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We numerically investigate the mechanical properties of static packings of ellipsoidal particles in
2D and 3D over a range of aspect ratio and compression ∆φ. While amorphous packings of spherical
particles at jamming onset (∆φ = 0) are isostatic and possess the minimum contact number ziso
required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally
possess fewer contacts than expected for collective jamming (z < ziso) from naive counting argu-
ments, which assume that all contacts give rise to linearly independent constraints on interparticle
separations. To understand this behavior, we decompose the dynamical matrix M = H − S for
static packings of ellipsoidal particles into two important components: the stiffness H and stress S
matrices. We find that the stiffness matrix possesses 2N(ziso − z) eigenmodes ê0 with zero eigen-
values even at finite compression, where N is the number of particles. In addition, these modes ê0
are nearly eigenvectors of the dynamical matrix with eigenvalues that scale as ∆φ, and thus finite
compression stabilizes packings of ellipsoidal particles. At jamming onset, the harmonic response of
static packings of ellipsoidal particles vanishes, and the total potential energy scales as δ4 for per-
turbations by amplitude δ along these ‘quartic’ modes, ê0. These findings illustrate the significant
differences between static packings of spherical and ellipsoidal particles.

PACS numbers: 83.80.Fg61.43.-j,63.50.Lm,62.20.-x

I. INTRODUCTION

There have been many experimental [1–3], computa-
tional [4–6], and theoretical [7, 8] studies of the structural
and mechanical properties of disordered static packings
of frictionless disks in 2D and spheres in 3D. In these
systems, counting arguments, which assume that all par-
ticle contacts give rise to linearly independent impenetra-
bility constraints on the particle positions, predict that
the minimum number of contacts required for the sys-
tem to be collectively jammed is Nc ≥ Nmin

c = Ndof + 1,
where Ndof = Nd for fixed boundary conditions and
Ndof = Nd− d for periodic boundary conditions [9, 10],
where d is the spatial dimension and N is the number
of particles [11]. The additional contact is required be-
cause contacts between hard particles provide only in-
equality constraints on particle separations [9]. In the
large-system limit, this relation for the minimum num-
ber of contacts reduces to z ≥ ziso, where z = 2Nc/N
is the average contact number. Disordered packings of
frictionless spheres are typically isostatic at jamming on-
set with z = ziso, and possess the minimal number of
contacts required to be collectively jammed [9]. Fur-
ther, it has been shown in numerical simulations that
collectively jammed hard-sphere packings correspond to
mechanically stable soft-sphere packings in the limit of
vanishing particle overlaps [6, 12, 13].
In contrast, several numerical [14–17] and experimen-

tal studies [18, 19] have found that disordered packings of
ellipsoidal particles possess fewer contacts (z < ziso) than

predicted by naive counting arguments. Despite this,
static packings of ellipsoidal particles have been shown
to be mechanically stable (MS) [14, 15] (with no zero-
frequency modes) at nonzero overcompression (∆φ > 0)
for all aspect ratios. In addition, Refs. [16, 20, 21] have
presented interesting intuitive arguments for the presence
of 2N(ziso− z) low-frequency vibrational modes in static
packings of ellipsoidal particles that are primarily rota-
tional in character.

Why are static packings of ellipsoidal particles me-
chanically stable, yet possess z < ziso contacts? Donev,
et al. have provided a detailed explanation of this be-
havior for hard particles [14] (at zero overcompression
∆φ = 0). In static packings of ellipsoidal particles, there
are 2N(ziso − z) special directions ê0 in configuration
space along which perturbations give rise to interparticle
overlaps that scale quadratically with the perturbation
amplitude, fij = 1 − rij/σij ∼ δ2 > 0 [14, 15], where rij
is the center-to-center separation and σij is the contact
distance along r̂ij between particles i and j. Displace-
ments in all other directions yield overlaps that scale lin-
early with fij ∼ δ, as found for jammed sphere packings.
This novel scaling behavior for perturbations along ê0 in
packings of ellipsoidal particles can be explained by de-
composing the dynamical matrix M = H − S for these
packings into two important components [14]: the stiff-
ness matrix H that contains all second-order derivatives
of the total potential energy V with respect to the con-
figurational degrees of freedom, and the stress matrix S
that includes all first-order derivatives of V with respect
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to the particle coordinates. The directions ê0 can be
obtained by identifying the eigenvectors of the stiffness
matrix H with zero eigenvalues.

For static packings of ellipsoidal particles at the jam-
ming threshold (∆φ = 0) that interact via purely repul-
sive linear spring potentials (i.e. V ∼ f2

ij), we find that
the total potential energy increases quartically when the
system is perturbed by δ along the ê0 directions, V ∝ cδ4,
where the constant c > 0. Also, at the jamming thresh-
old, the stress matrix S = 0 and zero modes of the stiff-
ness matrix H are zero modes of the dynamical matrix.
These results are consistent with the mathematical de-
scription presented by Donev, et al. [14]. An important
consequence of this result is that static packings of fric-
tionless ellipses at jamming onset (∆φ = 0) will display
nonlinear response even in the limit of infinitesimal per-
turbations (δ → 0). This source of nonlinearity is in
addition to contact breaking (and reforming) that occurs
in static packings near jamming onset [22].

In this manuscript, we investigate how the mechanical
stability of static packings of ellipsoidal particles is modi-
fied at finite compression (∆φ > 0). For example, when a
system at finite ∆φ is perturbed by amplitude δ along ê0,
do quadratic terms in δ arise in the total potential energy
or do the contributions remain zero to second order? If
quadratic terms are present, do they stabilize or destabi-
lize the packings (i.e. are the coefficients of the quadratic
terms positive or negative), and how do the lowest fre-
quency modes of the dynamical matrix scale with ∆φ
and aspect ratio? The answers to the these questions are
important because they determine the width of the linear
response regime for static packings of ellipsoidal particles
at nonzero compression.

This manuscript presents several key results for static
packings of ellipsoidal particles at finite compression
(∆φ > 0) for systems in both two and three dimensions.
First, the stiffness matrix H possesses 2N(ziso−z) eigen-
modes ê0 with zero eigenvalues even at finite compres-
sion. Second, the modes ê0 are nearly eigenvectors of the
dynamical matrix (and the stress matrix −S), with devi-
ations from the dynamical matrix eigenvectors êDM

0 that
scale as 1 − êDM

0 · ê0 ∝ ∆φ2. In addition, the eigenval-
ues of −S scale as c∆φ, with c > 0, so that finite com-
pression stabilizes packings of ellipsoidal particles [15].
In contrast, for static packings of spherical particles, the
stiffness matrix H contributions to the dynamical matrix
stabilize all modes (and the contributions from −S are
destabilizing) near jamming onset [14]. Third, at jam-
ming onset, the harmonic response of packings of ellip-
soidal particles vanishes, and the total potential energy
scales as δ4 for perturbations by amplitude δ along these
‘quartic’ modes, ê0. Our findings illustrate the significant
differences between amorphous packings of spherical and
ellipsoidal particles.

The remainder of the manuscript will be organized as
follows. In Sec. II, we describe the numerical methods
that we employed to measure interparticle overlaps, gen-
erate static packings, and assess the mechanical stability
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FIG. 1: We focus on (a) ellipses in 2D with aspect ratio α =
a/b defined as the ratio of the major to minor axis and (b)
prolate ellipsoids in 3D where α is the ratio of the polar to
equatorial lengths.

of packings of ellipsoidal particles. In Sec. III, we de-
scribe results from measurements of the density of vibra-
tional modes in the harmonic approximation, the decom-
position of the dynamical matrix eigenvalues into contri-
butions from the stiffness and stress matrices, and the
relative contributions of the translational and rotational
degrees of freedom to the vibrational modes as a func-
tion of overcompression and aspect ratio using several
packing-generation protocols. In Sec. IV, we summarize
our conclusions and provide promising directions for fu-
ture research. We also include two appendices. In Ap-
pendix A, we show that the formation of new interparti-
cle contacts affects the scaling behavior of the potential
energy with the amplitude of small perturbations along
eigenmodes of the dynamical matrix. In Appendix B,
we provide analytical expressions for the elements of the
dynamical matrix for ellipse-shaped particles in 2D that
interact via a purely repulsive linear spring potential.

II. METHODS

In this section, we describe the computational meth-
ods employed to generate static packings of convex,
anisotropic particles, i.e. ellipses in 2D and prolate el-
lipsoids in 3D with aspect ratio α = a/b of the major to
minor axes (Fig. 1), and analyze their mechanical prop-
erties. To inhibit ordering in 2D, we studied bidisperse
mixtures (2-to-1 relative number density), where the ra-
tio of the major (and minor) axes of the large and small
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FIG. 2: Definition of the contact distance σij for ellipsoidal
particles i and j with unit vectors µ̂i and µ̂j that characterize
the orientations of their major axes. σij is the center-to-center
separation at which ellipsoidal particles first touch when they
are brought together along r̂ij at fixed orientation.

particles is al/as = bl/bs = 1.4. In 3D, we focused on a
monodisperse size distribution of prolate ellipsoids. We
employed periodic boundaries conditions in unit square
(2D) and cubic (3D) cells and studied systems sizes in the
range from N = 30 to 960 particles to address finite-size
effects.

A. Contact distance

In both 2D and 3D, we assume that particles interact
via the following pairwise, purely repulsive linear spring
potential

Vij(rij/σij) =







ǫ
2

(

1− rij
σij

)2

rij ≤ σij

0 rij > σij ,
(1)

where ǫ is the characteristic energy of the interaction,
rij is the center-to-center separation between particles i
and j, σij is the orientation-dependent center-to-center
separation at which particles i and j come into contact
as shown in Fig. 2, and the total potential energy is

V =
∑N
i=1 Vij . Below, energies, lengths, and time scales

will be expressed in units of ǫ, l =
√

I/m, and l
√

m/ǫ,
respectively, where m and I are the mass and moment of
inertia of the ellipsoidal particles.

Perram and Wertheim developed an efficient method
for calculating the exact contact distance between ellip-
soidal particles with any aspect ratio and size distribution
in 2D and 3D [23–25]. In their formulation, the contact

(b) (d)(a) (c)

FIG. 3: Ellipses with α = 2 positioned at the Gay-Berne con-
tact distance σa

ij . For two ellipses with the same size, the
(a) end-to-end configuration is exact, while the (b) side-to-
end configuration has a 5% relative error. For two ellipses
with aj/ai = 1.4, the (c) end-to-end configuration has a rel-
ative error of 1%, while the (d) side-to-end configuration has
a relative error of 10%.

distance is obtained from

σij = min
λ
σij(λ), (2)

σij(λ) =
σ0
ij(λ)

√

1− χ(λ)
2

∑

±

(β(λ)r̂ij · µ̂i ± β(λ)−1r̂ij · µ̂j)2
1± χ(λ)µ̂i · µ̂j

,

σ0
ij(λ) =

1

2

√

b2i
λ

+
b2j

1− λ
,

χ(λ) =





(

a2i − b2i
) (

a2j − b2j
)

(

a2j +
1−λ
λ b2i

)

(

a2i +
λ

1−λb
2
j

)





1/2

,

β(λ) =





(

a2i − b2i
) (

a2j +
1−λ
λ b2i

)

(

a2j − b2j
)

(

a2i +
λ

1−λb
2
j

)





1/4

.

The approximation σaij = σij(λ = 1/2) is equivalent
to the commonly used Gay-Berne approximation for the
contact distance [26, 27]. The accuracy of the Gay-Berne
approximation depends on the relative orientation of the
two ellipsoidal particles, and in general is more accurate
for monodisperse systems. For example, in Fig. 3, we
show σaij for several relative orientations of both monodis-
perse and bidisperse systems. The relative deviation from
the true contact distance can be as large as e ∼ 10%
for aj/ai = 1.4 and α = 2. Thus, the Gay-Berne ap-
proximation should be used with caution when studying
polydisperse packings of ellipsoidal particles [28]. For
monodisperse ellipses with α = 2, 0% < e < 5%. We find
similar results for 3D systems. Unless stated otherwise,
we employ the exact expression for contact distance, and
thus σij = σij(λmin), β = β(λmin), χ = χ(λmin), and
σ0
ij = σ0

ij(λmin), where λmin is the minimum obtained
from Eq. 2.

B. Packing generation protocol

We employ a frequently used isotropic compression
method for soft, purely repulsive particles [29, 30] to
generate static packings of ellipsoidal particles at jam-
ming onset (∆φ = 0). Static packings at jamming on-
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set are characterized by infinitesimal, but nonzero to-
tal potential energy and pressure. This isotropic com-
pression method consists of the following steps. We be-
gin by randomly placing particles at low packing frac-
tion (φ0 = 0.2) with random orientations and zero ve-
locities in the simulation cell. We successively com-
press the system by small packing fraction increments
δφ = 10−3, with each compression followed by conjugate
gradient (CG) energy minimization until the total poten-
tial energy per particle drops below a small threshold,
V/N ≤ Vtol = 10−16, or the total potential energy per
particle between successive iterations of the minimization
routine is |Vt+1 − Vt|/Vt ≤ Vtol. The algorithm switches
from compression to decompression if the minimized en-
ergy is greater than 2Vtol. Each time the algorithm tog-
gles from compression to decompression or vice versa, the
packing fraction increment is halved.
The packing-generation algorithm is terminated when

the total potential energy per particle satisfies Vtol <
V/N < 2Vtol. Thus, using this method we can locate
the jammed packing fraction φJ and particle positions at
jamming onset for each initial condition to within 10−8.
After jamming onset is identified, we also generate con-
figurations at specified ∆φ = φ − φJ over six orders of
magnitude from 10−8 to 10−2 by applying a prescribed
set of compressions with each followed by energy mini-
mization.
To determine whether the accuracy of the energy min-

imization algorithm affects our results (see Sec. III D),
we calculate the eigenvalues of the dynamical matrix as
a function of the total kinetic energy (or deviation from
zero in force and torque balance on each particle) at each
∆φ. To do this, we initialize the system with MS pack-
ings from the above packing-generation algorithm and
use molecular dynamics (MD) simulations with damping
terms proportional to the translational and rotational ve-
locities of the ellipsoidal particles to remove excess kinetic
energy from the system [31]. The damped MD simula-
tions are terminated when the total kinetic energy per
particle is below K/N = Ktol, where Ktol is varied from
10−16 to 10−32. This provides accuracy in the particle
positions of the energy minimized states in the range from
10−8 to 10−16.
For the damped MD simulations, we solve Newton’s

equations of motion (using fifth-order Gear predictor-
corrector methods [32]) for the center of mass position
and angles that characterize the orientation of the long
axis of the ellipsoidal particles. In 2D, we solve

m
d2~ri
dt2

=
∑

i>j

~Fij − br~vi (3)

I
d2θi
dt2

=
∑

i>j

Tij − bθθ̇i, (4)

where θi is the angle the long axis of ellipse i makes
with the horizontal axis, ~vi is the translational velocity
of particle i, θ̇i is the rotational speed of particle i, br
and bθ are the damping coefficients for the position and

angle degrees of freedom, and the moment of inertia I =

m(a2 + b2)/4. The force ~Fij on ellipse i arising from an
overlap with ellipse j is

~Fij = Fij
r̂ij − ∂ lnσij

∂ψij
ψ̂ij

√

1 +
(∂ lnσij

∂ψij

)2
, (5)

where

Fij = −∂Vij
∂rij

√

1 +

(

∂ lnσij
∂ψij

)2

, (6)

∂ lnσij
∂ψij

= −χ
2

(

σij
σ0
ij

)2
∑

±

η±ν±
(

1± χ cos(θj − θj)
)

, (7)

η± =
β cos(θi − ψij)± β−1 cos(θj − ψij)

1± χ cos(θi − θj)
, (8)

ν± =
β sin(θi − ψij)± β−1 sin(θj − ψij)

1± χ cos(θi − θj)
, (9)

dV (rij)/drij = −ǫ(1 − rij/σij)/σij for the purely repul-

sive linear spring potential in Eq. 1, and r̂ij and ψ̂ij are
illustrated in Fig. 4.

To calculate the torque Tij = [ ~rcij × ~Fij ] · ẑ in Eq. 4,
we must identify the point of contact between particles i
and j,

~rcij =
bi
2

1
√

α−2 + tan2 τij
(

(cos θi − sin θi tan τij)x̂ +

(sin θi tan τij + cos θi)ŷ
)

, (10)

where

tan τij = α−2
tan(ψij − θi)− ∂ lnσij

∂ψij

1 + tan(ψij − θi)
∂ lnσij

∂ψij

(11)

and ~rcij , ψij , and τij are depicted in Fig. 4. From Eqs. 5
and 10, we find

Tij = −biFij
2

(1− α−2) tan τij
√

(α−4 + tan2 τij)(α−2 + tan2 τij)
. (12)

C. Dynamical matrix calculation

To investigate the mechanical properties of static pack-
ings of ellipsoidal particles, we will calculate the eigen-
values of the dynamical matrix and the resulting density
of vibrational modes in the harmonic approximation [22].
The dynamical matrix is defined as

Mkl =
∂2V

∂uk∂ul
, (13)
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r cij

ψij

θ i

θj

r cji

τij

r ij

τji

i

j

F̂ij

F̂ji

ψ̂ij
μ̂ i

μ̂ j

FIG. 4: Geometry of two ellipses in contact. The angles θi
and θj characterize the orientation of particles i and j relative
to the horizontal axis, i.e. µ̂i = cos θix̂+sin θiŷ. ψij gives the
angle between the center-to-center separation vector ~rij and

the horizontal axis and ψ̂ij = − sinψij x̂+cosψij ŷ is the angle

unit vector in polar coordinates. The unit vector F̂ij = −F̂ji

points in the direction of the force on particle i due to particle
j at the point of contact. ~rcij points from the center of particle
i to the point of contact with particle j, and τij is the angle
between µ̂i and ~r

c
ij .

where uk (with k = 1, . . . , dfN) represent the dfN
degrees of freedom in the system and df is the number of
degrees of freedom per particle. In 2D, df = 3 with ~u =
{x1,x2,. . .,xN ,y1,y2,. . .,yN ,l2θ1,l2θ2,. . .,l2θN} and in 3D
for prolate ellipsoids df = 5 with ~u = {x1,x2,. . .,xN ,y1,
y2,. . .,yN ,z1,z2,. . .,zN ,l1θθ1,l

2
θθ2,. . .,l

N
θ θN ,l3φ1,l3φ2,. . .,

l3φN}, where θi is the polar angle and φi is
the azimuthal angle in spherical coordinates,

l2 =
√
a2 + b2/2, l3 =

√

(

a2 + b2
)

/5, and

liθ =
√

(

2b2 + (a2 − b2) sin2 φi
)

/5.

The dynamical matrix requires calculations of the first
and second derivatives of the total potential energy V
with respect to all positional and angular degrees of free-
dom in the system. The first derivatives of V with respect
to the positions of the centers of mass of the particles ~ri
can be obtained from Eq. 5. In 2D, there is only one first
derivative involving angles, F iθ = −∂V (rij)/∂θi, where

F iθ =
1

4
χ

(

σij
σ0
ij

)2

(2αA(B+ +B−) + χC(B2
+ −B2

−)), (14)

A =
yij cos θi − xij sin θi

rij
,

B± =
α(xij cos θi + yij sin θi)± α−1(xij cos θj + yij sin θj)

(1 + χ cos[θi − θj ])rij
,

C = cos2(θi − θj).

Complete expressions for the matrix elements of the dy-
namical matrix for ellipses in 2D are provided in Ap-
pendix B. In 3D, we calculated the first derivatives of V
with respect to the particle coordinates analytically, and
then evaluated the second derivatives for the dynamical
matrix numerically.

The vibrational frequencies in the harmonic approxi-
mation can be obtained from theNdf−d nontrivial eigen-
values mi of the dynamical matrix, ωi =

√

mi/ǫbs. d of
the eigenvalues are zero due to periodic boundary condi-
tions. For all static packings, we have verified that the
smallest nontrivial eigenvalue satisfies mmin/N > 10−10.

Below, we will study the density of vibrational fre-
quencies D(ω) = (N(ω + ∆ω) − N(ω))/(Ndof∆ω) as a
function of compression ∆φ and aspect ratio α, where
N(ω) is the number of vibrational frequencies less than
ω. We will also investigate the relative contributions
of the translational and rotational degrees of freedom
to the nontrivial eigenvectors of the dynamical matrix,

m̂i = {mj=1
xi ,mj=1

yi ,mj=1
θi , . . . ,mj=N

xi ,mj=N
yi ,mj=N

θi }
for ellipses in 2D and m̂i =

{mj=1
xi ,mj=1

yi ,mj=1
zi ,mj=1

θi ,mj=1
φi , . . . ,mj=N

xi ,mj=N
yi ,mj=N

zi ,

mj=N
θi ,mj=N

φi } for prolate ellipsoids in 3D, where i labels
the eigenvector and runs from 1 to Ndf − d. The
eigenvectors are normalized such that m̂2

i = 1.

D. Dynamical matrix decomposition

The dynamical matrix (Eq. 13) can be decomposed
into two component matrices M = H − S: 1) the stiff-
ness matrixH that includes only second-order derivatives
of the total potential energy V with respect to the con-
figurational degrees of freedom and 2) the stress matrix
S that includes only first-order derivatives of V [14]. The
kl elements of H and S are given by

Hkl =
∑

i>j

∂2V

∂(rij/σij)2
∂(rij/σij)

∂uk

∂(rij/σij)

∂ul
(15)

Skl = −
∑

i>j

∂V

∂(rij/σij)

∂2(rij/σij)

∂uk∂ul
, (16)

where the sums are over distinct pairs of overlapping par-
ticles i and j. Since ∂2V/∂(rij/σij)

2 = ǫ for the purely
repulsive linear spring potential (Eq. 1), the stiffness ma-
trix depends only on the geometry of the packing (i.e.
∂(rij/σij)/∂uk). Also, at zero compression ∆φ = 0,
S = 0, M = H , and only the stiffness matrix contributes
to the dynamical matrix. The frequencies associated with
the eigenvalues hi of the stiffness matrix (at any ∆φ)

are denoted by ωhi =
√

hi/ǫbs, and the stiffness matrix

eigenvectors are normalized such that ĥ2i = 1.
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E. Contact number

When counting the number of interparticle contacts
Nc, we remove all rattler particles [33] (defined as those
with fewer than d + 1 contacts) and do not include the
contacts that rattler particles make with non-rattler par-
ticles [34]. Removing these contacts may cause non-
rattler particles to become rattlers, and thus this process
is performed recursively [6]. Note that for ellipsoidal par-
ticles with d+ 1 contacts, the lines normal to the points
(or planes in 3D) of contact must all intersect, otherwise
the system is not mechanically stable. The number of
contacts per particle is defined as z = 2Nc/(N − Nr),
where Nr is the number of rattlers. We find that the
number of rattler particles decreases with aspect ratio
from approximately 5% of the system at α = 1 to zero
for α > 1.2 in both 2D and 3D [9].

III. RESULTS

Static packings of ellipsoidal particles at jamming on-
set typically possess fewer contacts than predicted by iso-
static counting arguments [14, 18, 19], z < ziso, over a
wide range of aspect ratio as shown in Fig. 5. This find-
ing raises a number of important questions. For example,
are static packings of ellipsoidal particles mechanically
stable at finite ∆φ > 0, i.e. does the dynamical ma-
trix for these systems possess nontrivial zero-frequency
modes at ∆φ > 0? In this section, we will show that
packings of ellipsoidal particles are indeed mechanically
stable (with no nontrivial zero-frequency modes) by cal-
culating the dynamical, stress, and stiffness matrices for
these systems as a function of compression ∆φ, aspect
ratio α, and packing-generation protocol. Further, we
will show that the density of vibrational modes for these
systems possesses three characteristic frequency regimes
and determine the scaling of these characteristic frequen-
cies with ∆φ and α.

A. Density of vibrational frequencies D(ω)

A number of studies have shown that amorphous
sphere packings are fragile solids in the sense that the
density of vibrational frequencies (in the harmonic ap-
proximation) D(ω) for these systems possesses an excess
of low-frequency modes over Debye solids near jamming
onset, i.e. a plateau forms and extends to lower frequen-
cies as ∆φ → 0 [6, 35, 36]. In this work, we will cal-
culate D(ω) as a function of ∆φ and aspect ratio α for
amorphous packings of ellipsoidal particles and show that
the density of vibrational modes for these systems shows
significant qualitative differences from that for spherical
particles.
In Figs. 6 (a) and (b), we show D(ω) on linear and

log-log scales, respectively, for ellipse-shaped particles in
2D at ∆φ = 10−8 over a range of aspect ratios from

1 1.2 1.4 1.6 1.8
3.5

4

4.5

5

5.5

6

6.5

 z

α

1 1.2 1.4 1.6 1.8 2
α

5

6

7

8

9

10

11

 z

(a)

(b)

FIG. 5: Average contact number z versus aspect ratio α for
static packings of (a) bidisperse ellipses in 2D and (b) prolate
ellipsoids in 3D at jamming onset. The isostatic values ziso =
6 (2D) and 10 (3D) are indicated by dashed lines.

α = 1 to 2. We find several key features in D(ω): 1)
For low aspect ratios α < 1.05, D(ω) collapses with that
for disks (α = 1) at intermediate and large frequencies
0.25 < ω < 2.25; 2) For large aspect ratios α ≥ 2, D(ω) is
qualitatively different for ellipses than for disks over the
entire frequency range; and 3) A strong peak near ω = 0
and a smaller secondary peak at intermediate frequencies
(evident on the log-log scale in Fig. 6 (b)) occur in D(ω)
for α > 1. Note that at finite compression ∆φ > 0, we
do not find any nontrivial zero-frequency modes of the
dynamical matrix in static packings of ellipses and ellip-
soids. The only zero-frequency modes in these systems
correspond to the d constant translations that arise from
periodic boundary conditions and zero-frequency modes
associated with ‘rattler’ particles with fewer than d + 1
interparticle contacts.

To monitor the key features of D(ω) as a function of
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FIG. 6: (a) The density of vibrational frequencies D(ω) for
N = 240 ellipse-shaped particles at ∆φ = 10−8 with aspect
ratio α = 1.0 (solid), 1.001 (dotted), 1.05 (dashed), and 2.0
(dot-dashed). For α = 1, D(ω) possesses trivial zero fre-
quency rotational modes. Although we do not plot these
modes, D(ω) for α = 1 has been scaled by 2/3 relative to
those with α > 1 to achieve collapse at low aspect ratios.
(b) D(ω) for the same aspect ratios in (a) on a log-log scale.
The inset illustrates the three characteristic frequencies ω1,
ω2, and ω3 in D(ω) for α = 1.001.

∆φ and α, we define three characteristic frequencies as
shown in the inset to Fig. 6 (b). ω1 and ω2 identify the
locations of the small and intermediate frequency peaks
in D(ω), and ω3 marks the onset of the high-frequency
plateau regime in D(ω). For our analysis, we define ω3 as
the largest frequency (< 1) with D(ω) < 0.15, which is
approximately half of the height of the plateau in D(ω)
at large frequencies. All three characteristic frequencies
increase with aspect ratio. Note that we only track ω2

and ω3 for aspect ratios where ω2 < ω3. For example,
the intermediate and high-frequency bands characterized
by ω2 and ω3 merge for α ≥ 1.2.

(b)

(a)
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FIG. 7: (a) The density of vibrational frequencies D(ω) for
N = 512 prolate ellipsoids at ∆φ = 10−6 for α = 1.0 (solid),
1.001 (dotted), 1.005 (dashed), and 1.2 (dot-dashed). For
α = 1, D(ω) possess trivial zero frequency rotational modes.
Although we do not plot these modes, D(ω) for α = 1 has
been scaled by 3/5 relative to those with α > 1 to achieve
collapse at low aspect ratios. (b) D(ω) for the same aspect
ratios in (a) on a log-log scale. The inset illustrates the three
characteristic frequencies ω1, ω2, and ω3 in D(ω) for α =
1.001.

As shown in Fig. 7, D(ω) for 3D prolate ellipsoids dis-
plays similar behavior to that for ellipses in 2D (Fig. 6)
for aspect ratios α < 1.5. For example, D(ω) for el-
lipsoids possesses low, intermediate, and high frequency
regimes, whose characteristic frequencies ω1, ω2, and ω3

increase with aspect ratio. Note that the intermediate
and high-frequency bands ω2 and ω3 merge for α > 1.02,
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FIG. 8: The density of vibrational frequencies D(ω) for N =
240 ellipses as a function of compression ∆φ = 10−7 (solid),
10−5 (dotted), 10−3 (dashed), and 10−2 (dot-dashed) for (a)
α = 1.05 and (b) 2.

which occurs at lower aspect ratio than the merging of
the bands in 2D. Another significant difference is that in
3D D(ω) extends to higher frequencies at large aspect
ratios (α & 1.2) than D(ω) for ellipses.

We note the qualitative similarity between the D(ω)
for α = 1.005 ellipsoids shown in Fig. 7 (b) and D(ω) for
α = 0.96 presented in Fig. 1 (c) of Ref. [16] for ω > 10−2.
However, Zeravcic, et al. suggest that there is no weight
in D(ω) for ω < 10−2 except at ω = 0 for both oblate
and prolate ellipsoids, in contrast to our results in Fig. 7.

In Fig. 8, we show the behavior of D(ω) for ellipse
packings as a function of compression ∆φ for two aspect
ratios, α = 1.05 and 2. We find that the low-frequency
band (characterized by ω1) depends on ∆φ, while the in-
termediate and high frequency bands do not. The inter-
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FIG. 9: (a) Characteristic frequencies ω1 (circles), ω2

(squares), and ω3 (diamonds) from D(ω) as a function of as-
pect ratio α − 1 for N = 240 ellipses in 2D at ∆φ = 10−8.
The solid (dashed) lines have slope 1/2 (1). (b) ω1/(∆φ)

1/2

for systems with N = 240 ellipses in 2D at ∆φ = 10−7 (cir-
cles), 10−6 (squares), 10−5 (diamonds), 10−4 (upward trian-
gles), 10−3, (downward triangles), and 10−2 (crosses). The
solid line has slope 1/2.

mediate and high frequencies bands do not change sig-
nificantly until the low-frequency band centered at ω1

merges with them at ∆φ ≈ 10−3 and ≈ 10−4 for α = 1.05
and 2, respectively.

We plot the characteristic frequencies ω1, ω2, and ω3

versus aspect ratio α − 1 for ellipse packings in Fig. 9
and ellipsoid packings in Fig. 10. The characteristic fre-
quencies obey the following scaling laws over at least two
orders of magnitude in α−1 and five orders of magnitude
in ∆φ:

ω1 ∼ (∆φ)1/2(α− 1)1/2, (17)

ω2 ∼ (α− 1), (18)

ω3 ∼ (α− 1)1/2. (19)
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FIG. 10: (a) Characteristic frequencies ω1 (circles), ω2

(squares), and ω3 (diamonds) from D(ω) as a function of
aspect ratio α − 1 for N = 240 prolate ellipsoids in 3D at
∆φ = 10−6. The solid (dashed) lines have slope 1/2 (1). (b)

ω1/(∆φ)
1/2 for systems with N = 512 prolate ellipsoids at

∆φ = 10−6 (circles), 10−5 (squares), and 10−4 (diamonds).
The solid line has slope 1/2.

Similar results for the scaling of ω2 and ω3 with α − 1
were found in Ref. [16]. We will refer to the modes in
the low-frequency band in D(ω) (with characteristic fre-
quency ω1) as ‘quartic modes’, and these will be discussed
in detail Sec. III C. The scaling of the quartic mode fre-
quencies with compression, ω1 ∼ (∆φ)1/2, has important
consequences for the linear response behavior of ellip-
soidal particles to applied stress [15].

B. Dynamical Matrix Decomposition

As shown in Fig. 5, static packings of ellipsoidal parti-
cles can possess z < ziso over a wide range of aspect ratio,
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 D

(ω
h
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FIG. 11: The distribution of frequencies D(ωh) associated
with the eigenvalues of the stiffness matrix H for N = 240
ellipse packings as a function of compression ∆φ = 10−5 (dot-
ted), 10−3 (dashed), and 10−2 (dot-dashed) for α = 1.05. The
vertical solid line indicates the ‘zero-frequency’ tolerance ωtol,
which is the lowest frequency obtained for the dynamical ma-
trix for packings at α = 1.05 and the smallest compression
(∆φ = 10−8) in Fig. 6.

yet as described in Sec. III A, the dynamical matrix M
contains a complete spectrum of Ndf − d nonzero eigen-
values mi near jamming. To investigate this intriguing
property, we first calculate the eigenvalues of the stiff-
ness matrixH , show that it possessesNz ‘zero’-frequency
modes whose number matches the deviation in the con-
tact number from the isostatic value, and then identify
the separate contributions from the stiffness and stress
matrices to the dynamical matrix eigenvalues.
In Fig. 11, we show the distribution of frequencies

D(ωh) associated with the eigenvalues of the stiffness ma-
trix for ellipse packings at α = 1.05 as a function of com-
pression ∆φ. We find three striking features in Fig. 11: 1)
Many modes of the stiffness matrix exist near and below
the zero-frequency threshold (determined by the vibra-
tional frequencies of the dynamical matrix at α = 1.05
and ∆φ = 10−8); 2) Frequencies that correspond to the
low-frequency band characterized by ω1 are absent; and
3) The nonzero frequency modes (with ωh > 10−2) do
not scale with ∆φ as pointed out for the dynamical ma-
trix eigenvalues in Eqs. 18 and 19. Further, we find that
the number of zero-frequency modes Nz of the stiffness
matrix matches the deviation in the number of contacts
from the isostatic value (Niso −Nc) for each ∆φ and as-
pect ratio. Specifically, Nz = Niso − Nc over the full
range of ∆φ for 99.96% of the more than 104 packings
for aspect ratio α < 1.1 and for 100% of the more than
104 packings for α ≥ 1.1.
The Nz = Niso −Nc zero-frequency modes of the stiff-

ness matrix correspond to directions ê0 along which inter-
particle distances are preserved to first order, i.e. pertur-
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bations ∆~R = δê0 along these directions lead to interpar-
ticle overlaps that scale as σij−rij ∝ (σij−rij)

∣

∣

0
+O(δ2).

We will show in Sec. III C that at jamming onset the
O(δ2) terms in σij − rij stabilize static packings of el-
lipsoidal particles since the change in potential energy

following a perturbation by ∆~R scales as ∆V ∼ (σij −
rij)

2 − (σij − rij)
2
∣

∣

0
∼ aijδ

4 +O(δ6). These results sug-
gest that the linear response regime for packings of ellip-
soidal particles vanishes at jamming onset. To determine
whether or not the harmonic contributions to the energy
are restored at nonzero compression, we investigate the
contributions to the dynamical matrix eigenvalues from
the stress and stiffness matrices as a function of ∆φ.
In Fig. 12, we calculate the stiffness and stress matrix

elements in the basis of the dynamical matrix eigenvec-

tors, H = m̂†
iHm̂i and S = m̂†

iSm̂i, where m̂†
i is the

transpose of the dynamical matrix eigenvector m̂i and

ω2
i = m̂†

iMm̂i = H− S. Fig. 12 (a) shows that for large
eigenvalues ω2

i of the dynamical matrix (i.e. within the
intermediate and high frequency bands characterized by
ω2 and ω3 in Fig. 6), the eigenvalues of the stiffness and
dynamical matrices are approximately the same, H ≈ ω2

i .
The deviation ω2

i −H = −S, shown in the inset to Fig. 12
(a), scales linearly with ∆φ. Thus, we find that the in-
termediate and high frequency modes for packings of el-
lipsoidal particles are stabilized by the stiffness matrix H
becauseH is the dominant contribution to the dynamical
matrix eigenvalues over a wide range of ∆φ and α.
In the main panel of Fig. 12 (b), we show that for fre-

quencies in the lowest frequency band (characterized by
ω1) the eigenvalues of the stress and dynamical matrices
are approximately the same, −S ≈ ω2

i . In the inset to
Fig. 12 (b), we show that the deviation ω2

i − (−S) = H
scales as (∆φ)2. Thus, we find that the lowest frequency
modes for packings of ellipsoidal particles are stabilized
by the stress matrix −S because −S is the dominant con-
tribution to the dynamical matrix eigenvalues over a wide
range of ∆φ and α. Similar results were found previously
for packings of hard ellipsoidal particles [14]. In contrast,
for static packings of spherical particles, the stress matrix
contributions to the dynamical matrix are destabilizing
with −S < 0 for all frequencies near jamming, and H
stabilizes the packings as shown in Fig. 13.

C. Quartic modes

We showed in Sec. III A that the dynamical matrix
M for packings of ellipsoidal particles contains a com-
plete spectrum of Ndf − d nonzero eigenvalues mi for
∆φ > 0 despite that fact that z < ziso. Further, we
showed that the modes in the lowest frequency band
scale as ω1 ∼ (∆φ)1/2 in the ∆φ → 0 limit. What hap-
pens at jamming onset when ∆φ = 0, i.e. are these
low-frequency modes that become true zero-frequency
modes at ∆φ = 0 stabilized or destabilized by higher-
order terms in the expansion of the potential energy in
powers of the perturbation amplitude?
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FIG. 12: The two contributions to the dynamical matrix
eigenvalues, (a) H and (b) −S , plotted versus ω2 = H − S
for ellipse packings with N = 240, α = 1.05, ∆φ = 10−6

(circles), 10−5 (squares), 10−4 (diamonds), and 10−3 (trian-
gles). In (a) and (b), the solid lines correspond to H = ω2

and −S = ω2, respectively. In the main panel and inset of
(a), only modes corresponding to the intermediate- and high-
frequency bands are included. In the main panel and inset
of (b), only modes corresponding to the low-frequency band
are included. The insets to (a) and (b), which plot −S/∆φ
versus ω2 and H/(∆φ)2 versus ω2/∆φ, show the deviations
ω2 − H = −S ∝ ∆φ for high- and intermediate-frequency
modes and ω2− (−S) = H ∝ (∆φ)2 for low-frequency modes,
respectively.

To investigate this question, we apply the following
deformation to static packings of ellipsoidal particles:

~u = ~u0 + δm̂i, (20)

where δ is the amplitude of the perturbation, m̂i is an
eigenvector of the dynamical matrix, and ~u0 is the point
in configuration space corresponding to the original static
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FIG. 13: The two contributions to the dynamical matrix
eigenvalues, (a) H and (b) −S/∆φ, plotted versus the eigen-
values of the dynamical matrix ω2 for packings of N = 240
bidisperse disks at ∆φ = 10−6 (circles), 10−5 (squares), 10−4

(diamonds), and 10−3 (triangles). In (a) the solid line corre-
sponds to H = ω2. Note that −S < 0 over the entire range
of frequencies.

packing, followed by conjugate gradient energy minimiza-
tion. We then measure the change in the total potential
energy per particle before and after the perturbation,

∆V

N
=
V (~u)− V (~u0)

N
. (21)

We plot ∆V/N versus δ in Fig. 14 for perturbations along
eigenvectors that correspond to the smallest nontrivial
eigenvalue m1 = ω2

min of the dynamical matrix for static
packings of (a) disks and ellipses and (b) spheres and
prolate ellipsoids at ∆φ = 10−7.
As expected, for disks and spheres, we find that

∆V/N ≈ mω2
minδ

2 over a wide range of δ in response to
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FIG. 14: The change in the total potential energy ∆V (nor-
malized by the particle number N) before and after applying
the perturbation in Eq. 20 with amplitude δ along the eigen-
vector that corresponds to the lowest nontrivial eigenvalue of
the dynamical matrix for packings of (a) N = 240 disks (solid
line) and ellipses with α = 1.1 (dashed line) and (b) N = 512
spheres (solid line) and prolate ellipsoids with α = 1.1 (dashed
line) at ∆φ = 10−7. The dot-dashed (dotted) lines have slope
2 (4).

perturbations along eigenvectors that correspond to the
smallest nontrivial eigenvalue. In contrast, we find novel
behavior for ∆V/N when we apply perturbations along
the eigendirection that corresponds the lowest nonzero
eigenvalue of the dynamical matrix for packings of ellip-
soidal particles. In Fig. 15, we show that ∆V/N obeys

∆V

N
=
m

2
ω2
kδ

2 + ckδ
4, (22)

where ωk ∝ ∆φ1/2 and the constants ck > 0, for pertur-
bations along all modes k in the lowest frequency band of
D(ω) for packings of ellipsoidal particles when we do not
include changes in the contact network following the per-
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turbation and relaxation. (See Appendix A for measure-
ments of ∆V/N when we include changes in the contact
network.) Eigenmodes in the lowest frequency band are
termed ‘quartic’ because at ∆φ = 0 they are stabilized
by quartic terms in the expansion of the total potential
energy with respect to small displacements [15].
For δ ≪ δ∗k, the change in potential energy scales as

∆V/N ∼ ω2
kδ

2, whereas ∆V/N ∼ ckδ
4 for δ ≫ δ∗k,

where the characteristic perturbation amplitude δ∗k =

ωk
√

m/2ck. In the insets to Fig. 15 (a) and (b), we
show that the characteristic perturbation amplitude av-
eraged over modes in the lowest frequency band scale as
δ∗ ∼ (∆φ)1/2/(α− 1)1/4 for static packings of ellipses in
2D and prolate ellipsoids in 3D, which indicates that the
ck possess nontrivial dependence on aspect ratio α.
The quartic modes have additional interesting features.

For example, quartic modes are dominated by the rota-
tional rather than translational degrees of freedom. We
identify the relative contributions of the translational and
rotational degrees of freedom to the eigenvectors of the
dynamical matrix in Figs. 16 and 17. The contribution
of the translational degrees of freedom to eigenvector m̂i

is defined as

Ti =

Ndf
∑

j=1

∑

λ

(mj
λi)

2, (23)

where the sum over λ includes x and y in 2D and x, y,
and z in 3D and the eigenvectors are indexed in increas-
ing order of the corresponding eigenvalues. Since the
eigenvectors are normalized, the rotational contribution
to each eigenvector is Ri = 1− Ti.
For both ellipses in 2D and prolate ellipsoids in 3D, we

find that at low aspect ratios (α < 1.1), the first N (2N)
modes in 2D (3D) are predominately rotational and the
remaining 2N (3N) modes in 2D (3D) are predominately
translational. In the inset to Figs. 16(b) and 17, we show
that T increases as (α− 1)ζ , where ζ ≈ 1.5 (1.25) for el-
lipses (prolate ellipsoids), for both the low and intermedi-
ate frequency modes. For α > 1.2, we find mode-mixing,
especially at intermediate frequencies, where modes have
finite contributions from both the rotational and trans-
lational degrees of freedom. For α ≤ 1.2, the modes be-
come increasingly more translational with increasing fre-
quency. For α > 1.2, the modes become more rotational
in character at the highest frequencies. Our results show
that the modes with significant rotational content at low
α correspond to modes in the low and intermediate fre-
quency bands of D(ω), while the modes with significant
translational content at low α correspond to modes in
the high frequency band of D(ω).

D. Protocol dependence

We performed several checks to test the robustness and
accuracy of our calculations of the density of vibrational
modes in the harmonic approximation D(ω) for static
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FIG. 15: The change in the total potential energy ∆V/N
for perturbations along the ‘quartic’ modes (solid) and all
other modes (dashed) as a function of amplitude δ for (a)
N = 240 ellipses and (b) N = 512 prolate ellipsoids with
α = 1.1 for ∆φ = 10−7. The dotted (dot-dashed) lines have
slope 2 (4). The solid vertical lines indicate the characteristic
amplitude δ∗ at which ∆V/N crosses over from quadratic to
quartic scaling averaged over the quartic modes. The insets
show the scaling of δ∗/(∆φ)1/2 with α − 1 for several values
of compression: ∆φ = 10−8 (circles) and 10−7 (squares) for
2D systems and 10−6 (diamonds), 10−5 (triangles), and 10−4

(pluses) for both 2D and 3D systems. The solid lines in the
insets have slope −0.25.

packings of ellipsoidal particles: 1) We compared D(ω)
obtained from static packings of ellipsoidal particles us-
ing Perram and Wertheim’s exact expression (Eq. 2) for
the contact distance between pairs of ellipsoidal particles
and the Gay-Berne approximation described in Sec. II A;
2) We calculated D(ω) for static packings of ellipsoidal
particles as a function of the tolerance used to terminate
energy minimization for both the MD and CG methods;
and 3) We studied the system-size dependence of D(ω)
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FIG. 16: The contribution of the translational degrees of free-
dom T to each eigenvector m̂i of the dynamical matrix ver-
sus frequency ω in packings of N = 240 ellipses in 2D at
∆φ = 10−7. Panel (a) shows data for aspect ratios α = 1.05
(black solid), 1.2 (red dashed), 1.5 (green dash-dash-dot), 2.0
(blue dash-dot), and 4.0 (purple dot-dot-dash), and panel (b)
shows data for aspect ratios α = 1.001 (black solid), 1.002 (red
dashed), 1.005 (green dot-dot-dash), 1.01 (blue dash-dot),
1.02 (purple dot-dot-dash), and 1.05 (cyan dotted). The inset
to (b) shows 〈T 〉 averaged over modes in the lowest (squares)
and intermediate (circles) frequency regimes. The solid line
has slope 1.5.

in systems ranging from N = 30 to 960 particles.

In Fig. 18, we show that the density of vibrational
modes D(ω) is nearly the same when we use the Per-
ram and Wertheim exact expression and the Gay-Berne
approximation to the contact distance for ellipse-shaped
particles. D(ω) for static packings of ellipse-shaped par-
ticles is also not dependent on Vtol, which controls the
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FIG. 17: The contribution of the translational degrees of free-
dom T to each eigenvector m̂i of the dynamical matrix ver-
sus frequency ω in packings of N = 512 prolate ellipsoids in
3D at ∆φ = 10−6. Panel (a) shows data for aspect ratios
α = 1.01 (black solid), 1.05 (red dashed), 1.1 (green dash-
dash-dot), 1.2 (blue dash-dot), and 1.5 (purple dot-dot-dash),
and panel (b) shows data for aspect ratios α = 1.001 (black
solid), 1.002 (red dashed), 1.005 (green dash-dash-dot), 1.01
(blue dash-dot), 1.02 (purple dot-dot-dash), and 1.05 (cyan
dotted). The inset to (b) shows 〈T 〉 averaged over modes
in the lowest (squares) and intermediate (circles) frequency
regimes. The solid line has slope 1.25.

accuracy of the conjugate gradient energy minimization
(Sec. II B), for sufficiently small values. Our calculations
in Fig. 18 (b) also show that D(ω) is not sensitive to the
energy minimization procedure (i.e. MD vs. CG) for
small values of the minimization tolerance Ktol.

In addition, key features of the density of vibrational
modes are not strongly dependent on system size. For
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FIG. 18: (a) Density of vibrational modes in the harmonic
approximation D(ω) for N = 30 ellipses with α = 1.05 at
∆φ = 10−7 using the Perram and Wertheim exact contact dis-
tance between pairs of ellipses with CG energy minimization
tolerance Vtol = 10−16 (green dot-dashed) and Vtol = 10−8

(blue dash-dash-dotted) or the Gay-Berne approximation
with Vtol = 10−16 (black solid) and Vtol = 10−8 (red dashed).
(b) D(ω) for N = 12 ellipses with α = 1.05 at ∆φ = 10−5

using the Perram and Wertheim exact contact distance with
CG energy minimization tolerance Vtol = 10−16 (solid black),
and MD energy minimization tolerance Ktol = 10−16 (red
dashed) and 10−24 (green dotted).

example, in Fig. 19, we show D(ω) for ellipses in 2D at
aspect ratio α = 1.05 and compression ∆φ = 10−7 over
a range of system sizes from N = 30 to 960. (For refer-
ence, D(ω) at fixed system size N = 240 and ∆φ = 10−8

over a range of aspect ratios is shown in Fig. 6.) D(ω) in
the low- and intermediate-frequency bands and plateau
region overlap for all system sizes. The only feature of

D(ω) that changes with system size is that successively
lower frequency, long wavelength translational modes ex-
tend from the plateau region as the system size increases.
In the large system-size limit N > (φ− φJ )

−2, which we
do not reach in these studies, the lowest frequency modes
will scale as D(ω) ∼ ωd−1.
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FIG. 19: Density of vibrational modes in the harmonic ap-
proximation D(ω) for ellipses in 2D with aspect ratio α =
1.05, ∆φ = 10−7, and system size N = 30 (black solid), 120
(red dashed), 240 (green dot-dashed), and 960 (blue dash-
dash-dotted).

IV. CONCLUSIONS

Static packings of frictionless ellipsoidal particles
generically satisfy z < ziso [14–17]; i.e. they possess
fewer contacts than the minimum required for mechan-
ical stability as predicted by counting arguments that
assume all contacts give rise to linearly independent con-
straints on particle positions. However, these packings
have been shown to be mechanically stable (MS) [15] at
nonzero compression (∆φ > 0) for all aspect ratios. To
understand this behavior, we decomposed the dynamical
matrix M = H − S into the stiffness H and stress S
matrices [14]. We find that the stiffness matrix possesses
2N(ziso − z) eigenmodes ê0 with zero eigenvalues over
a wide range of compression (∆φ > 0). In addition, the
modes ê0 are nearly eigenvectors of the dynamical matrix
(and the stress matrix −S) with eigenvalues that scale as
c∆φ, with c > 0, and thus finite compression stabilizes
packings of ellipsoidal particles [15]. At jamming onset,
the harmonic response of packings of ellipsoidal parti-
cles vanishes, and the total potential energy scales as δ4

for perturbations by amplitude δ along these ‘quartic’
modes, ê0. In addition, we have shown that these results
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are robust; for example, the density of vibrational modes
D(ω) (in the harmonic approximation) is not sensitive to
the error tolerance of the energy minimization procedure,
the system size, and the accuracy of the determination
of the interparticle contacts over the range of parameters
employed in the simulations.

Our studies highlight the significant differences be-
tween amorphous packings of spherical and ellipsoidal
particles near jamming and raise several fundamental
questions for static granular packings: 1) Which classes
of particle shapes give rise to quartic modes?; 2) Is there
a more general isostatic counting argument that can pre-
dict the number of quartic modes at jamming onset (for a
given packing-generation protocol)?; 3) Do systems with
quartic modes display even stronger anharmonic response
than packings of spherical particles [22] in the presence
of thermal and other sources of fluctuations?; and 4)
How do quartic modes that arise near jamming onset
affect diffusivity and heat transport [37–39] in packings
of anisotropic particles? We will address these important
questions in our future studies.
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Appendix A: Scaling Behavior of the Total Potential

Energy

The scaling behavior of ∆V/N (shown in Figs. 14
and 15) as a function of the amplitude δ of the pertur-
bation along the eigenmodes of the dynamical matrix is
valid only when the original contact network of the per-
turbed static packing does not change. Note that contact
network changes can occur for amplitudes δ smaller than
the cross-over amplitude δ∗ that signals the crossover in
the scaling of ∆V/N with perturbation amplitude from
δ2 to δ4. As shown in Fig. 20, ∆V/N does not obey
the power-law scaling described in Eq. 22 when new in-
terparticle contacts form. We find that changes in the
contact network are more likely for systems with α ∼ 1
as shown previously in Ref. [22]. In a future publication,
we will measure the critical perturbation amplitude δkc
below which new contacts do not form and existing con-
tacts do not change for perturbations along each mode k.
This work is closely related to determining the nonlinear
vibrational response of packings of ellipsoidal and other
anisotropic particles.
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FIG. 20: Change in the total potential energy ∆V/N when
we (a) do not allow the system to gain contacts or (b) al-
low the system to gain contacts versus the amplitude of the
perturbation δ along several ‘quartic’ modes (mode 17: black
solid, mode 23: red dashed, mode 38: green dot-dot-dashed,
and mode 78: blue dash-dash-dotted) from a static pack-
ing of N = 240 ellipse-shaped particles at ∆φ = 10−8 and
α = 1.002. The dotted (dot-dashed) line has slope 4 (2). (c)
The number of new contacts N ′

c that differ from the original
contact network as a function of δ for each mode in (a) and
(b). The vertical lines indicate the δ at which the first new
contact forms for each mode.
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Appendix B: Dynamical Matrix Elements for

Ellipse-shaped Particles

In this Appendix, we provide explicit expressions for
the dynamical matrix elements (Eq. 13) for ellipse-shaped
particles in 2D that interact via purely repulsive, pair-
wise, contact potentials V =

∑

ij Vij(rij/σij), e.g. the
repulsive linear spring potential in Eq. 1. The nine dy-
namical matrix elements for i 6= j are

Mxixj
= − 1

σ2
ij

(

hijH
2
xij + gij

σij
rij

y2ij
r2ij
Gij

)

(B1)

Myiyj = − 1

σ2
ij

(

hijH
2
yij + gij

σij
rij

x2ij
r2ij

Gij

)

(B2)

Mxiyj = − 1

σ2
ij

(

hijHxijHyij − gij
σij
rij

xij
rij

yij
rij
Gij

)

(B3)

Myixj
= − 1

σ2
ij

(

hijHxijHyij − gij
σij
rij

xij
rij

yij
rij
Gij

)

(B4)

Mθiθj =
1

l2

(

hij
r2ij
σ2
ij

(

∂ lnσij
∂θi

∂ lnσij
∂θj

)

+

gij
rij
σij

(

∂ lnσij
∂θi

∂ lnσij
∂θj

− ∂2 lnσij
∂θi∂θj

))

(B5)

Mxiθj = − 1

lσij

(

hij
rij
σij

∂ lnσij
∂θj

Hxij −

gij

(

yij
rij

∂2 lnσij
∂ψij∂θj

− ∂ lnσij
∂θj

Hxij

))

(B6)

Myiθj = − 1

lσij

(

hij
rij
σij

∂ lnσij
∂θj

Hyij −

gij

(

− xij
rij

∂2 lnσij
∂ψij∂θj

− ∂ lnσij
∂θj

Hyij

))

(B7)

Mθixj
=

1

lσij

(

hij
rij
σij

∂ lnσij
∂θi

Hxij −

gij

(

yij
rij

∂2 lnσij
∂ψij∂θi

− ∂ lnσij
∂θi

Hxij

))

(B8)

Mθiyj =
1

lσij

(

hij
rij
σij

∂ lnσij
∂θi

Hyij −

gij

(

− xij
rij

∂2 lnσij
∂ψij∂θi

− ∂ lnσij
∂θi

Hyij

))

, (B9)

and the nine dynamical matrix elements for i = j are

Mxixi
= −

∑

j 6=i

Mxixj
(B10)

Myiyi = −
∑

j 6=i

Myiyj (B11)

Mxiyi = −
∑

j 6=i

Mxiyj (B12)

Myixi
= Mxiyj (B13)

Mθiθi =
∑

j 6=i

1

l2

(

hij
r2ij
σ2
ij

(

∂ lnσij
∂θi

)2

+

gij
rij
σij

((

∂ lnσij
∂θi

)2

− ∂2 lnσij
∂θ2i

))

(B14)

Mxiθi = −
∑

j 6=i

Mθixj
(B15)

Myiθi = −
∑

j 6=i

Mθixj
(B16)

Mθixi
= Mxiθi (B17)

Mθiyi = Myiθi , (B18)

(B19)

where θi and θj are the orientation angles of ellipses i
and j defined in Fig. 4, ψij is the polar angle defined in

Fig. 4, l =
√

I/m,

gij =
∂Vij

∂(rijσij)
, (B20)

hij =
∂2Vij

∂(rij/σij)2
, (B21)

Gij = 1− ∂2 lnσij
∂ψ2

ij

+

(

∂ lnσij
∂ψij

)2

, (B22)

Hxij = xij + yij
∂ lnσij
∂ψij

, (B23)

Hyij = yij − xij
∂ lnσij
∂ψij

. (B24)

(B25)

Note that gij = −ǫ
(

1 − rij/σij
)

Θ(σij − rij) and hij =
ǫΘ(σij − rij) for the repulsive linear spring potential in
Eq. 1. The first angular derivatives are ∂(lnσij)/∂ψij
(shown in Eq. 7) and

∂ lnσij
∂θi

=
χ

2

(

σij
σ0
ij

)2

(η+ + η−)
(

β sin(ψij − θi) +

χ

2
(η+ − η−) sin(θi − θj)

)

, (B26)

∂ lnσij
∂θj

=
χ

2

(

σij
σ0
ij

)2

(η+ − η−)
(

β sin(ψij − θj)−

χ

2
(η+ + η−) sin(θi − θj)

)

. (B27)
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The second angular derivatives of σij with respect to θi,
θj , and ψij are

∂2 lnσij
∂ψ2

ij

=
χ

2

(

σij
σ0
ij

)2
∑

±

(

1± χ cos(θi − θj)
)(

ν2± − η2±
)

+2

(

∂ lnσij
∂ψij

)2

+
∂2 lnσij
∂ψ2

ij

∣

∣

∣

∣

corr

, (B28)
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=
χ

2

(

σij
σ0
ij

)2
∑

±

(

β cos(ψij − θi)η± −
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)

+2

(

∂ lnσij
∂θi

)(

∂ lnσij
∂ψij

)

+

∂2 lnσij
∂ψij∂θi

∣

∣

∣

∣

corr

, (B29)
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∂ψij∂θj

=
χ

2
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(
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)
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(

∂ lnσij
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∣
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2
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where η± and ν± are defined in Eq. 9 and

∂2 lnσij
∂ψ2

ij

∣

∣

∣

∣

corr

= −∂
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∂λ2

(
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