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We study a continuum model of overdamped self-propelled particles with aligning interactions in
two dimensions. Combining analytical theory and computations, we map out the phase diagram for
the parameter space covered by the model. We find that the system self-organizes into two robust
structures in different regions of parameter space: solitary waves comprised of ordered swarms
moving through a low density disordered background, and stationary radially-symmetric asters.
The self-regulating nature of the flow yields phase separation, ubiquitous in this class of systems,
and controls the formation of solitary waves. Self-propulsion and the associated active convection
play a crucial role in aster formation. A new result of our work is a phase diagram that displays
these different regimes in a unified manner.

I. INTRODUCTION

Active fluids are comprised of interacting, self-
propelled particles that individually consume energy
and collectively generate large scale motion. Examples
span many length scales, ranging from animal herds [1],
schools of fish [2], bird flocks [3] and insect swarms [4],
to bacterial colonies [5–7] and the cell cytoskeleton [8].
In this paper, we consider the overdamped dynamics of a
collection of such particles subject to local aligning inter-
actions. The model is relevant to various experimental
systems, including motility assays [9], suspensions of cy-
toskeletal filaments [10], self-chemotactic bacteria such as
E-coli in convection-free geometries [11], and inanimate
systems such as vibrated granular monolayers [12] and
chemically driven nano-rod suspensions [13].

The goal of our study is to identify universal hydrody-
namic mechanisms for the emergence of complex struc-
tures in systems exhibiting collective motility. To this
end, we focus on a simple yet generic macroscopic de-
scription in terms of a conserved density field and a
collective velocity or polarization field. This mean-field
model is expected to capture the behavior of the sys-
tem on length scales large compared to the size of the
individual units and on time scales long compared to
the microscopic interaction times and the frictional re-
laxation times set by the medium. Such a description
was first considered in the pioneering work of Toner and
Tu [14–16] who found that self-convection inherent to
active particle flows stabilizes long range order in two di-
mensions. Our study builds on this and related earlier
works both analytically and numerically. Specifically, we
map out emergent inhomogeneous structures, and iden-
tify the mechanisms underlying their formation.

The archetypal, overdamped self-propelled system we
consider involves two parameters, the self-propulsion
speed w0 of the active particles and a parameter λ that
incorporates the effect of non-linear inter-particle inter-
actions. The theoretical model of Toner and Tu [14–16]
yields a mean field transition from a disordered state to
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FIG. 1. (Color online) Left Panel : Phase diagram in the
(λ,w0) plane for ρ0 = 1.05. The dashed (blue online)
and dashed-dotted (red online) lines are the neutral stability
curves for the L (Eq. (5)) and T (Eq. (6)) modes, respec-
tively. The shaded regions describe the stable states obtained
numerically: a homogenous polar state (H), a regime of prop-
agating solitary stripes (S), a regime of stationary asters (A),
and moving localized polar clusters (B). The domain size is
(in dimensionless units) 128 × 128 and the equations were
integrated up to 5 × 104 diffusion times. The moving polar
clusters are a result of finite system size and the finite time
of integration. Right Panel: Snapshot of a propagating stripe
(bottom) and a stationary aster (top), the contours (color
online - blue (low) and red(high)) denoting density.

an ordered polar state (i.e., a state with nonzero mean
velocity) that is controlled by the density of the active
units. This density is not, however, an external control
parameter as in conventional equilibrium phase transi-
tions, but rather is convected by the order parameter.
This coupling renders the dynamics of the system self
regulating, in that the state of the system is determined
by the interplay between particle convection and ten-
dency to local alignment, rather than by an externally
controlled density of active particles.

Our main result is the phase diagram shown in Fig. 1,
that displays the various dynamical states obtained by
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varying w0 and λ, for a fixed density above the mean-
field order-disorder transition. As expected, the homo-
geneous polar state (H) is unstable in most of the param-
eter space. It is replaced by one of two robust structures
in different regions of parameters. The first is a state of
propagating solitary waves consisting of high density or-
dered swarms moving through a low density disordered
background (see Fig. 1, Region (S)). The second is a
stationary, radially-symmetric aster (see Fig. 1, Region
(A)).

Density waves of the type found here are ubiquitous in
bacterial systems [11, 17–22] and have also been observed
in dense motility assays of short actin filaments [9]. The-
oretical studies showing the emergence of traveling wave
structures have included diffusion models with chemo-
tactic gradients [23–26], numerical simulations of agent
based models, such as the Vicsek model [27] and coarse
grained theories [28–30]. In particular, Bertin et al [29]
have recently pointed out that the traveling density
stripes are solitary waves, rather than a nonequilibrium
pattern of the system. In this work, we demonstrate that
these density waves are an inevitable consequence of the
self-regulating nature of self-propelled particle flows and
can be viewed as a coexistence between two stable phases
of the system, namely a high density ordered swarming
state and a low density disordered state.

The other structure we find - asters - are ubiquitous
in cell biology in processes such as the formation of the
mitotic spindle [31, 32]. They also occur in in-vitro
suspensions of cytoskeletal filaments and motor proteins
[10, 33, 34]. Theoretical models of mixtures of cytoskele-
tal filament and motor proteins do indeed yield aster
formation [35–39, 41, 42], arising from the dynamics
of the motor proteins and/or the flow of the solvent.
Asters have not, however, been obtained before in Toner-
Tu continuum models of self-propelled particles because
they only occur for stronger effective nonlinearities than
considered in previous studies. In addition, our analysis
identifies a universal hydrodynamic mechanism for aster
formation in the change in sign of the effective nonequi-
librium compressibility of the system, combined with the
active self convection.

The layout of this paper is as follows. First, we re-
view the hydrodynamic theory and describe the key fea-
tures that control the emergent structures. Then, we
carry out a linear stability analysis of the homogeneous
swarming state and identify the mechanisms leading to
onset of inhomogeneous structures. Next, we report the
results of a numerical solution of the nonlinear determin-
istic equations and discuss the mechanisms underlying
the formation of the propagating density waves and sta-
tionary asters. Finally, we conclude with a discussion
that places our work in the context of the existing vast
literature on active polar fluids.

II. THE CONTINUUM MODEL

We model the overdamped dynamics of a collection
of self-propelled particles. The only conserved field is
the number density ρ(r, t) of active particles. In addi-
tion, to describe the possibility of states with polar ori-
entational order or collective motility, we consider the
dynamics of a vector field, τ (r, t) = ρ(r, t)P(r, t), that
represents a polarization density. Here, P(r, t) is an or-
der parameter for polar orientational order. Its mag-
nitude measures the amount of orientational order and
its direction represents the Goldstone mode associated
with the spontaneously broken rotational symmetry in
the swarming state. The dynamical equations associated
with these quantities were first constructed phenomeno-
logically by Toner and Tu [14] and have more recently
been derived by coarse-graining various microscopic mod-
els [28, 29, 38, 41, 43, 44]. They are given by

∂tρ = −∇ · (w0τ −D∇ρ) , (1)

∂tτ+λ1(τ ·∇)τ = −
[
a2(ρ) + a4|τ |2

]
τ +K∇2τ

−w1∇ρ+
λ3
2
∇|τ |2 + λ2τ (∇ · τ ) . (2)

The density equation, Eq. 1, is a conservation law with
a mass flux controlled by the sum of convection of the
active particles at the self-propulsion speed w0 and dif-
fusion at rate D. The structure of the polarization equa-
tion, Eq. 2, reflects the fact that τ plays a dual role:
on one hand τ/ρ is the orientational order parameter of
the system, on the other w0τ/ρ represents the mean flow
velocity. The first two terms on the right hand side of
Eq. 2 control the mean-field continuous order-disorder
transition to a state of collective motility, with a2(ρ) a
parameter that changes sign at a characteristic density
ρc, and a4(ρ) > 0. The term proportional to λ1 describes
self-convection. One may consider this as the active ana-
log of the finite Reynolds number convective nonlinearity
in the Navier-Stokes equation.

We note that the overdamped system just described
does not possess Galileian invariance as the active parti-
cles move relative to the (damping) medium. As a result,
λ1 6= 1/ρ. This lack of Galileian invariance also allows
for other convective terms proportional to λ2 and λ3 that
appear on the right hand side of the equation. In contrast
however to the term proportional to λ1, these terms also
have an equilibrium interpretation and can be present in
an equilibrium polar or ferroelectric fluid [45]. The term
proportional to w1 is essentially a pressure gradient and
is unique to systems with polar symmetry.

Before proceeding further we point out the two cru-
cial properties of the above equations that control the
formation of emergent structures in this system.

(1) Dynamical Self-regulation. It is useful to com-
pare Eq. 2 to that for the order parameter of an equi-
librium lyotropic polar liquid crystal such as a smectic
C Langmuir monolayer [46]. The important difference
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is that in the equilibrium system the density controlling
the order-disorder transition is externally tuned. In the
case of a collection of self-propelled particles, the density
is convected by the order parameter itself through the w0

term in Eq. 1. In this sense the amount of order is regu-
lated by the dynamics of the system and, critically, this
coupling is rendered non-local by the convective terms.
This is a crucial feature of the dynamics of self-propelled
systems and plays a central role in controlling the forma-
tion of emergent structures.

(2) Negative effective compressibility. Two terms
on the right hand side of Eq. 2 that are along the direction
of the spatial gradient, namely w1∇ρ − λ3

2 ∇|τ |
2 repre-

sent pressure gradients, with w1ρ − λ3

2 |τ |
2 the effective

pressure. Although in general one could imagine a more
complicated dependence of the effective pressure on den-
sity ρ and magnitude of polarization |τ |, the form cho-
sen here has been obtained in a number of derivation of
the continuum equations from microscopic models of self-
propelled particles (see [29, 30] and references therein).
The first term is the ideal gas part of the pressure. The
second term arises due to the intrinsic tendency of polar
systems to splay [45]. For λ3 > 0, as obtained from all
microscopic derivations [29, 30], it describes a lowering
of the pressure due to ordering of the velocities. When
λ3 becomes large the system develops an effective neg-
ative compressibility. This central property controls the
physics in the interaction dominated regime.

Given the large number of parameters in the hydro-
dynamic equations, Eq. 1 and 2, we now proceed to
simplify them as follows. We choose a2 = ν (1− ρ/ρc)
and a4 =

(
ν/ρ2

)
(1 + ρ/ρc), with ν being a characteris-

tic kinetic frequency. These choices yield a continuous
mean-field phase transition from an isotropic (τ = 0)
to a homogeneous, polar or swarming state (|τ | > 0) at
the critical density ρ = ρc and ensures that |τ |/ρ → 1
for ρ � ρc. We further assume D = K and measure
time in units of ν−1 and lengths in units of (D/ν)

1
2 .

Without loss of generality, we also set the critical density
ρc = 1. To further reduce the number of independent
parameters, computations are carried out for w1 = w0

and λ1 = λ2 = λ3 = λ. This minimal choice is consistent
with systematic derivations of these equations from phys-
ical microscopic models [29, 43, 44]. The simplified equa-
tions then involve just three parameters: (1) the mean
density of the system, ρ0, which determines the distance
from the order-disorder transition, (2) the convective ve-
locity w0, and (3) λ which is controlled by the strength of
interparticle interactions. The hydrodynamic equations
in dimensionless simplified variables are given by

∂tρ = −∇ · (w0τ −∇ρ) , (3a)

∂tτ = −(a2 + a4τ
2)τ − w0∇ρ+∇2τ

+λ (τα∇τα + τ∇ · τ − τ · ∇τ ) , (3b)

where w0 and λ are now dimensionless.

III. LINEAR STABILITY ANALYSIS

In this section, we examine the linear stability of the
homogeneous solutions to Eqs. (1) and (2). We use di-
mensionless variables in our analysis, but to highlight the
role of each term in the complete hydrodynamic equa-
tions, we allow for the parameters w0, w1, λ1, λ2 and λ3
to have different values.

The continuum equations (1) and (2) have two ho-
mogeneous, stationary solutions, both with ρ = ρ0 =
constant: an isotropic state with τ = 0 for ρ0 < ρc ≡ 1
and a polar state with τ 6= 0 for ρ0 > ρc. We focus
here on the polar (or collective motile) state. Without
loss of generality, we take the direction of polarization
to be the x axis of our coordinate system. The homoge-
neous polar state is then characterized by τ = τ0x̂ with
τ0 = ρ0

√
(ρ0 − ρc) / (ρ0 + ρc).

The stability of this homogeneous state to small ampli-
tude perturbations ρ = ρ0+δρ (r, t), τ = τ 0+δτ (r, t) x̂+
δτ⊥ (r, t) ŷ may be readily examined. Introducing the
Fourier representation x̃ (q, t) =

∫
dreiq·rx (r, t), we ob-

tain the linearized equations

∂tδρ̃ = −q2 δρ̃+ iw1(q‖ δτ̃ + q⊥ δτ̃⊥) , (4a)

∂tδτ̃ = (α1 + iw1q‖) δρ̃− (α2 + iλτ0q‖ + q2) δτ̃

−iλ2τ0q⊥ δτ̃⊥ , (4b)

∂tδτ̃⊥ = iw0q⊥ δρ̃− iλ3τ0q⊥ δτ̃ + (iλ1τ0q‖ − q2) δτ̃⊥ ,

(4c)

with λ = λ3 + λ2 − λ1, q‖ = q cos θ, q⊥ = q sin θ,
θ being the angle between the wavevector q and the
direction of broken symmetry, x̂ and the parameters

α1 ≡ −τ0
(
∂a2
∂ρ −

a02
a04

∂a4
∂ρ

)
, and α2 ≡ −2a02, with α1 ≥ 0

and α2 ≥ 0 for ρ0 > ρc. We next seek solutions of the
form δρ̃, δτ̃ ∼ esα(q)t so that the homogeneous state is
stable only when Re[sα(q)] < 0 for all eigenvalues. The
details of the linear stability analysis have been discussed
elsewhere [29, 30] and we will only provide a summary
with focus on the aspects relevant to emergent structures.
The physics is highlighted by examining the special cases
of wavevector q along the direction of broken symmetry
(θ = 0) and in the normal direction (θ = π/2).

Convection mediated density instability. When
θ = 0 and q = q‖, the fluctuations δτ⊥ decouple and are
always stable. The coupled equations for the density and
magnitude fluctuations give the dispersion relations for
the these two modes. In the long wavelength limit q → 0
one finds that these modes are unstable provided

1 +
w0w1

α2
− w2

0

α2
1

α3
2

− λτ0w0
α1

α2
2

< 0 . (5)

The equations leading to (5) demonstrate that this insta-
bility is intimately related to the self regulating nature
of the dynamics. It arises from the density dependence
of the tendency of the system to build up polar order,
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a2(ρ), and the fact that this density dependence is ren-
dered nonlocal by the convective coupling of density to
τ proportional to w0 and w1. The location of the longi-
tudinal instability line defined by Eq. (5) in the (λ,w0)
plane is shown by the dashed (blue online) line in Fig. 1
for a fixed value of density. Alternatively, one can iden-
tify a density ρR(λ,w0) such that magnitude fluctuations
in the order parameter destabilize the homogeneous po-
lar state for ρR > ρc, leading to the onset and growth
of density inhomogeneities.This longitudinal instability
has been previously identified in Refs. [29] and [30] and
will be referred to here as the convection-mediated den-
sity instability. We want to emphasize two features of
this instability: i) the mode is mainly controlled by the
third term in Eq. (5) and as such is model independent.
Furthermore, it arises purely due to the convective cou-
pling between the collective velocity and density; ii) as
the order-disorder transition is approached from above
α2 → 0 and w0c ∼ (ρ0−ρc)

1
2 , i.e., near ρc the mean-field

ordered state becomes unstable for vanishingly small w0.
Splay induced negative compressibility. We now

consider the dynamics of fluctuations in the direction or-
thogonal to the polarization, i.e., for θ = π

2 or q = q⊥.
In this case the modes are all stable and diffusive near
the isotropic-polar mean-field transition [30]. Far from
the transition, fluctuations in δτ decay rapidly and can
be eliminated in favor of δρ and δτ⊥ by using the quasi-

steady approximation δτ ≈
(
α1

α2

)
δρ−

(
iqλ3τ0
α2

)
δτ⊥. Sub-

stituting this expression in Eqs. (4a) and (4c) we find
that δτ⊥ fluctuations - which in this case describe splay
deformation of the order parameter - are unstable for

w1 − λ3τ0
α1

α2
< 0 . (6)

Note that this splay instability is controlled by the non-
linear coupling proportional to λ3 and occurs when the ef-
fective compressibility of the system as determined by the
third and fourth terms on the right hand side of Eq. (2)
changes sign.The parameter λ3 is in turn determined by
interactions in the system [29, 30] and hence the precise
location of the instability line is model dependent.

To summarize, we have identified two mechanisms that
render the system linearly unstable and lead to growth
of infinitesimal density fluctuations. In §III, we go be-
yond the linear stability analysis and use detailed nu-
merical computations to characterize the spatially (and
in certain cases temporally) inhomogeneous states that
replace the homogeneous solution in the unstable region
of parameters.

IV. EMERGENT STRUCTURES

To study the emergent structures arising from the
nonlinear model, Eqs. (3a) and (3b) were solved nu-
merically in two spatial dimensions using both an ex-
plicit (FTCS) scheme as well as a semi-implicit spectral
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FIG. 2. (Color online) Profiles of ρ, the density (upper curve,
pink in online version) and τx and τy the polarization fields
(lower curves, blue and green online) are plotted for a striped
state when w0 = 0.4, λ = 0 and ρ0 = 1.05. The system size is
1024× 32 and results shown are obtained after integrating to
104 diffusion times. The arrow on the top right (red online)
denotes the direction of motion of the stripes The vertical
lines demarcate the trailing (T) and leading (L) edges of the
stripe. The inset shows the details of the profile of density
(solid line, blue online) and polarization (dashed line, green
online) for one stripe.

Fourier-Galerkin scheme. In most calculations the sys-
tem was started in a homogenous, non-polar (disordered)
state, with small amplitude, uniformly distributed, zero-
mean noise. Local initial density perturbations were cho-
sen to be less than 3% of the mean density.

The results are summarized in the phase diagram
shown in Fig 1 and discussed briefly in the introduction.
For large values of activity the homogenous polar state
(H) is unstable and two steady, inhomogeneous states are
obtained: (i) propagating stripes comprised of ordered
swarms moving through a disordered background, when
active convection exceeds the strength of nonlinearities
w0/λ � 1, and (ii) a stationary aster when non-linear
effects dominate convection λ/w0 � 1. We now discuss
the mechanisms underlying the formation of these two
long-lived structures.

A. Solitary waves

We begin by considering the dynamics of the system in
the convection dominated regime. For values of w0 above
the critical value for the onset of the convective density
instability, defined by Eq. (5), an initially homogeneous
state develops hot-spots of high density that are then
convected throughout the system due to the coupling be-
tween τ and ρ. These high density regions reorganize and
grow in the direction lateral to their motion due to dif-
fusion, resulting in the formation of high density, highly
ordered planar stripes propagating at a speed of order w0
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through a low density, disordered background. We stress
three striking properties of these stripes: i) they are not
a pattern in that the width and spacing of the stripes is
not fixed but rather determined by initial conditions and
domain size - they are instead solitonic wavefronts; ii)
the propagation speed c is of the order of w0 and weakly
dependent on the base density of the system; iii) The
bands are bounded by two sharp fronts - a leading, nar-
row boundary layer and a wider and more slowly decaying
trailing boundary layer (see Fig. 2). Similar stripes have
been observed previously in discrete particle simulations
as in [29].

Mechanism. Computations show that the propagat-
ing stripe state persists even when we set λ to zero. In
addition, the onset of the striped state closely follows
the neutral stability line associated with the convection
mediated density instability determined by Eq. 5.

A minimum dynamical model for the emergence of
this structure is given by the coupled equations ∂tρ =

−w0∂xτ and ∂tτ = −(a2 + a4
τ2

ρ2 )τ −w0∂xρ. These equa-

tions are equivalent to a wave equation where the homo-
geneous nonlinear terms from the polarization equation
provide the dispersion that generates the solitary wave
structure. After transforming to a co-moving frame, the
equations can be reduced to quadrature to determine the
speed of propagation and the profile of the wavefront.
Such an analysis has already been reported in [29].

Here, we present a complementary point of view. As
stated earlier, the convection mediated density instabil-
ity occurs in the vicinity of ρc. The polar ordered state is
re-stabilized at higher densities. In this unstable regime,
the dynamics of the system essentially yields a phase sep-
aration into a high density ordered state and a low den-
sity disordered state, both of which are now stable (see
Fig. 3). The degree of order in the stripe is precisely

τh = ((ρh−1)/(ρh+1))
1
2 , i.e., the value predicted by the

mean field theory for a state of density ρh. The propa-
gating nature of the ordered state results in the robust
concentration waves observed in the numerical solution.
Interestingly, we note that phase separated structures are
also observed in active nematic systems [47] which are
also self-regulating in nature, although via mechanisms
different from polar convection.

Experimental Realizations. Propagating concen-
trations waves have been observed in dense actin motil-
ity assays [9] and in self-chemotactic bacterial suspen-
sions [11].

For the actin system, the numerical modeling described
in Ref. [9] yielded the conclusion that local polar align-
ing interactions among the filaments are necessary for the
emergence of the propagating waves. These interactions
need not be medium mediated and could arise from the
fact that aligned actin filaments have very anisotropic
friction constants for sliding along the direction of align-
ment when compared to sliding against it [48]. This
strongly suggests that the propagating waves seen in
actin motility assays are indeed the propagating stripes
obtained in the our model of polar self-propelled parti-
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FIG. 3. (Color online) Illustration of the phase separation in
the stripe state. Left Panel : Computational results obtained
at T = 104 for a 128 × 128 domain with λ = 0. The shaded
region (red stripes online) indicates the domain in parameter
space when the polar state is unstable due to the convection
mediated density instability. The density in the propagating
stripe ρh and the low density background ρ` for various values
of the base density and w0 are shown. The lines are a guide
to the eye. Right Panel : Plot of the polarization τh as a
function of w0 from the numerical simulation. The solid line
is the analytical prediction ρh(w0)−1

ρh(w0)+1
.

cles due to the dynamic self-regulation of the collective
motility.

In contrast, patterns in bacterial suspensions are con-
trolled by chemical and nutrient gradients and have been
traditionally modeled using coupled reaction-diffusion
equations. Recent work has shown that some patterns
in chemotactic bacteria can be explained by accounting
for the fact that the bacterial motility depends on density
[49]. In the present context, we focus on the extensively
studied Keller-Segal bands that are postulated to arise
from self-chemotaxis and are the predominant emergent
structure in convection free geometries [11]. The align-
ment interaction among bacteria in these systems scales
with the concentration of the chemoattractant, which is
in turn proportional to the concentration of bacteria. In
this respect the alignment interaction is similar to the
model considered here, where the local ordering tendency
is controlled by a2 which depends on the concentration of
self-propelled particles. There is, however, an important
difference between the two systems in that in the exper-
iment of Ref. [11] and related studies, the direction of
propagation of the bands is set by the nutrient gradient
in the microchannel, hence the rotational symmetry is
externally broken. In the model considered here, in con-
trast, the symmetry is broken spontaneously. However,
we note that the fact that a symmetry is spontaneously
broken is encoded in the dynamics of the associated Gold-
stone mode and the analysis here shows that the Gold-
stone mode plays no role in the dynamics that give rise to
the concentration waves. Hence, the Keller-Segal bands
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are also another realization of dynamic self-regulation in
self-propelled particle flows.

B. Stationary Asters

We now focus on the other inhomogeneous stationary
state obtained in the linearly unstable region of parame-
ters, namely a stationary aster.

For λ/w0 � 1 the numerical solution of the nonlin-
ear equations yields asters or −1 topological defects with
radially symmetric profiles of both density and orienta-
tional order. Stationary asters have been predicted using
models with uniform density [35, 36], wherein the aster
is strictly a defect in the order parameter. Here, it is also
a region of high concentration.

A typical aster is depicted in Fig. 4. The density field
ρ is a radially symmetric function of r ≡ |r| about the
center of a −1 defect located for convenience at the ori-
gin of the coordinate system. The density is a maximum
at r = 0 and decays exponentially far from the core to
a value slightly below the critical density for the onset
of ordering, ρc = 1. Unlike the density field, the order
parameter, τ(r) is non-monotonic. Starting with a zero
value at the core, the order parameter increases almost
linearly to a intermediate maximum value τmax and de-
cays exponentially to zero far from the aster’s core. The
point of maximum τ also corresponds to a point of in-
flection in the density profile.

We characterize the aster by two length scales, the size
`co of the aster core as defined as the distance from the
aster’s center to the point where |τ | reaches its maxi-
mum and the density has an inflection point, and the
length scale `∞ characterizing the exponential decay of
both density and polarization. This second length can
be thought of as the size of the aster. Both length scales
are only weakly dependent on the interaction strength λ
for fixed w0. For fixed λ we find that both `co and `∞
decrease as a function of w0 while the maximum den-
sity and the maximum τ increase. In other words, for
fixed interaction strength, a larger self-propulsion speed
yields denser, tighter asters. The behavior of density
and the order parameter far form the center of the aster
can be obtained from a simple asymptotic analysis of the
dynamical equations as the nonlinearities do not play a
significant role in determining the asymptotic behavior.
Far from the core, assuming a radial dependence of both
the density and the order parameter, and using the fact
that τ → 0 at infinity, we can estimate the magnitude of
the polarization by considering the steady state equation
to linear order in small deviations from the asymptotic
values (ρ, τ) = (ρ∞ ≤ 1, 0)

r2
d2τ

dr2
+ r

dτ

dr
− [r2(1− ρ∞ + w2

0) + 1]τ = 0. (7)

The solution to the above equation is a Bessel’s function
of the second kind, that decays approximately as e−

r
`∞
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FIG. 4. (Color online) Radial density (top, green online) and
|τ |2 (bottom, blue online) profiles of an aster for ρ0 = 1.07,
λ = 0.8 and w0 = 0.05. The system size is 128 x 128 and
the equations have been integrated up to 104 diffusion times
- these profiles remained constant even after integrating to 5
x 104 diffusion times. The density field ρ(r) exhibits a point
of inflection; at the same radial position the order parameter
|τ | attains a maximum value τmax(indicated by the vertical
lines). The aster is characterized by a core of size `co and
a region where both density and polarization decay over a
characteristic length scale `∞. The dashed curves overlaying
the lower figure of |τ |2 are the theoretical result obtained by
the asymptotic analysis based on Eq. (7) and described in the
text.

with the length scale `∞ ∼ (1− ρ∞ + w2
0)−

1
2 , consistent

with the trends identified in the numerical work. The
behavior near the core is determined by a complicated
interplay between the nonlinearities and cannot be in-
vestigated analytically.

Mechanism. The basic mechanism underlying aster
formation is the splay-induced negative compressibility
discussed in the context of the linear stability analysis.
However, the self-regulating nature of the flow is critical
for this instability as well since setting w0 to zero does not
yield any stable asters. We hypothesize that the system
forms asters because this is the only steady structure that
can accommodate the tendency to splay as well as to
phase separate. Unlike the solitary wave discussed in the
previous section, the aster state is however not a universal
structure and depends on the values of the parameters in
Eq. 2. The self-convection term (λ1 in Eq. (2)) is critical
for the formation of this structure. When we set this
term to zero we find that the system develops streamers
instead, a phase separated polar ordered state where, in
contrast to the solitary wave state, the polarization is
orthogonal to the direction of the spatial gradients (see
Fig. 5).

Experimental Realizations. Aster formation has
been seen in purified cell extracts of microtubules and
associated motor proteins, such as those studied in
Ref. [10, 33, 34]. In these controlled in vitro systems,
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FIG. 5. (Color online) Steady inhomogeneous phase-
separated structures which we term streamers, obtained at
fixed domain size 128 × 128 when λ1 = 0, λ2 = λ3 = 0.8,
w0 = 0.1 and ρ0 = 1.05. The central high density (red on-
line) region in (a) is also highly polar and ordered with the
direction of polarity along the neutral direction. In (b) we
quantify the polar variation by plotting the two components
of τ as a function of y. Note that τx (dashed line, green
online) is a single valued function of y while τy (solid line,
blue online) changes sign as we traverse the phase separated
ordered region from one side to the other.

with known concentrations of only a few types of motor
proteins, aster formation can be understood theoretically
using both continuum models [35, 36, 38] and simulations
[42]. Understanding the origin of aster-type structures in
vivo, such as the formation and splitting of the mitotic
spindle upon cell division, is much more challenging as in
this case the process is controlled by a variety of compet-
ing nonequilibrium mechanisms, including microtubule
polymerization and the on/off dynamics of many differ-
ent motor types [31]. Our continuum theory where aster
formation is controlled by only two competing parame-
ters λ and w0 may then guide the modeling and interpre-
tation of these complex experiments. In particular, one
can imagine fitting the spindle structure obtained in ex-
periments on cells where various proteins have been sys-
tematically suppressed [31, 32] to our continuum model
to identify which proteins directly affect the model’s pa-
rameters and thereby back out the role played by the
protein in the formation of the structure.

V. DISCUSSION

In this work, we have considered a generic continuum
theory of self-propelled particles in the overdamped limit
in two dimensions. An important new point of our work
is the identification of dynamical self-regulation - the fact
that the density that controls the amount of order is itself
convected by the order parameter - as a crucial mecha-
nism for the formation of emergent structures in these
systems. We identify two robust structures in different
regions of parameters: traveling solitary waves and sta-
tionary asters. We characterize these structures using
numerical solutions of the deterministic nonlinear equa-
tions and identify the underlying hydrodynamic mecha-
nisms associated with their emergence. The primary lim-
itation of this study is that our system is overdamped or
“dry”. Momentum is not conserved and there is no cou-
pling between polarization and actual flow. The “dry”
system should be contrasted with an active polar sus-
pension, consisting of active particles in a fluid that me-
diates hydrodynamic interactions. In the suspension the
total momentum is conserved and important nonequi-
librium effects arise from the coupling of the associated
flow velocity and local orientational order, as shown in
recent work [50, 51]. A second limitation is the one elas-
tic constant approximation that identifies the energy cost
for bend and splay. Theoretical work on models of sus-
pensions of cytoskeletal filaments has shown the impor-
tance of retaining different elastic constants for bend and
splay to understand the emergence of vortices and spirals
[37, 52]. Future work will involve retaining the different
elastic costs. Also, fluctuations play an important role
in active systems. In this work fluctuations are intro-
duced to ensemble averaged measurements through the
stochastic initial conditions (and by numerical trunca-
tion errors). The influence of noise in the equations of
motion on the robustness of emergent structures will be
addressed in future work.

Finally, we note that aster formation has also been
observed in related continuum models when the sign of
pressure gradients tends to favor the formation of high
density regions [38–40]. In particular, Gowrishankar and
Rao [40] consider a model for active filaments without
the self-regulation embodied in the density dependence of
the coefficients a2 and a4 in Eq 3 and hence without the
intrinsic tendency to phase separate. This model gives
rise to arrays and lattices of asters. In contrast, asters
were not found in Refs. [29, 30], even though the con-
tinuum equations considered there have the same struc-
ture as those analyzed here. The reason for this is that
Refs. [29, 30] study the continuum model obtained by
systematic coarse-graining of specific microscopic models
(the Vicsek model and a collection of self-propelled hard
rods, respectively) and use the microscopic expressions
for the parameters obtained in such derivations. In both
cases the microscopic calculation yields λ ∼ w2

0. In other
words λ is not an independent parameter and cannot be
tuned to the large values required to obtain asters.
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The simplicity and generic nature of the theory con-
sidered in this study has enabled us to highlight the role
of dynamic self regulation and to show that the mecha-
nism is universal and does not depend on the microscopic
physics, in contrast to closely related albeit system spe-
cific studies such as those in Refs. [39, 53].
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