numbers regardless of the dwell time distributions.

How well do the data constrain the model? To investigate this question, we generated data from a gene-state dwell times
model consisting of gamma densities with parameters k0 = 2, θ0 = 2.5, k1 = 2, θ0 = 2.5. mRNA copy number data was
generated from this switching model by sampling the computed probability mass function from the numerical method described
above for 1,000 simulated cells. The data are displayed in Fig. 2A along with the underlying distribution from which they are
sampled. Maximum likelihood parameters and likelihood of the data for the model with exponential gene-state dwell times were
computed. The probability mass function with maximum likelihood parameters for the exponential dwell times model is also
shown in Fig. 2A. We found that the likelihood of the data generated from the gamma dwell times model fell in the middle, at
the 0.77 quantile, of the distribution of likelihoods, with 1,000 simulated data sets, for data generated by the exponential dwell
times model with maximum likelihood parameters. This is shown in Fig. 2B. Thus, the exponential dwell times model cannot
be rejected even though the true dwell time densities are appreciably different than the implied densities. Fig. 2C displays the
contours of the likelihood function near the maximum likelihood parameters.

The observation that the exponential dwell times model cannot be rejected from the steady-state mRNA distribution is not
specific to the parameters selected for the gamma densities. We repeated the procedure above for a number of different combi-
nations of parameters: active dwell time gamma density parameters k1 = 2 and θ1δ = 0.25, 2.5 along with inactive dwell time
gamma density parameters k0 = 5 and θ0δ = 0.1, 1, 0.02, 0.2 or k0 = 10 and θ0δ = 0.1, 1. Two transcription rates were used:
ν/δ = 10, 100. For each of the 24 cases, 1,000 cells were simulated with a total of 25 datasets. In all cases, the exponential
dwell times model could not be rejected. The -log-likelihood of the data generated from the gamma dwell times model always
fell in the distribution of -log-likelihoods with data generated from exponential dwell times model (with the maximum likeli-
hood parameters) below the 0.80 quantile. Additionally, in every case the mean dwell times in the active and inactive states
were underestimated by the maximum likelihood exponential dwell times model, sometimes a factor of 5 lower, despite a close
approximation of the steady-state mRNA distribution. The same procedure was applied to data generated from the model of
Tang [48] using parameters reported in Suter et al. [44]. We again found that the exponential dwell times model could not be
rejected.

We have shown that an experimental estimate of the steady-state mRNA distribution is insufficient to reveal non-exponential
dwell times of the gene switching based on a realistic number of 1,000 cells. We obtained similar results in Monte Carlo
simulations with 10,000 cells. In selecting k0 equal to 5 or 10, we have shown that even extreme departures from exponential
dwell times are not revealed in the steady-state mRNA copy number data. Consequently, we asked if measuring and fitting the
autocovariance function could be used to discriminate among models.
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FIG. 2. Details of the parameter estimation process for the parameters: (k0, θ0δ, k1, θ1δ, δ/ν) = (2.0, 2.5, 2.0, 2.5, 0.10),(
(δ/λ)ML, (δ/γ)ML, (δ/ν)ML

)
= (4.0, 4.0, 0.11). (a) The white bars are the underlying distribution, the gray bars are a histogram of the sim-

ulated data from 1,000 cells, and the black bars are the probability mass function for the maximum likelihood parameters of the exponential
dwell times model. (b) Histogram of the -log-likelihood values of 1,000 data sets, each consisting of simulated measurements of mRNA copy
numbers in 1,000 cells. The bin containing the likelihood of the data above (2475) is identified. (c) Contours of log-likelihood as a function
of model parameters. Slices of the 3D function occur at λ/δ = (λ/δ)ML, γ/δ = (γ/δ)ML, and ν/δ = (ν/δ)ML. The largest contour value is -2550
and the contour values have a uniform spacing of 130.

E. Autocovariance function for mRNA copy number

In Appendix B we present a derivation of a formula for the steady-state autocovariance function for mRNA copy number,
ΦMM(τ) ≡ E [M(t) M(t + τ)] − µ2

M . The autocovariance is a function of only the delay, τ, since the process is assumed to be
stationary. The autocovariance function is the sum of two terms. One is a simple exponential with a decay rate equal to the rate
of decay of mRNA molecules, and the other is a convolution of the same exponential function with the autocovariance function,
ΦZZ(τ), of the random gene-state function Z(t):

ΦMM(τ) =
ν

δ
µZ e−δ|τ| +

ν2

2δ

∫ ∞

−∞

e−δ|s|ΦZZ(τ − s) ds, (21)

where µZ =
µT1

µT0 +µT1
is the steady-state mean of Z(t), i.e., the fraction of time that the gene is in the active state. The power

spectrum of the mRNA autocovariance function is related to the power spectrum of gene-state autocovariance function by

Φ̂MM(ω) =
2ν

δ2 + ω2

(
µZ +

ν

2
Φ̂ZZ(ω)

)
. (22)
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FIG. 3. mRNA autocovariance functions for the exponential dwell times model (solid) and the gamma dwell times model (dashed) for the four
parameter sets in Fig. 1.

ΦZZ(τ) can be computed from the dwell time densities by

ΦZZ(τ) = µZ(1 − µZ) −
1

µT0 + µT1

∫ |τ|

0
(|τ| − t)

∫ ∞

−∞

eiωt

2π
(1 − f̂T0 (ω))(1 − f̂T1 (ω))

1 − f̂T0 (ω) f̂T1 (ω)
dω dt. (23)

An equivalent formula was presented previously in the context of modeling air conditioning loads on electrical power sys-
tems [49]. Its derivation appears in Appendix B. Note that ΦZZ(0) = µZ(1 − µZ), which is the variance in Z. The beauty of
Eqs. (21) and (23) is their generality. For any desired dwell time densities of practical interest, one can compute the autocovari-
ance of the gene state and the mRNA copy numbers.

For the particular gene switching scheme of exponential dwell times, the autocovariance function of M(t) evaluates to a
difference of two exponentials. One rate constant is the rate at which the random gene-state function, Z(t), relaxes to its steady-
state distribution, (λ + γ), and the other is the rate of decay of mRNA molecules, δ. The formula is

ΦMM(τ) = µM

(
1 +

νγ

(λ + γ)2 − δ2

)
e−δ|τ|

− µ2
M
γ

λ

δ2

(λ + γ)2 − δ2 e−(λ+γ)|τ|. (24)

Here µM = ν
δ
µZ = ν

δ
λ
λ+γ

.
Fig. 3 shows plots of ΦMM(τ) on a dimensionless time axis in which the abscissa is δτ. Each set of parameters for the

exponentially and gamma distributed dwell times from Fig. 1 is shown. The monotonic nature of the decay of ΦMM(τ) is
generic for the exponential dwell times model. It can be shown that in the exponential dwell times model, ΦMM(τ) cannot have
an undershoot (cannot take on negative values). Negative autocovariance in the gene-state variable is possible with gamma
distributed dwell times, as seen in panels B and D.

The qualitative differences between the autocovariance functions from the exponential and gamma distributed dwell time
models suggest that the autocovariance function may be useful for discriminating among gene-state dwell time models.

F. Model discrimination using the autocovariance function

Recent experimental advances [29, 44, 50–52], have enabled counting of individual molecules over time. This permits the
use of mRNA measurements over time to identify gene-state switching models. Suter et al. [44] demonstrated that temporal
measurements and approximate likelihood inference methods can be used to identify non-exponential dwell time distributions.
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FIG. 4. Steady-state autocovariance functions. (a) ΦZZ(τ) for maximum likelihood parameters of the exponential dwell times model (solid)
with ΦZZ(τ) of the model underlying the simulated data (dashed). The open circles are an estimate of the autocovariance function from a Monte
Carlo simulation. (b) Same for ΦMM(τ).

Attempts to use transient temporal data following the induction of transcription would likely be unsuccessful due to the
difficulty in obtaining the sufficient data during a single transient window per cell. A viable alternative appears to be the use of
correlations in mRNA copy number, which includes temporal measurements, but not transient effects. Fig. 4 shows the gene-
state autocovariance function, ΦZZ(τ), and the mRNA autocovariance function, ΦMM(τ), for the same gamma distributed dwell
times model and parameters as in Fig. 2 (dashed lines). The solid lines are for the exponential dwell times model with maximum
likelihood parameters. The open circles are an estimate of the autocovariance functions from a Monte Carlo simulation, in
which temporal data is sampled once every 1/δ units of time for a total of 1,000 samples. The standard unbiased estimator
of autocovariance with estimated mean was used. The early portion of the Monte Carlo simulation was discarded so that the
autocovariance is estimated once the stochastic process was stationary. Autocovariance estimates are shown only when at least
100 samples, for the particular τ, are available.

Near τ = 0, the autocovariance functions are in close agreement, which reflects the fact that the steady-state distributions
have a similar variance. However, the autocovariance functions disagree for larger τ and the autocovariance for the true model
displays the distinctive feature of negative values, which the exponential model is not capable of producing. The estimates of
the autocovariance function from the simulated temporal data agree more closely with the true model, suggesting that these data
could reveal the underlying gene switching dynamics.

For a broad range of parameters in the gamma dwell times model, the autocovariance function was sampled at a frequency
10 times its fastest time scale for a duration of 10 times its slowest time scale of the generative model. A least squares fitting
procedure was used to identify parameters in the exponential dwell time model. The total size of the square errors relative to
the magnitude of the autocovariance samples was used as a measure of the closeness of the fit. We observed that a poor fit was
obtained only when the autocovariance of the underlying model had negative values. Consequently, anticorrelation in mRNA
copy number is necessary to reject the exponential dwell times model.

It is difficult to fully characterize the model parameters for which negative autocovariance is predominant. For concreteness,
we take k0 = 5 and k1 = 2 and measure the prevalence of negative autocovariance as the absolute value of the most negative
value of ΦMM divided by ΦMM(0). The contours of this index are plotted in Fig. 5 against the mean dwell times in each of the
gene states. When either dwell time is short or long, the autocovariance function does not go negative. Negative autocovariance
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FIG. 5. Contour plot of the extreme negative value of the autocovariance function, ΦMM , as a fraction of its value at zero in the gamma dwell
times model with k0 = 5 and k1 = 2 over a range of mean dwell times in active and inactive gene states. The contours range from 0% (black)
to 16% (white) in increments of 0.3%. Shown below are the autocovariance functions with parameters given by the corresponding dot above.
The cross corresponds to the autocovariance function from Fig. 3b.

results from a balance between the duration in the inactive and active states and a low frequency switching between the two. The
prevalence of negative autocovariance increases with the transcription rate, ν, and larger delays in either gene state (larger k0 or
k1)

Negative mRNA autocovariance is possible in the model of Tang [48]. It is most prevalent when the mean durations of the two
steps in the inactive states are equal (1/κ = 1/λ), which is equivalent to the gamma distributed dwell times model with k0 = 2
and k1 = 1. For the parameters inferred by Suter et al. [44], significant negative mRNA autocovariance does not occur in the
model. In that study, transcriptional bursts were observed and significant negative mRNA autocovariance does not occur with
bursting switching dynamics.

III. DISCUSSION

Raj et al. [11] measured the distribution of random mRNA copy number, for several different transcripts, over a population
of homogeneous isogenic eukaryotic cells in culture. We have analyzed in this paper an extension of the stochastic transcription
model that they used to explain and quantify their experimental data. In the model, the gene of interest fluctuates stochastically
between an inactive state, in which transcription cannot occur, and an active state in which discrete transcription events occur;
the individual mRNA molecules are degraded stochastically in an independent manner. The generalization in our model is that
the dwell times in each state can be drawn from any given distributions. Our method provides a derivation of the distribution of
random mRNA copy number that is based on the connection between the discrete mRNA random variable and the analogous,
continuous mRNA random variable.

We exploited the Poisson connection between the continuous and discrete models to develop fast numerical methods for
computing steady-state distributions for the discrete random mRNA copy number. In addition, we showed how this connection
between continuous and discrete models, implicit in our calculation of p∞M(m), can be used to facilitate parameter inference by
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maximum likelihood methods and model testing by likelihood methods.
Our results show that the steady-state mRNA distribution depends only weakly on the distributions of gene-state dwell times.

This may explain the utility and robustness of the exponential dwell times model.
We presented analytic expressions for the gene-state and mRNA autocovariance functions. We showed, by example, that

measurement of the autocovariance function for mRNA copy number in some parameter regimes could be used to discriminate
among gene-state switching models that give indistinguishable steady-state mRNA distributions.

For the inferred parameters measured by Suter et al. [44] for various genes, the non-exponential dwell times model unfor-
tunately does not exhibit negative autocovariance. This motivates future study of additional methods to distinguish gene-state
switching models. One alternative is to fit the probability mass function p∞M,Z=0(m) and p∞M,Z=1(m) separately. This would re-
quire an experimental measurement of the gene state, which is currently available [51, 53]. It is likely that the most promising
approach to model identification will involve computing the maximum likelihood of temporal sequences of experimentally mea-
sured mRNA copy numbers in the context of various different assumed densities for the dwell times. For each candidate model
the likelihood would be maximized over model parameters. This procedure is possible since we provide a complete statistical
description of the system in Eqs. (10)–(12) and the stochastic process is Markovian in the state space of (s0, s1, z, y,m). The
closely related approach of Suter et al. [44] has inspired this idea.

Simple models like ours ignore the spatial localization of mRNA molecules [54, 55] and do not include regulation of gene
expression. More realistic modeling presents challenging problems for the future.

It is hoped that the theoretical results presented here will enable a better understanding of stochastic gene expression, both in
theory and experimentally.
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Appendix A: Derivation of the equations for u0(x) and v0(x)

To obtain Eqs. (17) and (18), the method characteristics is applied to Eqs. (13)–(16). σ is used as the process variable.
x = x0e−σ are the v characteristics and x = 1 − (1 − x0)e−σ are the u characteristics. The solutions along the respective
characteristics are v = v0F̃T0 eσ and u = u0F̃T1 eσ. Note that hTi = − d

dσ log F̃Ti . This solution is substituted into Eqs. (15) and
(16). Since the solution above the leading characteristic is zero, the upper limits of integration become σ = − log(1 − x) and
σ = − log(x) in Eqs. (15) and (16) respectively. Making the change of variables σ = log

(
1−x0
1−x

)
and σ = log

(
x0
x

)
in the two

equations separately give Eqs. (17) and (18).
The steady-state marginal distribution, vss(x), is obtained by integrating over all possible elapsed times, σ = 0, . . . ,− log(x).

The solution at a particular elapsed time is related to the solution at zero elapsed time through the change of variables σ =

log
(

x0
x

)
, giving

vss(x) =

∫ − log(x)

0
v(x, σ) dσ

=

∫ 1

x
v
(
x, log

( x0

x

)) dx0

x0

=

∫ 1

x
v0(x0) F̃T0

(
log

( x0

x

)) dx0

x
, (A1)

which is the result given in Eq. (19). Eq. (20) is obtained similarly with the change of variables σ = log
(

1−x0
1−x

)
.

Depending on the dwell time densities, the solutions v0(x) and u0(x) can be unbounded, yet integrable, at x = 1 and x = 0
respectively. It can be shown that v0(x)→ 0 as x→ 1 provided

∫ ∞
0 eσ fT1 (σ) dσ < ∞ and likewise u0(x)→ 0 as x→ 0 provided∫ ∞

0 eσ fT0 (σ) dσ < ∞. When solving this problem numerically, to account for this unbounded behavior of the integrands, the
trapezoidal rule is only applied on the interior of the domain. Discretization error near the boundaries prevents the method from
being second order accurate when either v0(x) or u0(x) is unbounded, but nonetheless the numerical scheme converges. We
obtained second order convergence when the solutions are both bounded.
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Appendix B: Derivation of the autocovariance formulas

A derivation of Eq. (21) is now presented. The stochastic process for M(t) is assumed stationary. The time shift, τ, in the
comparison of M(t) with itself is assumed positive, but will be extended to negative values since ΦMM(τ) is necessarily an even
function. The number of mRNA molecules at the later time, M(t + τ), is expressed as a sum of the newly created mRNA
molecules since time t, N(t + τ), and the mRNA molecules that survived from time t to time t + τ, L(t + τ). By definition,
ΦMM(τ) ≡ E[ M(t)L(t + τ) ] + E[ M(t)N(t + τ) ] − µ2

M .

The expectation of the products of the random variables N(t + τ), L(t + τ) with the random M(t) is evaluated by conditioning
on M(t). Once M(t) is given, E[L(t + τ)|M(t)] = M(t)e−δ|τ| due to the exponential degradation of mRNA, while N(t + τ) is
independent of M(t). The calculation proceeds as

E[M(t)L(t + τ)] = E[ M2(t) ]e−δτ = E[ Y2(t) + µM ]e−δτ

= E[E[ Y2(t)|Z(·) ] ]e−δτ + µMe−δτ

= E

[ ∫ t

−∞

νZ(t1)e−δ(t−t1) dt1

∫ t

−∞

νZ(t2)e−δ(t−t2) dt2

]
e−δτ + µMe−δτ

= ν2
∫ t

−∞

∫ t

−∞

(
ΦZZ(t2 − t1) + µ2

Z

)
e−δ(2t+τ−t1−t2)dt1dt2 + µMe−δτ

=
ν2

2δ

∫ τ

−∞

ΦZZ(s − τ)e−δ(2τ−s) ds +
ν2

2δ

∫ ∞

τ

ΦZZ(s − τ)e−δs ds

+µ2
Me−δt + µMe−δτ. (B1)

The second moment of M(t) is related to the second moment of Y(t) in the first line of Eq. (B1) as a consequence of Eq. (6). The
second moment of Y is evaluated by conditioning on the gene state history, Z(·). The double integral is simplified to a single
integral by making a change of variables: s = t2− t1 +τ and s′ = t2 + t1. The resulting region of integration is naturally integrated
over in two parts, separated at s = τ. The s′ integrals are evaluated to give the last line of Eq. (B1).

The contribution to the autocovariance due to the newly created mRNA since time t is also evaluated by conditioning on the
gene-state history, Z(·). Once Z(·) is given, N(t + τ) is independent of M(t) and the expectations of M(t) and Y(t) are equal, again
by Eq. (6). Thus,

E[M(t)N(t + τ)] = E[E[Y(t)N(t + τ)|Z(·)] ]
= E[E[Y(t)|Z(·)]E[ N(t + τ)|Z(·)] ]

= E

[∫ t

−∞

νZ(t1)e−δ(t−t1) dt1

∫ t+τ

t
νZ(t2)e−δ(t+τ−t2) dt2

]
= ν2

∫ t

−∞

∫ t+τ

t
e−δ(2t+τ−t1−t2)

(
ΦZZ(t2 − t1) + µ2

Z

)
dt2 dt1

=
ν2

2δ

∫ 0

−∞

(
eδs − eδ(s−2τ)

)
ΦZZ(s − τ) ds

+
ν2

2δ

∫ τ

0

(
e−δs − eδ(s−2τ)

)
ΦZZ(s − τ) ds

+
(
1 − e−δτ

)
µ2

M . (B2)

The integral over the gene-state autocovariance can be simplified by making the same change of variables as before. The region
of integration in the forth line of Eq. (B2) is an infinite rectangle, which when rotated (and scaled) is naturally decomposed into
two regions, one of which is a finite triangle with vertices at (s, s′) = (0, 2t + τ), (0, 2t − τ), and (2t, τ).

When contributions from Eq. (B1) and Eq. (B2) are combined, several terms cancel and others sum to give

ΦMM(τ) = µMe−δ|τ| +
ν2

2δ

∫ ∞

−∞

ΦZZ(τ − s)e−δ|s| ds, (B3)

where τ is now permitted to be any real value. This is the desired result - ΦMM expressed in terms of ΦZZ .
In order for Eq. (B3) to be useful, ΦZZ must be expressed in terms of the gene-state dwell time densities, fT0 and fT1 . A

derivation of Eq. (23) will now be presented. The autocovariance of the gene-state variable is computed once the stochastic
process is stationary, which means that the autocovariance is a function of only the time delay, τ. Autocovariance is necessarily
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an even function and so the derivation proceeds under the assumption that τ is positive.

ΦZZ(τ) ≡ E[ Z(t)Z(t + τ) ] − µ2
Z

= Pr {Z(t) = 1} · Pr {Z(t + τ) = 1 |Z(t) = 1} − µ2
Z

= µZ Pr {Z(t + τ) = 1 |Z(t) = 1} − µ2
Z

= µZ

∞∑
k=0

Pr {Z(t + τ) = 1 after k returns |Z(t) = 1} − µ2
Z . (B4)

In Eq. (B4), Pr {Z(t + τ) = 1 |Z(t) = 1} is computed by summing the probabilities of all the mutually exclusive ways this event
can occur; k counts the number of times the gene returns to the on state after switching to the off state. As long as t is considered
arbitrary subject only to the gene being in the on state at time t, the process will be instantaneously stationary.

The case in which Z remains in the on state, k = 0, is special. In terms of renewal theory [56], this is the stationary probability
of the residual life-time exceeding τ:

Pr {Z(t + τ) = 1 and k = 0} =
1
µT1

∫ ∞

τ

F̃T1 (σ) dσ. (B5)

For one return to the on state, k = 1, a succession of three independent events must occur in (t, t + τ): the gene must
switch off after initial observation at an arbitrary time t in the steady state, which has a probability F̃T1/µT1 ; then the gene must
switch on, which has a probability density of fT0 ; and finally the gene must not switch off again, which has a probability F̃T1 .
This calculation will proceed in the Fourier domain where convolutions become products. The Fourier transform of the joint
probability function for k = 1 is

1
µT1

1 − f̂T1 (ω)
iω

f̂T0 (ω)
1 − f̂T1 (ω)

iω
, (B6)

where we have used the fact that the Fourier transform of F̃T1 (τ)H(τ) is 1
iω

(
1 − f̂T1 (ω)

)
.

Each additional return to the on state results in another factor of f̂T0 (ω) f̂T1 (ω) corresponding to a switch off and then back on.
The sum over k is a convergent geometric series as | f̂T0 (ω) f̂T1 (ω)| < 1 for ω , 0. Thus,

ΦZZ(τ) =
µZ

µT1

 1
2π

∫ ∞

−∞

eiωτ

(iω)(iω)

(
1 − f̂T1 (ω)

)2
f̂T0 (ω)

1 − f̂T0 (ω) f̂T1 (ω)
dω +

∫ ∞

τ

F̃T1 (σ) dσ

 − µ2
Z . (B7)

The Fourier transform of
∫ ∞
τ

F̃T1 (σ) dσH(τ) is
µT1
iω −

1
(iω)2

(
1 − f̂T1 (ω)

)
, which can be used to combine the first two terms in

Eq. (B7). Eq. (23) is obtained by taking 1
iω

1
iω as two time domain integrations and switching the order of those integrations.

In practice, it may be simpler to evaluate one or both of the integrations in the frequency domain. Notice that τ is replaced
by |τ| in Eq. (23) to force ΦZZ to be an even function. If one wishes to evaluate the mRNA autocovariance from Eq. (22), it
is worthwhile to note that the above derivation gives the Fourier transform of ΦZZ(τ)H(τ). The Fourier transform of ΦZZ(τ) is
given as Φ̂ZZ(ω) = F {ΦZZ(τ)H(τ)} (ω) + F {ΦZZ(τ)H(τ)} (−ω).
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