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A wealth of new research has highlighted the critical roles of small non-coding RNAs (sRNAs) in
diverse processes such as quorum sensing and cellular responses to stress. The pathways controlling
these processes often have a central motif comprised of a master regulator protein whose expression
is controlled by multiple sRNAs. However, the stochastic gene expression of a single target gene
regulated by multiple sRNAs is currently not well understood. To address this issue, we analyze
a stochastic model of regulation of gene expression by multiple sRNAs. For this model, we derive
exact analytic results for the regulated protein distribution including compact expressions for its
mean and variance. The derived results provide novel insights into the roles of multiple sRNAs in
fine-tuning the noise in gene expression. In particular, we show that, in contrast to regulation by
a single sRNA, multiple sRNAs provide a mechanism for independently controlling the mean and
variance of the regulated protein distribution.

I. INTRODUCTION

Small non-coding RNAs (sRNAs), such as microRNAs
(miRNAs) and prokaryotic small RNAs, are known to
play a central role in diverse cellular pathways that bring
about global changes in gene expression [1, 2]. In several
cases, such global changes are coordinated by a master
regulatory protein whose expression is controlled by mul-
tiple sRNAs [3–5]. Examples include regulation of the
master regulator in bacterial quorum-sensing pathways
by multiple sRNAs [6] and regulation of the alternative
sigma factor σs by four distinct sRNAs, each of which re-
sponds to different environmental stresses [3]. In eukary-
otes, recent experiments have shown that the messenger
RNA (mRNA) p21, which plays a critical role in tumor
suppression, is regulated by 28 different sRNAs [4, 5].
Despite its importance in coordinating critical cellular
processes such as stress response, quorum sensing, and
tumor suppression, the role of multiple sRNAs in reg-
ulating the expression of a single target gene is not yet
well understood [4, 5]. In this work, we address this issue
by analyzing a stochastic model that elucidates potential
functional roles for this important regulatory motif.
Regulation of gene expression by sRNAs is a post-

transcriptional process: sRNAs can bind to mRNAs and
control protein production by altering mRNA stability
or by regulating translational efficiency [1]. The intrinsic
stochasticity of the underlying biochemical reactions can
produce significant variation (‘noise’) in gene expression
among individual cells in isogenic populations [7–11]. Al-
though in some cases noise in gene expression can have
deleterious effects and thus needs to be limited, in other
cases such noise is utilized and indeed required by the
cell, e.g. for processes leading to probabilistic cell-fate
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decisions [12, 13]. Furthermore, it has been argued that
noise in gene expression could be advantageous under
conditions of high stress, since variability in a population
provides a bet-hedging strategy that can enable survival
[14, 15]. Regulation of the noise in gene expression is thus
essential for the proper functioning of several cellular pro-
cesses. Since sRNAs regulate critical cellular processes,
understanding their role in fine-tuning the noise in gene
expression is of fundamental importance [13].

A quantitative understanding of the cellular functions
of sRNAs is aided by the development of models, which
can often produce insights that guide future experiments.
In recent research, several models which include regula-
tion by sRNAs have been developed [16–22]. Since many
sRNAs are known to repress gene expression, most pre-
vious models have focused on regulation by irreversible
stoichiometric degradation [16–20]. However, sRNAs can
affect not only mRNA degradation rates but also protein
production rates, and the corresponding biochemical re-
actions are, in general, reversible [1, 23]. Furthermore,
not all sRNAs repress gene expression; there are sRNAs
which are known to activate gene expression and even
some which can switch from activating to repressing in
response to cellular signals [23, 24]. To quantify the cor-
responding effects on stochastic gene expression, a gen-
eral model which includes the different mechanisms of
sRNA-based regulation needs to be analyzed. Such a
model, for the case of a single sRNA regulator, has been
developed in recent work [25]. Analysis of this model and
its extension to multiple sRNAs thus provides a means
of addressing outstanding questions about the impact of
different modes of regulation by sRNAs on the noise in
gene expression.

In this work, we generalize our previous model [25] to
analyze the case of multiple sRNAs regulating a single
mRNA target. Specifically, we derive exact analytic ex-
pressions for the generating function of a protein burst
distribution resulting from the regulation of a single tar-
get by an arbitrary number of sRNAs and provide results
relating the burst and steady-state distributions. For the
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FIG. 1. (Color online) Schematic illustration of regulation
of gene expression by multiple sRNAs. In the full reac-
tion scheme, there are N different regulators and the kinetic
scheme is shown for the ith sRNA regulator. Note that for
the mRNA to transition from one complex to another, it must
first return to its unbound state before forming a new com-
plex.

burst distribution, we obtain compact analytic expres-
sions for both the mean and variance of the regulated
protein distribution. We analyze these results for the case
of a single regulator and derive insights into the effects
of different modes of regulation by sRNAs. These results
are then contrasted with features associated with regu-
lation by multiple sRNAs. In particular, we show that,
in contrast to regulation by a single sRNA, regulation by
multiple sRNAs provides the cell with a mechanism to
independently fine-tune both the mean and variance of
the regulated protein distribution.

II. BACKGROUND AND MODEL
FRAMEWORK

In the following, we consider protein production from
an mRNA which is regulated independently byN sRNAs.
The corresponding reaction scheme is shown in Fig. 1.
In this scheme, the mRNA has N+1 possible states, with
the states i = 1, ..., N denoting mRNA bound to the ith

sRNA regulator to form complex i. For notational sim-
plicity, we denote the unbound mRNA state as complex
0. An unbound mRNA is produced with rate km and
forms a particular complex i with rate αi. This complex
can either dissociate with a rate βi, decay with a rate
µci , or initiate protein production with a rate kpi

.
In the model, sRNA regulators are taken to be present

in large amounts such that fluctuations in their concen-
tration can be ignored, an assumption that holds for
many known sRNAs in regulatory networks [26–28]. Cor-
respondingly, we model the binding of an sRNA to an
mRNA by the formation of a complex, such that the
rate of complex formation, αi, and complex dissocia-
tion, βi, are taken to be constant. We further note
that the proposed kinetic scheme applies to general post-
transcriptional regulators, for example the regulators can
be proteins instead of sRNAs. However, since our moti-
vation derives from the known instances of multiple sR-
NAs regulating a common target, we will refer to the

post-transcriptional regulators as sRNAs in this paper.
For the above reaction scheme, we derive the protein

burst distribution, Pb,N (n) produced by a single mRNA
which is then generalized to include the case of transcrip-
tional bursting. Previous work has shown how, in the
limit of independent bursts such that the protein life-
time is much greater than the mRNA lifetime, the noise
in burst distributions can be connected to the noise in
steady-state protein distributions [29, 30]. We investigate
this connection for the case of multiple sRNAs regulating
a single target and provide expressions for the generating
function of the protein steady-state distribution.

III. BURST DISTRIBUTIONS

We begin by defining the function fi(n, t) which de-
notes the probability that n proteins have been produced
and the mRNA is in state i at time t. The time-evolution
of these probabilities is governed by the master equation:

∂f0(n, t)

∂t
= kp0

(f0(n− 1, t)− f0(n, t))

−(µc0 +

N
∑

i=1

αi)f0(n, t) +

N
∑

i=1

βifi(n, t)

∂fi(n, t)

∂t
= kpi

(fi(n− 1, t)− fi(n, t))

−(µci + βi)fi(n, t) + αif0(n, t) (1)

The initial condition corresponds to creation of a sin-
gle unbound mRNA and no proteins in the system at
time t = 0, i.e. f0(0, 0) = 1. The protein burst distri-
bution produced from a single mRNA, Pb,N (n), can be
determined using

Pb,N (n) =

∞
∫

0

N
∑

i=0

fi(n, t)µcidt. (2)

The above equation can be understood as follows: given
that the mRNA is in state i at time t, the probability it
decays in the following time interval [t, t + dt] is µcidt.
The burst probability distribution, Eq. (2), is then ob-
tained by first conditioning Pb,N (n) on the mRNA be-
ing in the state i at time t and then degrading during
the interval [t, t + dt]. The corresponding probability is
fi(n, t)µcidt. Then, Pb,N (n) is obtained by integrating
over the time of decay and summing over the possible
states prior to decay.
We now define dimensionless parameters which allow

the results to be presented in a compact form. First we

define ni =
kpi

µci

for i ≥ 0, which can be interpreted as the

mean number of proteins produced by an unregulated
mRNA with translational efficiency kpi

and degradation

rate µci . Now, if we let ξi =
kpi

βi+µci

, we can interpret ξi

as the mean number of proteins produced during a single
sojourn in state i where in the limit that the formation of



3

the complex becomes irreversible, i.e. βi → 0, this mean
reduces to ni. We then define weighting parameters ωi =

αi

βi+µci

(

µci

µc0

)

for i > 0. Finally, by setting ω0 = 1 and

ξ0 = 0 we define ‘weight functions’ Ωi(z) = ωi
1

1+ξi(1−z) .

Using the above definitions, we obtain the following
exact expression for the generating function of the pro-
tein burst distribution for the case of a single mRNA (the
derivation is presented in the Appendix).

Gb,N (z) =

∑N
i=0 Ωi(z)

∑N
i=0 Ωi(z) +

∑N
i=0 Ωi(z)ni(1− z)

(3)

The above expression for the generating function can
be extended to include the case of transcriptional burst-
ing. Specifically, instead of a single mRNA produced
with rate km, we consider a burst of mRNAs arriving
with the same rate. The number of mRNAs produced in
a single burst can have an arbitrary distribution and we
denote the corresponding generating function by Gm(z).
Assuming that each mRNA contributes independently
to the production of proteins, the generating function
for the protein burst distribution (P b,N (n)) is given by

Gb,N (z) = Gm(Gb,N (z)) (where Gb,N (z) is the generat-
ing function for the burst of proteins produced from a
single mRNA) [30].
Previous work [31] has shown that, for a range of mod-

els of gene expression, the probability of producingm ≥ 1
mRNAs in a single burst can be represented by the con-
ditional geometric distribution P (m) = (1−p)m−1p with
mean mRNA burst size mb = 1/p (p ≤ 1). Focusing on
this case, we find that the generating function for the
protein burst distribution is given by

Gb,N (z) =
p
∑N

i=0 Ωi(z)

p
∑N

i=0 Ωi(z) +
∑N

i=0 Ωi(z)ni(1 − z)
(4)

where for p = 1 we recover Eq. (3) (see the Appendix for
a derivation of this result). Furthermore, for N = 0, i.e.
the unregulated case, the generating function reduces to
Gb,0(z) = p/(p + n0(1 − z)) in agreement with previous
work showing that the protein burst distribution is a ge-

ometric distribution with mean n0 =
kp0

µc0

[25, 32]. Eq.

(4) provides the generalization of this result for the case
of regulation by N sRNAs.
An important mechanism of regulation by sRNAs cor-

responds to the case that sRNA binding prevents ribo-
some access and thus blocks translation. For the case
that all the regulators act to fully repress translation,
i.e. kpi

= 0 for i > 0, we have Ωi(z) = ωi. Correspond-
ingly, the generating function reduces to the generating
function of an unregulated system with a renormalized
mean given by n0∑

N
i=0

ωi
. This observation indicates that

regulation by sRNAs which function by fully repressing
translation is, in principle, reversible: for arbitrary con-
centrations of the sRNA regulator, by appropriately ad-
justing the parameter kp0

, the regulated protein distri-
bution in the presence of sRNAs can be made identical

to the distribution for the unregulated case (i.e. prior to
introduction of the sRNAs).

IV. MEAN AND NOISE OF PROTEIN BURST
DISTRIBUTIONS

For the general case, using Eq. (4), we derive compact
analytic expressions for the burst mean, nbN , and coef-
ficient of variance, σ2

bN
/n2

bN
. The mean (scaled by the

unregulated mean) is given by

nbN

nb0

= 1 + FN (5)

and the noise strength (squared coefficient of variance) is
given by

σbN
2

nbN
2
= 1 +

1

nbN

+QN (6)

where

FN =

∑N
i=0 ωi (ni − n0)
∑N

i=0 ωin0

(7)

and

QN =
p
∑N

i,j=0 ωiωj(ξi − ξj)(ni − nj)
(

∑N
i=0 ωini

)2 (8)

Note that the signs of FN and QN characterize the im-
pact of the sRNAs on the regulated protein distribution.
Specifically, the unregulated case has mean nb0 ; thus,
FN < 0 corresponds to repression whereas FN > 0 corre-
sponds to activation. Similarly, an unregulated protein
burst distribution with mean nbN has a squared coef-
ficient of variance 1 + 1/nbN ; thus, when QN < 0 we
have noise reduction whereas QN > 0 corresponds to in-
creased noise strength (relative to an unregulated burst
distribution with the same mean). Furthermore, we note
that the above expressions illustrate that the parameter
ni characterizes sRNA i as a repressor or an activator;
namely, sRNA i is an activator if ni > n0 and sRNA i is
a repressor if ni < n0.
We now focus on using Eq. (5) and Eq. (6), to eluci-

date interesting features for the case of regulation by a
single sRNA, i.e. N = 1. Note that all of the variables
in the expressions for the mean and noise strength are
always positive (or zero) except for the term (n1 − n0).
Thus, the sign of F1 and Q1 is determined completely
by ∆10 = n1 − n0. When ∆10 > 0 the mean and noise
strength are higher than their unregulated values. Sim-
ilarly, when ∆10 < 0 both the mean and noise strength
are lower than the corresponding unregulated values (ex-
cept for the case ξi = 0 for which the noise strength is
identical to an unregulated distribution with the same
mean). In either case, we note that for a single sRNA
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(a) (b)

FIG. 2. (Color) Contour plots for the percent change in the
mean and noise strength of a two regulator system from the
corresponding unregulated values as a function of kp1 and kp2 .
(a) Mean: Plot of M(kp1 , kp2) = F2 · 100%. Note that along
the contour M(kp1 , kp2) = −20% the noise strength changes
from less than −5% to over 70%. (b) Noise Strength: Plot
of S(kp1 , kp2) = Q2

1+1/nb2

· 100%. Note that S(kp1 , kp2) con-

tains contours that sweep out a large portion of the plotted
(kp1 , kp2) state space. By proportionally changing the kp val-
ues corresponding to the two regulators, the noise strength
can be varied while maintaining the same mean value. The
parameters used were p = 1, kp0 = 50, µc0 = 1, µc1 = 4.5,
µc2 = 4.5, β1 = 1, β2 = 0.5, α1 = 2 and α2 = 2.

regulator present at high concentrations, there is a cou-
pling between the mean and noise strength of the regu-
lated burst distribution such that both cannot be tuned
independently, e.g. a decrease in the mean cannot be as-
sociated with an increase in the noise strength. Note that
in the limit of low sRNA concentration, where the model
assumptions do not apply, additional ways of tuning of
noise and mean may be possible.

In contrast to the case of regulation by a single sRNA,
in the case of regulation by multiple sRNAs, the mean
and noise of the protein distribution can be tuned in-
dependently. The deviation of the mean from its un-
regulated value depends solely upon terms of the form
∆i0 = ni − n0. On the other hand, considering the gen-
eral form of the noise strength for N > 1, we have terms
of the form ∆̃ij = (ξi − ξj)(ni − nj) that contribute to
the deviation from the corresponding unregulated value.
Thus, for appropriately chosen parameters, two or more
sRNAs can be used to tune both the mean and variance
of the regulated protein distribution as discussed below.

Consider the case of regulation by two sRNAs that
are maintained at some fixed cellular concentrations. A
mRNA target for these sRNAs can arise from the evo-
lution of appropriate sRNA binding sites on the mRNA
sequence. For the mRNA target, we assume that the pa-
rameters kp1

and kp2
can be tuned based on changes in

the sequence and location of the sRNA binding sites. The
corresponding variation in the mean and noise strength is
shown in Fig. 2. Note that by maintaining a linear rela-
tionship between kp1

and kp2
, the mean of the regulated

protein distribution can be left unchanged; however, the
noise strength can be tuned over a large range. For ex-

FIG. 3. (Color) Contour plot of the percent change in noise
strength of a two regulator pathway from its corresponding
unregulated value as a function of α1 and α2, i.e. S(α1, α2) =

Q2

1+1/nb2

· 100%. The change in mean from the unregulated to

regulated pathways, FN , is positive below and negative above
the line α1 = α2. The parameters used were kp0 = 50, p = 1,
kp1 = 200, kp2 = 72.5, µc0 = 1, µc1 = 2.725, µc1 = 2.725,
β1 = 0.15 and β2 = 0.15.

ample, for some choices of the parameters, the mean can
be fixed and the noise strength can be varied by over
100% relative to the unregulated distribution (see Fig.
2). In this context, it is interesting to note that it has
been observed that several sRNAs have a minimal effect
on the mean levels of their regulatory targets. For such
targets, sRNAs could be functioning primarily as modu-
lators of noise while giving rise to only a minimal change
in mean levels due to regulation [13]. Our results pro-
vide quantitative insight into how such regulation can be
implemented using multiple sRNA regulators.

The results obtained also illustrate how changing
sRNA concentrations can be used to modulate the noise
in gene expression. For our model, changes in the con-
centration of the sRNA regulators effectively alter the
binding rates (αi) to the mRNA. From Eq. (5), we see
that for two regulators, by choosing one of the regula-
tors to be a repressor and the other to be an activator,
the mean of the regulated protein distribution can be in-
creased (FN > 0) or decreased (FN < 0) by adjusting the
relative concentrations of the two regulators. Further-
more, by changing the concentrations of the regulators
such that their relative concentration is fixed, the mean
of the regulated protein distribution is left unchanged,
whereas the variance can be tuned over a range of values.
This insight is particularly relevant, given that noise can
be advantageous to a cell. In particular, noise in gene ex-
pression is known to be especially important in response
to stress; a response which is often governed by pathways
involving regulation by multiple sRNAs.
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V. PROTEIN STEADY-STATE
DISTRIBUTIONS

Since sRNAs primarily impact protein production, the
previous sections focused on their regulatory effects on
protein burst distributions. However, it is also of in-
terest to model how multiple sRNAs impact the protein
steady-state distributions, given that steady-state distri-
butions are generally easier to measure experimentally.
Using results from previous work [29, 30, 33], the expres-
sions obtained above for burst protein distributions can
be used to find corresponding steady-state results. In
particular, for arbitrary burst arrival processes, apply-
ing results from queueing theory, the steady-state mean
is given by ns = kmτmnb where τm is the average de-
cay time of mRNAs [29, 34]. Given that the arrival of
protein bursts is a Poisson process with rate km with
each burst producing n proteins where n is drawn from a
probability distribution with generating function Gb,N (z)
given by Eq. (4), the generating function of the protein
steady-state distribution is given by

Gs,N (x) = exp





km
µp

x
∫

1

(

A(y)

B(y)

)

dy



 (9)

for

A(y) =

N
∑

i=0

Ωi(y)
ni

p
(10)

B(y) =

N
∑

i=0

Ωi(y) +

N
∑

i=0

Ωi(y)
ni

p
(1− y) (11)

Now, as shown in the Appendix, the integrand in Eq. (9)
can be rewritten as a polynomial of degree N divided by
a polynomial of degree N + 1. These polynomials have
real coefficients, so a solution to the integral of Gs,N (x)
can always be found using the method of partial fractions
for any given system of regulators. Using Eq. (9), the
steady-state mean and squared coefficient of variance are
found to be

nsN =

(

km
µp

)

nbN (12)

and

σ2
sN

n2
sN

=
1

nsN

+
1

km/µp

[

1 +
QN

2

]

(13)

Consider the case of a single post-transcriptional reg-
ulator acting via pure repression, i.e. Q1 = 0. The
steady-state mean of the protein distribution is given by
ns1 = kmnb1/µp and the noise is given by σ2

s1/n
2
s1 =

1
km/µp

+ 1
ns1

. For sufficiently high mean, ns1 ≫ 1, the

noise is approximately σ2
s1/n

2
s1 ≈

1
km/µp

. Thus, for a sys-

tem with protein decay rate µp, the steady-state noise
can be tuned at the transcriptional level by adjusting the

rate of mRNA arrival, km, and the mean can be tuned
at the post-transcriptional level by changing the value of
nb1 . This indicates the potential for specific pathways
to achieve fine-tuning of mean and noise through not
only pure post-transcriptional regulation but through a
combination of transcriptional and post-transcriptional
mechanisms.

VI. DISCUSSION

Modulation of gene expression noise can provide a mul-
titude of selective advantages in specific contexts and our
model provides a means of gaining insight into molecu-
lar mechanisms for achieving such control using multi-
ple post-transcriptional regulators. In the present work,
we have obtained closed-form solutions for the generat-
ing function of the protein burst distribution (includ-
ing transcriptional bursting) with regulation by an ar-
bitrary number of sRNAs. Using this generating func-
tion, the mean and noise of the protein burst distribu-
tion were investigated analytically. In particular, our
analysis shows that by adjusting the concentrations of
multiple sRNA regulators, a cell can initiate finely-tuned
responses to external stimuli, in particular to alter the
noise in protein distributions without significantly affect-
ing the mean. The burst expressions were then connected
to their steady-state counterparts and indicated the po-
tential for combinations of post-transcriptional and tran-
scriptional to achieve some level of fine-tuning of protein
distributions. This suggests that the cell may utilize a
combination of post-transcriptional and transcriptional
mechanisms to tune protein distributions, with post-
transcriptional regulators offering the advantage of faster
response to stimuli than transcriptional regulators. This
could explain the ubiquity of sRNA regulators in cellular
stress response, a process for which gene expression noise
is known to be critical and quick tuning of protein levels
could be vital to cell survival. In a broader context, the
fine control afforded to cells via regulation by multiple
sRNAs could be useful in signal integration when multi-
ple environmental stimuli are present simultaneously.
In future work, the interplay between transcriptional

and post-transcriptional regulators will be studied in
greater detail. In particular, previous work [11] has
shown how the noise variance can be tuned indepen-
dently from the mean based on regulation at the pro-
moter level. While this work obtained results valid for
general promoters, the effect of post-transcriptional reg-
ulation was not considered. In contrast, the present work
includes the effects of post-transcriptional regulation but
only considers promoters for which bursts arrive accord-
ing to a Poisson process. It would thus be of interest in
future work to combine both approaches and gain fur-
ther insight into how the combination of transcriptional
and post-transcriptional regulation can be used to fine-
tune the noise in protein distributions. Overall, this work
provides a basis for future work investigating phenomena
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such as signal integration and response in more complex
pathways, thus opening new avenues for understanding
and modeling stochastic gene expression in a wider class
of regulatory networks.
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Appendix A: Derivation of the Generating Function
for Proteins Produced from a Single mRNA

The general strategy for finding the generating func-
tion, Gb,N (z), involves taking the Laplace transform of
the master equation, Eq. 1, and then taking the limit
of the resulting transformed equation to find the desired
relations. Specifically,

Gb,N (z) = lim
s→0

N
∑

i=0

µcIFi(z, s) (A1)

where we define Fi(z, s) =
∑∞

n=0 z
nLi(n, s) and

Li(n, s) =
∫∞

0 e−stfi(n, t)dt is the Laplace transform of
fi(n, t). Now, by taking the Laplace transform of the
master equation we find

sL0(n, s) = f0(n, 0) + kp0
(L0(n− 1, s)− L0(n, s))

−(µc0 +
N
∑

i=1

αi)L0(n, s) +
N
∑

i=1

βiLi(n, s)

sLi(n, s) = fi(n, 0) + kpi
(Li(n− 1, s)− Li(n, s))

−(µci + βi)Li(n, s) + αiL0(n, s) (A2)

By taking the unilateral z-transform of these expressions
and substituting the initial condition f0(0, 0) = 1 we find

F0(z, s) = 1

/(

s+ µc0Ω0(z)(1 + n0(1 − z))

+

N
∑

i=1

µc0ωi(1 + ni(1− z))

1 + ξi(1− z) + s
µci

+βi

)

Fi(z, s) =
ωiµc0F0(z, s)

µci + µciξi(1− z) +
µci

s

µci
+βi

(A3)

Substituting these expressions into Eq. (A1), we obtain
the generating function Eq. (3).

Appendix B: Derivation of the Generating Function
for Protein Bursts with Transcriptional Bursting

As discussed in the main text, Gb,N (z) = Gm(Gb,N (z))
where Gm(z) is the generating function for the produc-

tion of mRNAs in a burst and Gb,N (z) is the gener-
ating function for the burst of proteins produced by a
single mRNA. For the considered case of geometrically
distributed bursts, Gm(z) = pz/(1 − z(1 − p)) and thus
Gb,N (z) = pGb,N (z)/(1−Gb,N(z)(1−p)). Thus, plugging
in the result from Eq. (3) derived above we find

Gb,N (z) =
p
∑N

i=0 Ωi(z)

p
∑N

i=0 Ωi(z) +
∑N

i=0 Ωi(z)ni(1− z)
(B1)

Appendix C: Steady-State Generating Function

As discussed in [30, 33], for a Poisson arrival of bursts,
the steady-state protein level is given by

GS(x) = exp





kb
µp

x
∫

1

(

Gb,N(y)− 1
)

dy

y − 1



 (C1)

which upon rearrangement yields

GS(x) = exp





kb
µp

x
∫

1

p
∑N

i=0 Ωi(y)nidy
∑N

i=0 Ωi(y)(p+ ni(1− y))





(C2)
If we define the function

hi(y) =

N
∏

k=0,k 6=i

(1 + ξk(1 − y)) (C3)

then, by multiplying the numerator and denominator of
the steady-state generating function by hi(y) we can see
that this expression reduces to

GS(x) = exp





kb
µp

x
∫

1

P (y)

Q(y)
dy



 (C4)

for

P (y) = p
N
∑

i=0

ωinihi(y) (C5)

and

Q(y) =
N
∑

i=0

ωihi(y)(p+ ni(1 − y)) (C6)

where P (y) is in general a polynomial of degree N and
Q(y) is in general a polynomial of degree N + 1.
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