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ABSTRACT

Variation in cardiac pacing cycles as seen, for example, in heart rate variability, has been
observed for decades. Contemporarily, various mathematical models have been constructed to
investigate the electrical activity of paced cardiac cells. Yet there has not been a study of these
cardiac models when there is variation in the pacing cycles such as noise. In this paper, we present
a method that uses the stochasticity of pacing cycles to determine approximate models of the
dynamics of cardiac cells, and use these models to detect bifurcations to alternans.

1 Introduction

The mathematical study of the dynamics of electrical activity of cardiac cells has a long history.
One of the primary problems is to determine the response of a cardiac cell to periodic stimuli, and
to identify and characterize bifurcations in these behaviors. While detailed ionic models have
been used extensively for this study [1, 2, 3, 4, 5], mapping models, pioneered by Nolasco et
al. [6, 7], are introduced in the past decades to focus on the restitution, i.e. the dependence of
and action potential durations (APD) on preceding diastolic interval (DI). In particular, period-
doubling bifurcation occurs as the exterior stimuli pace sufficiently fast and alternation of APDs,
which is called alternans, emerges, as illustrated in Figure 2. Recent mapping models involve
memory variables in the restitution, which are often related to the intracellular ion (mostly calcium)
concentrations in different compartments, to explain more complicated restitutions [8, 9, 10, 11,



12, 13]. The memories in those models are usually hidden and hard to be detected in experiments,
hence it is difficult to reconstruct the model directly. The new method we will develop in this paper
provides one way to approximate the restitution by an alternative form, using stochastic pacing
cycles, and we assume only pacing cycles and APDs are detectable.
The simple mapping model proposed in [6] suggests that the preceding DI completely deter-
mined the APD, i.e.,
An = f(Dacy), (L.1)

for some restitution function f, where A,, and D,, represent the n'* APD and DI, respectively. With
a fixed Basic Cycle Length (BCL) with A, + D,, = BCL = p, (1.1) becomes a simple 1-dimensional
map. Typically, f is a non-decreasing function of D, so that there is a unique fixed point A* which
is an increasing function of u. This is referred to as a 1:1 response. A period-doubling bifurcation
(2:2 response) occurs if f'(D*) increases across 1 as u decreases, where D* = — A*, and alternans
emerges as a long-short alternation of APD.
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Figure 1: Hlustration of the cycle lengths T,,, action potential duration A,,, diastolic interval
D,, and memory variable M,,.

Memories are introduced recently for more complicated dynamics that are not explained by the
simple 1-D maps. We can summarize the general form of a model involving J memory variables as

Ay = f(Dp_y, MOV, M2,
MY = gi(Ap1, MY | Ty ), fori=1,2,....J, (1.2)
Dn - Tn - Arn

where A, is the n'* APD; T, is the time between n'* and (n + 1)** exterior stimulus; D,, is the DI

following A,; and M,gi) are the memory variables at the time that the n*" stimulus occurs. Figure
1 illustrates the variables in the model, with one memory variable shown.
A given series of stimulus intervals {7}, } is called a pacing cycle protocol. For typical memory

models, when T;,’s are constant p (S1 protocol), the system (1.2) has a fixed point (A*, M,El), M£2), e

if p is sufficiently large. The fixed point may lose its stability through a period-doubling bifurca-
tion to alternans when p is below some critical value p.. The solid and dashed curves in Figure 2
illustrate a typical bifurcation diagram (only values of APD’s are shown in the graph).
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Figure 2: Typical bifurcation diagram for a cardiac mapping model with constant cycle

length 1, where period doubling bifurcation occurs at = u.. The shadow region indicates
the range of APD’s when the cycle length has a small random fluctuation around pu.

In many situations, the pacing interval 7;’s are nonconstant, i.e., there is variation in the
times between consecutive stimuli. For example, in real hearts, heart rate variability is well known
[20, 21, 22]. Figure 3 shows an example of a series of natural pacing cycles for a healthy human
heart [23].

When the pacing intervals T;,’s are nonconstant, in the long time run, we do not expect con-
vergence to a fixed point or alternans. However, if the variation in 73,’s is small enough, it may
be that in the long run the APD’s are located in a neighborhood of the fixed point or alternans,
such as the shadow region shown in Figure 2. Thus, even in the presence of noise, there is some
information about bifurcations to be gleaned from the APD’s, but how much is not yet known.

In this paper we discuss the following question: Given a (random) sequence of pacing times T},
and the corresponding APD’s A,,, to what extent can the restitution function f and the resulting
bifurcation structure and dynamics be determined? To make initial progress, we assume that the
data are generated by some mapping model of the form (1.2). Thus, we are provided with a series

of T),’s and corresponding A,’s, however, the memory terms MT(LZ) in (1.2) are hidden variables and
cannot be detected. In what follows we develop a regression algorithm with which we are able to
obtain an approximate equivalent form having dynamics similar to (1.2). Furthermore, since the
data are generated by a known model, we have a check for how good our approximate restitution
function and bifurcation structure are.

The organization of the paper is as the following. In Section 2, we introduce our ideas using a
simple memory model proposed by Tolkacheva et al. [16]. In Section 3, we discuss a more general
mapping model with one memory variable, using a model suggested by Fox et al. [15] as an example.
In Section 4 we discuss the most general case of a mapping model with multiple memory variables,
as in (1.2). Section 5 is the discussion, and Section 6 is the conclusion.
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Figure 3: Sequence of interbeat intervals (in unit of second) for a healthy individual, L.A.N.
Amaral et al., Computer Physics Communications 121-122(1999) 126-128.

2 Approximate Tolkacheva et al.’s Model

The mapping model proposed by Tolkacheva et al. [16] is in the form
An = f(Dn—la An—l)y (21)

which is a special case of the general mapping model (1.2) with J = 1 and M,gl) = A,_1. The
details of the model are given in the appendix. If A* is a fixed point when the pacing intervals are
the constant p, its stability is determined by the derivative
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where D* = — A*.

Previous analysis has shown that in the 1:1 response case, one can estimate f’ from experiments
by the following process (for more details see [16]). First, for a given BCL p, the fixed point A*
and associated D* satisfy

A* = f(D",A%) = f(p— A%, A7),

and we record the fixed points A* and associated D* for different BCL’s to obtain the dynamic
restitution curve (RC). The slope of dynamic RC at a particular (A*, D*) that we are interested in

is estimated by
S OA* Of /ODn—1]a,_ =4«
d n = = .
9D 1—0f/0Dp_1]a,_1—ax
Then, we use the S1-S2 stimulus protocol: a long series of constant stimulus intervals, pus1 = p,
followed by a single stimulus with a different interval pgs. The measured APD Agigo is given by

Asiso = f(Dgsis2, AY),



where A* is the fixed point corresponding to BCL pugy = p and Dg159 = ugse — A*, and the S1-52
RC is the plot of Agigo versus Dgig2. The slope of S1-S2 RC at D, = u — A* is given by

of

Dg152=D* Dy

dAsis2
dDs152

Ss150 = (2.2)

Ap—1=A*

The two slopes Sgqyn and Ssisz can be estimated by finite difference method in experiments, and
value of f’ follows from the chain rule

fr=1- <1 + ) Ss152- (2.3)

S, dyn

The method we implement below to approximate f is to make the pacing cycles stochastic, which
we call the “stochastic protocol”. We show that we can approximate the dynamics of the mapping
model (2.1) in an interval [p4, pp] rather than simply at a single point as in (2.3). Furthermore,
we can include cases when a period-two bifurcation occurs and alternans appears in the interval
[:U’av :ub] :

We assume the pacing cycles T,, are randomly distributed in [u,, 3], and the action potential
durations A,,’s are generated through (A.1) with a random initial value. We define T to be the
sample mean of the cycles T}, i.e.,

T = mean(T},). (2.4)

If the variation of the cycles, i.e., the range of the interval up — pq, is small, we may regard all
T,’s as perturbations of p. For simplicity, we first consider the 1:1 response case. In the case of
constant pacing with cycle p, there is a stable fixed point A*, such that

A* = f(D*, A), (2.5)

where D* = u — A*. Since T,’s are perturbations of y, we naturally assume all A,’s are small
perturbations around A*. The leading order approximation is

an ~ fidn_1+ foan_1 = fran_1+ fotn_1, (2.6)

where a, = Ap, — A*, d, = Dy, — D*, and f; and f> are the partial derivatives of f with respect
to D,,—1 and A, _1 at the fixed point, and f; = fo — fi1, fo = fi. We take the covariance of the
equation (2.6) with a, and t,, respectively to obtain two approximating equations,

<an; tn—l) ~ .]?1<an—17 tn—l) + ]?2<tn—17 tn—1>7
2.7)

<an7 an—1> ~ .]?1<an—17 an—l) + .]?2<tn—17 an—1>~

Then the derivatives .]?1 and ]?2 may determined directly by solving the above two-dimensional linear
system.



The above process is equivalent to using simple linear regression to find the best least squares
fit of the equations (2.6) with two unknown coefficients. The method of fitting data in a least
squares sense has been applied widely in previous research [12, 24|, in which some functional form
of the restitution is proposed and unknown parameters are then determined by regression analysis,
i.e., by minimizing the squared error of the fit.

Here we do not assume a particular form for the restitution function f, i.e., f is completely
unknown. We extend the above case of a linear approximation (2.6) to higher orders, i.e., by
considering the Taylor polynomial expansion of f. In general, we are looking for a polynomial
HY(A,_1,T,—1) of given order p in the following form,

An ~ Hf(Anthnfl) = Z faB(Anfl - A)Q(Tnfl - T),B’ (28)
0<a+B<p

which best fits the given data of T}, and A,,. Here T and A are the means of the pacing cycles T}, and
APDs A,, respectively. The subscript 1 in H? indicates that the restitution function f(Dy—1, An—1)
depends only on the most recent previous beat. The unknown coefficients f,3 are to be determined.
We note that A is not the fixed point solution A* corresponding to 7', however, we can compute
A* from (2.8) once the coefficients are found.

To carry out this procedure for a specific example, we pick N = 1000 pseudo-random pacing
cycles T, which are uniformly distributed! in the time interval [iq, up] With pu, = 295ms and
py = 305ms. The theoretical bifurcation point p. =~ 301.40ms is located in this interval. We
record the series of corresponding APDs A,, generated through the original model (A.1). To mimic
the measurement error of APDs in experiments, we add small noise to A,,, after the sequence is
generated,

Ap — Ay + €&y, (2.9)

where € = 0.0lms is the magnitude of error, and £,’s are independent identically distributed
standard normal random variables. For convenience, we do not change the notation for A4,,. We
assume the error in measuring pacing cycles is negligible. The sequences of T,, and A,, are shown
in Figure 4. We also plot a histogram of the APDs in Figure 4, from which we observe an apparent
distribution involving alternans.

To obtain a period-doubling bifurcation from the approximating polynomial HY, it is required
that p > 2. We use linear regression to find the coefficients f,z for each p of interest. Table 1 shows
a statistical analysis for the case p = 2, for which there are 6 unknown coefficients f,z3’s.

We repeat the above process for various values of order p using the same data set. After
obtaining the coefficients f,3’s, we compare the approximate iterative function HY (Ap—1,Th—1)
with the original model. In Figure 5 we show their bifurcation diagrams for p = 2,4, 5 respectively.
One can observe that with order p = 5, the dynamics of H} are very close to the theoretical
prediction.

IUniform distribution is used as an example. In fact our approach does not depend on the distribution
type of the pacing cycles. See the discussion in Section 5.



Coefficients Estimate Std. Error t value Pr(>t])

Joo 249.6 2.624 x 107 95096.64 <2 x 1071°
fio —0.9889 7.132 x 107 —13865.51 <2 x 10716
foa 1.074 4.593 x 107*  2338.70 < 2x 10716
J2.0 —6.566 x 1072 4.676 x 1076 —1404.23 <2 x 10716
fia 1.148 x 1072 2410 x 107 47627 <2 x 10716
Jfo2 —5.947 x 107 1814 x 10™*  —32.79 <2 x 1071

Table 1: Statistical analysis for regression method for approximating iteration map H; for
p = 2. There are 1000 data points, 6 unknown coefficients f,3’s, and 994 degrees of freedom.
The residual standard error is 0.04221. Robustness is assured by the following statistical
criteria: multiple R-squared is 1, adjusted R-squared is 1, the F-statistic value is 4.04 x 107
on 5 and 994 degrees of freedom, and the p-value is below 2.2 x 10716,

¢ RSS RSE

6 1.771 0.04221
10 1.639  0.04069
15 0.2382 0.01555
21 0.1986 0.01424
28 0.1975 0.01425
36 0.1963 0.01427

N O O W N3

Table 2: Values of ¢, RSS and RSE for the approximate function HY of different order p for
Tolkacheva et al.’s model.
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Figure 4: A) sequence of pacing cycles; B) sequence of corresponding APDs; C) histogram
of all APDs.

It is obvious that for larger order p, the approximation becomes more accurate. However,
there are also more undetermined coefficients f s in (2.8). Let ¢ = £(k,p) be the number of the
undetermined coefficients f,g in H,f in (2.8) where k£ = 1 indicates dependence on only the most
recent stimulus interval T;,_1.

Two statistical values are significant to judge the accuracy of the approximation: RSS (residual
sum of the squares)

Rys = (An— HY(Dy1, An1))?, (2.10)
and RSE (residual standard error)
RSS
se — . 2.11
r Y, (2.11)

As we increase the order of the approximate function H?, the RSS and RSE both decrease, but
¢ increases. Table 2 shows the values of ¢, RSS and RSE for different orders p. Notice that as
p increases from 2 to 5, there is a significant decrease in both RSS and RSE, however, there is
very little improvement as p is increased further, even though the number of parameters increases
substantially. Therefore, it appears that p = 5 is in some heuristic sense “optimal”. In the next
section, we provide a less heuristic criterion to determine the “best” fit.
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Figure 5: (Color online) Comparison of the bifurcation diagrams between the theoretical
map (A.1) (black) and approximate form (2.8) (red, light grey) for various orders of p. The
solid curve indicates stability and dashed curve indicates instability. Note that for all cases
the approximate fixed points are very close to the theory and they are not distinguishable in
the graph. In addition, for the case p = 5, the theoretical and approximate diagrams almost
coincide.

3 Approximate Fox et al.’s Model: An Example of
Mapping Model With One Memory Variable

The mapping model with one memory variable in the following form

Ay = f(Dn—la Mn)a
M, :g(An—lyMn—laTn—1)7 (31)
Dn = Tn - An
is regarded as a good approximation for the behavior of quite a few ionic models [8, 14, 15, 18]. A
specific example of (3.1) is the model by Fox et al. [15], which is described in detail in (A.5).

We start with the model (3.1). Some expanded forms of (3.1) were considered by previous
researchers. For instance, in [25] the authors proposed that

An = f(anla Anfla anQ,Aana .. )

and analyzed the different restitution curves in the restitution portrait [26]. However, to best apply
our method, we need a different form which is more “compact”. If we substitute the memory terms
M;, of the second equation into the first equation in (3.1) for k =n,n —1,..., we may write

A, = Fo(Ao, Mo; A1, An—a, ..., A1; -1, Ty—2, ..., 1), (3.2)

using that D,, = T,, — A,. The function F, in (3.2) is some combination of compositions of f and
g, and Ay and My are initial values. We note that the functions F;, are different for each n. We



call (3.2) the expansion form of the mapping model (3.1). If we substitute the equation (3.2) for
A2, Ap_3, ...into the equation for A,,, we may rewrite (3.2) as

An:ﬁn(A(),MO,An_l;Tn_th_g,...,T()), (33)

for some function ﬁ’n, which also depends on n.

175 180, 185 175 180 . 185
constant pacing cycles constant pacing cycles

Figure 6: (Color online) Comparison of the bifurcation diagrams between the theoretical
map (3.1) (black) and approximate form (3.5) (red, light grey) for various values of k£ and p.
The solid line indicates stability and dashed line indicates instability. We note that in each
of the two cases (k,p) = (1,4) and (2,4), the dynamics of theory and the approximation are
very close and their bifurcation diagrams almost coincide.

In the long time run, one would expect that the information of the distant past should have little
impact on current APD, which suggests that we make the following approximation: for sufficiently
large n, there are iterative maps Hy’s in the following form, for k =1,2,.. .,

Ay~ Hk(An—l; Th-1,Tn—2,... 7Tnfk)a (34)

which approximates the dynamics of (1.2), i.e., the function Hj is some approximation which
only includes the most recent £ memories. That this approximation is valid remains a conjecture,
although a rigorous proof can be given for some particular models, for example, the model proposed
by Schaeffer et al. [18], in which the memory M,, only depends on A,_; and T,_;. It is obvious
that for larger k£, the approximation cannot be less accurate.

The analytical form of the function Hy, is unknown in general, however, H; may be approximated
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by some polynomial H,f(An,l; Ton-1,Th—2,...,Tyh_k) for k> 0 and p > 2 in the following form,

An ~H)(An—1;Tn1,Tne2, .., Typ)

_ _ _ _ 3.5
= Z ha,éﬁﬁg...ﬁk (An—l - A)Q(Tn—l - T)Bl (Tn—2 - T)BZ cee (Tnfk - T)ﬁka ( )

where k denotes that the approximation involves information from previous k beats, p is the order of
approximate polynomial, and the summation is taken over the nonnegative indices a+81+. . .+ 6, <
P.

Now to approximate H,f we assume that the pacing cycles T) s are random and with some
random initial value, we generate N = 1000 data points for the sequence of A,’s using Fox et al.’s
model (A.5). We also add a noise term €&, to each A,, as in (2.9) to mimic the error in measuring
APDs, with € = 0.0lms. Then given a set of data groups (A, Ap—1,Th-1,.--,Tn_k), we use the
regression method to estimate the best choice of the unknown coefficients h.g, 3,..5, to obtain the
approximate form (3.5). We then compare the bifurcation diagrams of the original Fox et al.’s
model (A.5) and of the approximate form (3.5), shown in Figure 6 for several values of k and p.

Notice that for larger k£ and p, the approximation is increasingly accurate (as expected). How-
ever, the total number of unknown coefficients, ¢(k, p) also becomes larger. Therefore, the ”optimal”
parameter choice should in some way minimize the error as well as the number of unknown coeffi-
cients. One useful way to determine the best parameter set is to minimize the Bayesian information
criterion (BIC) function [27],

B(k,p) = Nlog (1})  €(k, p) log(N), (3.6)

where Ry is the RSS defined in (2.10).

In Table 3 we show RSS, RSE and BIC values for several cases of (k,p), and Figure 7 shows the
RSE and BIC versus p for different values of k. Once again, we see that the RSE decreases rapidly
until p = 4, but there is very little improvement for larger values of p. Also, the BIC decreases as
p increases to 4, but then increases for larger values of p, due to the fact that RSE is decreasing
slowly while ¢(k,p) is increasing rapidly as a function of p. Since BIC is minimized at k£ = 2 and
p =4, we take the polynomial Hy 4(A,—1;Tp—1, Th—2), i.e.,

An ~ H2,4(An71§ Tnflv Tn72)

= Z haﬁ1ﬁz (Anfl - A)Q(Tnfl - T)’Bl (Tn72 - T),sz
0<a+p1+B2<4

(3.7)

where the coefficients h,g, g,’s are determined by the regression method to be the "best” approxi-
mation of Fox et al.’s model.

Now we come back to the model by Tolkacheva et al. discussed in Section 2. We assume that
the model is in the general form (3.1), and repeat the previous process for different values of (k, p).
We show the results for some significant cases of (k,p) in Table 3. Notice that the choice of (k,p)
that minimizes the BIC is (1,5).

11



kE p f(k,p) RSS RSE BIC E  p £(k,p) RSS RSE BIC
0 2 3 11.36 0.1067 4457 |3 2 15 8.317 0.09189 -4686
0 3 4 3.51 0.05936  -5625 |3 3 35 1.426  0.03844 -6311
0 4 5 1.941 0.04417 -6210 |3 4 70 0.1829 0.01402 -8123
0 5 6 1.937 0.04415 -6205 |3 5 126 0.1631 0.01366 -7851
: : : 3 6 210 0.151  0.01383 -7348

1 2 6 8.615 0.0931 4713 |2 : : :
1 3 10 1.635 0.04064 -6347 |4 2 21 8.176  0.09139 -4662
1 4 15 0.242 0.01568 -8223 |4 3 56 1.342  0.0377  -6227
1 5 21 0.2247 0.01515 -8256 |4 4 126 0.1734 0.01409 -7790
1 6 28 0.2225 0.01513 -8217 |4 5 252 0.1453 0.01394 -7096
2 2 10 8.491 0.09261 -4700 |5 2 28 7.887  0.09008 -4649
2 3 20 1.523 0.03942 6349 |5 3 84 1.278  0.03735 -6082
2 4 35 0.1906 0.01405 -8323 |5 4 210 0.1587 0.01418 -7298
2 5 56 0.1734 0.01355 -8273 |5 5 462 0.1077 0.01415 -5945

2 6 84 0.1678 0.01354  -8112 : : : :
: : : : 10 2 78 7.058  0.08749 -4415
10 3 364 0.8494 0.03655 -4557

Table 3: RSS, RSE and BIC values of the approximate function Hf for Fox et al.’s model
for some significant cases of (k,p) pairs, where £ > 0, p > 2 and ((k,p) < N/2.

12
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Figure 7: (Color online) Approximate the model of Fox et al.: RSE and BIC values of each
polynomial Hj, versus p for k =0,1,2,3.

k p ((k,p) RSS  RSE BIC

0 3 4 65.78  0.257  -2694
0 4 5 63.34  0.2523 2725
1 3 10 1.639  0.04069 -6344
1 4 15 0.2382  0.01555  -8239
1 5 21 0.1986 0.01424 -8379
1 6 28 0.1975 0.01425  -8337
2 4 35 0.2284  0.01538  -8143
2 5 56 0.1889  0.01415 -8188
2 6 &4 0.1857 0.01424 -8011

Table 4: RSS, RSE and BIC values of the approximate function Hj for Tolkacheva et al.’s
model for some significant cases of (k, p) pairs. The best choice of (k,p) is (1,5).

4 General Mapping Model with Multiple Memory Vari-
ables

For the most general mapping model with multiple memory variables (1.2), i.e., J > 1, the

approach is similar to the case with only one memory variable. For each memory variable MT(Lj ),
we substitute the second equation into the first equation of (1.2) recursively forn — 1, n —2, ...,
2, 1, to obtain the relationship

ATL = Fn(A(); M(gl)v M(§2)7 ceey MO(J)7 An—17 An—27 s 7A1;Tn—17 Tn—27 SRR TO)

Following a similar argument as above, we assume that in the long time run, i.e., when n is
sufficiently large, this function can be approximated by a polynomial H: ,f in the same form as (3.5),

13



with k£ memories and polynomial of degree p. We apply the same methodology as in Section 3: we
determine the unknown coefficients h,g, s,..3, using regression, and compute the RSS, RSE and
BIC values for each (k,p). We then obtain the optimal choice of (k,p) by minimizing the BIC
value.

5 Discussion

For a general mapping model (1.2), we assume there are iterative maps Hj’s in (3.4) and
approximate each Hj by the polynomial H,f in (3.5) for various orders p. A necessary condition
for the existence of Hj’s is that the coefficients of H}’s obtained by the regression method have
the following consistency property: the coefficient for the same term is close in each H}, or it has
some tendency of convergence as k and p become larger. For example, we expect that hig, . 0, the
coefficient of (4,1 — A) in each H,f, should not vary much as k,p — co. In Figure 8, we show the
values of the coefficients of (4,1 — A) and (Ap—1 — A)(T,—1 — T') versus p for different values of
k for the Fox et al. model described in Section 3. Consistency can be observed in each coefficient.

0.975 0012
2 o k= b) hy ..

-0.985 0.011
——k=1
N —8-k=2
a)h k=3
-0.995 ) . 001, —F——F——————
12 3 45 6 7 8 9 1 2 3 4 5 6 7 8 9
order p order p

Figure 8: (Color online) (a) the value of hy ., the coefficient for (A, _;— A) versus the order
p for different values of k; (b) the value of hy .., the coefficient for (A4,_; — A)(T,,-1 — 1)
versus the order p for different values of k.

The role of € in (2.9) is important. When e is small, earlier memories are able to be detected
and higher order accuracy can be obtained; when € is large, the noise in the measurement may
mask the memory so that it cannot be detected. For the model of Fox et al. discussed in Section
3, if € = 1074, we find that k = 3 and p = 6 is optimal, while if € = 0.1, we find that £k = 1 and
p = 4 is optimal. In Figure 9(a-d) we show the RSE and BIC versus p for various k for each case
respectively. We also show bifurcation diagrams at the optimal choice of (k,p) for each case in
Figure 9(e,f), compared to the theoretical bifurcation diagrams. It is not surprising that a better
approximation can be obtained with less noise.

The number of data points N is also important. Roughly speaking, if there are more data points
for a fixed time interval, we can obtain better accuracy of the approximate dynamics. Table 5 shows
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Figure 9: (Color online) The RSE and BIC values of the approximate polynomial H} versus
the order p for various k, and bifurcation diagrams of H} at optimal choice of (k,p) for
different measurement error ¢ = 107 (a, c, ) and € = 0.1 (b, d, f) respectively for Fox et
al.’s model. In (e) and (f), the theoretical bifurcation diagram (black) and the approximation
(red, light grey) are drawn for comparison, and in (e) the theory and approxmation almost
coincide.

the optimal choice of (k,p) and the corresponding RSE for a variety of N. In Figure 10 we show
the bifurcation diagrams of the optimal approximate H,f for various € and N. Clearly, for larger
measurement error (€), more data points (/V) are needed in order to ensure a good approximate
bifurcation curve.

The method we described here does not require any particular distribution for the stochastic
pacing cycles T},’s, although in Section 2 and 3, we used the uniform distribution as an example.
We tested some other distributions. In Figure 11 we show the results for some other distributions
of pacing cycles, where we use the Fox et al. model with testing time interval [u,, up] = [175, 185],
number of data points N = 1000 and ¢ = 0.01. We find that in each case, our method gives reliable
results, although the best choice of k and p can differ.
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Figure 10: (Color online) Bifurcation diagrams of the optimal approximate H, (red, light
grey) compared to the exact result (black) for various values of € and N. In some subpictures
the approximate and exact diagrams almost coincide. The corresponding optimal choice of
(k,p) is shown in the right-bottom corner of each subpicture.

Although our method is based on a discussion on small variation in pacing cycles, exciting
results are obtained when the method is applied to larger regions of pacing cycles. In Figure 12 we
show the results for different time intervals [puq, 1p] = [160, 200], [130, 170], [90, 190] for € = 0.01 and
0.1 respectively, and the approximation matches the theory quite well in each case.

6 Conclusion

In this paper, we provide a new approach to investigate APD restitution and bifurcations when
there is memory. We use stochastic pacing cycles to simulate the model to obtain the data (a
series of APDs) and we find an approximate polynomial using a regression method. We are then
able to produce bifurcation diagrams corresponding to the approximate restitution function. We
demonstrate the process with data generated by the models of Tolkacheva et al. and Fox et al. The
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Figure 11: (Color online) Probability density function and histogram of the applied pacing
cycles, and bifurcation diagram of the optimal approximate H; (red, light grey) compared
to the exact curve (black) for three different distributions of pacing cycles, where N = 1000
and € = 0.01. Optimal choice of (k,p) is labelled in each picture of bifurcation diagram. We
note that the approximate and the exact bifurcation diagrams are very close and hard to
distinguish in all the pictures.

procedure is summarized as follows: 1) First, generate a random series of pacing cycles in a time
interval of interest from some distribution. 2) Apply stimuli with this pacing protocol and record
the corresponding APDs. 3) Compute T' and A, the sample mean of the pacing cycles and APDs
respectively and then for each (k, p) find a polynomial in the form (3.5) by regression and obtain the
RSS and RSE values. 5) Compute the BIC value for each approximation and determine the optimal
(k,p) which has minimal BIC value. 6) Use the corresponding polynomial H} to approximate the
dynamics and determine the bifurcation structure.

The method of stochastic pacing we introduce here has several advantages over previous proto-
cols: 1) The pacing protocol is simple, as we only need to generate a few hundred pacing cycles, 2)
the approximate dynamics are obtained in an entire time interval of interest, not merely at a single
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Figure 12: Bifurcation diagrams of the optimal approximate H} (red, light grey) compared
to the exact result (black) for various testing time intervals, for ¢ = 0.01 (a, b, ¢) and 0.1 (d,
e, f) respectively, and in all cases N = 1000. In some subpictures the approximate and exact
diagrams almost coincide. Optimal choice of (k, p) is shown in the right-bottom corner of
each subpicture.

point, 3) we are able to deal with cases when the fixed point is unstable and alternans appears,
thereby detecting bifurcations, 4) we have high order of accuracy.

While we illustrated this method using data from specific models, one could also generate the
data using full ionic models, or directly from in vitro experiments. We also expect that this method
can be used to analyse data from in vivo experiments. In vivo, the pacing protocol is not externally
generated but because it is variable, the same ideas can be applied. In future work, we will use this
method to study several important ionic models.
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e=10"1 e =0.01 e=0.1
N optimal (k, p) RSE optimal (k,p) RSE | optimal (k,p) RSE
30 1,4) 0.005963 (1,3) 0.01601 0,2) 0.1209
100 (1,5) 0.006378 (1,4) 0.01644 (0,3) 0.1389
300 (3,5) 0.000235 (1,5) 0.01642 (0.4) 0.1385
1000 (3,7) 0.000225 (2,4) 0.01405 (1,4) 0.1372
3000 (3,7) 0.000228 (2,5) 0.01419 (1,4) 0.1414

Table 5: Optimal choice of (k,p) and corresponding RSE versus different number of data
points NV and measurement error e. We are able to detect earlier memory and achieve better
accuracy if we have more data points or lower measurement error.

Appendix

I. Tolkacheva et al.’s Model
The mapping model of Tolkacheva et al. [16] is in the form

e e N cur C
Aupr = f(Ap, Dp) = Cr = — 41— —2 4
P(A,,D,) P(A,,D,)

2
P@n,ﬁn)] oA

where A, = A, /Tsclose and Dy, = Dy, /Teclose are dimensionless variables, and

P(A,D)=1- (1 - G(Zl)e*g> e~ D Tante (A.2)
G(AV) _ rcurfl - (]— - Ucrit)rmix <A3)
1- exp(—A + Tmix (Usig - Ucrit)/rcur)
with the constants
Ci=1+ 7;le (Usig - 'Ucrit)a Cy = 2[Tcur + 7amiX(USig - 1)] (A4)
Typical values of the parameters are listed in Table 6
II. Fox et al.’s model
The mapping model by Fox et al. [15] is in the following form,
A = ( n— 1; )
MTL g( n— 17 n— 17An—1)7 (A5)
D, =T, — A,,
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Parameter Value Parameter Value

(ms) (dimensionless)
Tsclose 1000 Verit 0.13
Tslow 127 Usig 0.85
Tung 130 K 40
Tsopen 50 Uvout 0.1
Tfopen 18
Tfclose 10
Ttast 0.25

Table 6: Typical parameter values in Tolkacheva et al.’s model.

where
Cc2
f(DaM):(l_COM) (Cl+1_|_e(DC3)/C4)’ (A~6)
g(M,D, A) = P/ (1 + (M — 1)e_A/T> . (A7)

Typical values for the parameters are given in Table 7.

Parameter Value Units
Co 0.9  dimensionless
c1 88 ms
Co 122 ms
C3 40 ms
Cy 23 ms
T 160 ms

Table 7: Typical parameter values in Fox et al.’s model.
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