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ABSTRACT 

We study the effect of noise recycling on nonequilibrium escape dynamics in a bistable system. 

For small noise, the non-Markovian problem is reduced to a two-state model with the master 

equation depending on not only the current state but also the earlier state, based on which we are 

able to derive the analytical formulae for the switching rate, the autocorrelation function and the 

power spectrum density (PSD). Both the theoretical and the numerical results show that, with 

modulating the time delay in noise recycling, a monotonic PSD may switch to a nonmonotonic 

one and the amplitude of PSD at resonance frequency exhibits a pronounced maximum at a certain 

noise level, declared the onset of stochastic resonance (SR) in the absence of weak periodic signal. 

Further, we also demonstrate that the linear response to the external periodic force displays a 

maximum at a certain level of time delay, displayed the signature of SR. 

PACS number(s): 05.40.-a, 05.60.-k, 05.10.Gg 

I. INTRODUCTION 

Noise is ubiquitous in real world, which always plays a destructive role in natural and/or 

synthetic systems. Consequently, evaluation and suppression of noise destructive impact on 

dynamical evolutions and signal transmissions have received uninterrupted attention during the 

last century. The negative perspective on noise stands until 1981, on which physicists observed 

“the cooperative effect between internal mechanism and the external periodic forcing” in some 

nonlinear dynamical systems [1], announced the origin of SR, and manifested a constructive role 

of noise in nonlinear system. SR, in essence, is a nonlinear cooperative effect where a weak 

periodic stimulus entrains large-scale environmental fluctuations with the result that the periodic 

component is greatly enhanced. As the first positive example, SR has received tremendous 

attention and research [2-9] in the past several decades. From then on, lots of active effects of 

noise have been reported further, for instance, noise-inducing, noise-enhancing or noise-sustaining 
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spatiotemporal order [10], noise-inducing synchronization [11-17], etc. 

Generally, noise can be injected into a system and couple a variable of interest via different 

channels, additively or multiplicatively, alike. While being transmitted across the system 

components, a noise might split into several parts, each one of which is a single noise from the 

same source and possibly accompanied with a time shift (time delay), due to the combination of 

diverse propagation or transduction mechanisms. Hence,  
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where iε  ( mi ,,2,1,0 "= ) are coefficients and iτ ( ,0≥ mi ,,2,1,0 "= ) are time shifts 

(time delays). To simplify, one always sets 00 =τ  and 1=m  for a stationary noise )(tς , and 

then reads )()()( 10 τξεξες −+= ttt  (by setting ττ →1 ). Being coincident with [18,19], 

)(0 tξε is called the master noise and )(1 τξε −t  is called the secondary noise or recycled noise. 

Such noise recycling can be realized experimentally using a vertical cavity surface emitting laser 

that exhibits polarization switching as the injection current is varied [20].  

As a matter of fact, noise recycling is rather common in physical systems and always impacts a 

great diversity of nonlinear phenomena [18-28], for example, rectifying an automated Maxwell’s 

daemon of a massless Brownian particle on a symmetric periodic substrate [18], inducing 

stochastic synchronization in a bistable system [19], controlling resonance dynamics in 

Brusselator model [21], causing transport of nanoparticles in biological and artificial channels 

[22,23], driving propagation of charge density waves [24], etc. However, its role has not been 

fully recognized yet. As a matter of fact, due to the delayed correlation between the master and the 

secondary noise, the relevant dynamical response is not Markovian, and hence classical tools, e.g., 

standard Fokker-Planck approach, are not justified any longer. As a result, no theoretical model 

has been reported on studying the Kramers’ escape dynamics related to noise recycling so far. 

In the current paper, we focus on the response of a particle trapped in a bistable potential under 

noise recycling. At variance with the earlier studies [18-20], we demonstrate that, for a moderate 

time delay, the monotonic PSD may switch to a nonmonotonic one and the amplitude of PSD at 

resonance frequency exhibits a pronounced peak at a certain noise level. It is also shown that, in 



the presence of weak periodic signal, the linear response exhibits a broad peak at a certain level of 

time delay. To our knowledge, these phenomena have not been reported yet. To quantify these 

arguments, a theoretical model is suggested by neglecting the small intrawell fluctuations and 

approximating the aimed bistable model as a two-state system, which shows good agreements 

with the numerical results. 

II. BASIC MODEL AND SETUP 

We restrict ourselves to the model that M. Borromeo et al. have studied in ref. [18], which is an 

over-damped particle trapped in a double-well quartic potential 4/2/)( 42 xxxU +−=  

coupled noise recycling,  

)()()( τξεξ −++′−= tDtDxUx� ,                       (1) 

where )(tξ  is a Gaussian white noise with 0)( =tξ  and )(2)()( TtTt δξξ =+ . Set 

)()()( 21 ttt ηης +=  with )()(1 tDt ξη =  and )()(2 τξεη −= tDt , then it yields 

0)( =tς  and )]()()()1[(2)()( 2 τεδτεδδεςς −++++=+ TTTDtTt .  

Theoretically, if no recycling procedure is performed, viz. 0=ε , the concerned problem 

degenerates into a classical Kramers’ problem with )4/1exp()2( 1 DrK −= −π ; if the time 

delay is sufficiently small, viz. 0→τ , the concerned problem also reduces to a Kramers’ 

problem with ))1(4/1exp()2( 21 DrK επ +−= − ; or reversely, if the time delay is large 

enough, viz. ∞→τ , the current issue will turns back to a Kramers’ problem, too, since )(tς  is 

a Gaussian white noise with intensity )1( 2ε+D  and the Kramers’ rate can be determined by 

))1(4/1exp()2( 21 DrK επ +−= − . These situations were well discussed in [18]. However, 

for moderate time delay, no result has been reported so far because of the speciality of noise 

recycling.  

III. DYNAMICS: SR-LIKE RESPONSE  

Firstly, model (1) is solved numerically for a moderate time delay. The results are exhibited in 

Figs. 1 and 2. Figure 1 shows the PSD for different time delays: 0=τ , 5=τ , 15=τ  and 

25=τ . It reads immediately that without time delay the PSD decays monotonically and no peak 



appears in the whole range of frequency, but, as the time delay increases the shape of PSD 

changes and several peaks appear on the curve (see the curves corresponding to larger time delays: 

15=τ  and 25=τ ). Set the frequency associated to the highest peak to be 0ω  (resonance 

frequency, which is near τπ /2 ), then the position of the PSD peaks nω  might be estimated 

and determined approximately by 0)1( ω⋅+n . Figure 2 exhibits the dependence of PSD on noise 

strength at resonance frequency, wherein a pronounced peak appears at a certain noise level 

25.0≈D . To gain an insight into the dynamics, a new indicator, so-called signal-to-noise 

difference (SND), is introduced here as a measure of the system’s response, which is 

SND= ∫∫
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− += dTTtxtxeS iwT )()()(ω  is the total PSD of model (1) obtained by the Fourier 

transform of the autocorrelation function )()( Ttxtx + [2-4], wherein the bracket •  

indicates the ensemble average over realizations of the noise, σ2  is a small range around the 

resonant frequency 0ω , and )(ωbackS corresponds to the background PSD (which is the PSD of 

model (1) when the secondary noise is absent). Evidently, the value of SND represents an extra 

increment of the output signal power at resonance frequency, and can therefore be regarded as a 

quantitative measure of signal extraction from background noise. We calculated SND numerically 

from model (1) in existence of time delay ( 25=τ ) and displayed it in Fig. 3. At a closer 

inspection of SND, it is found that SND first increases with increasing noise intensity, reaches its 

maximum, and then decreases monotonously. A pronounced peak appears at a certain noise 

level 25.0≈D , which means the output ‘signal’ at resonance frequency is amplified and 

optimized by noise recycling (i.e., with the assistance of the secondary noise). It is a striking 

feature of SR-like response. As is well known, without a weak periodic signal SR could not occur 

in a classical Langevin model. However, it was well exhibited here that, with the assistance of a 

reinjected noise (secondary noise), SR-like dynamics was evoked in a classical Langevin model in 

the absence of weak periodic signal. 
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FIG.1. PSD of model (1) for 0=τ , 5=τ , 15=τ and 25=τ . The other parameters are fixed 

as 5.0=D  and 5.0=ε . Every point is calculated from model (1) numerically by averaging 

over 2000 realizations of noise hereafter.  
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FIG. 2. Dependence of PSD on noise intensity for fixed time delay ( 25=τ ) at resonance 

frequency ( 23.00 ≈ω ). The other parameters are fixed the same as Fig. 1.  
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FIG. 3. Dependence of SND on noise intensity at resonance frequency for 02.02 =σ . The 

parameters are specified the same as Fig. 2.  

IV. THEORETICAL ANALYSIS  

A theoretical model is introduced to elucidate and analyze the above observed SR-like 

dynamics, wherein it will be unveiled why and how a SR-like dynamics evoked only through a 

noise recycling procedure. 



A. Lag synchronization and more 

To begin with, let’s compare two trajectories of Langevin model perturbed by two special 

noises,  

)()( 11 txUx η+′−=� ,                              (2a) 

)()( 22 τη −+′−= txUx� .                          (2b) 

Being coincident with model (1), )(tη  is specified as Gaussian white noise with 0)( =tη ,  

)(2)()( τδτηη Dtt =− . Figure 4 shows the time history of )(1 tx , )(2 tx  and their error 

)()()( 21 txtxt −−=Δ τ  for different noise intensities. One finds that 0)( =Δ t  holds always, 

and evidently indicates a lag synchronization between )(1 tx  and )(2 tx , which can be proved 

theoretically according to Lyapunov’s theory. Subtract (2b) from (2a) with a time shift to obtain 

the error system of )(tΔ  and linearize it at the origin, it yields, 

)(]1)(3[)( 2
1 ttxt στσ ⋅−−−=� .                        (3) 

For small noise intensity, the over-damped particle spends most of its time near the stable 

equilibriums at 1±=±x , and only occasionally jumps from one to another under moderate 

amount of random kicks, which means 1)(2
1 ≈−τtx for almost all the time, so 

01)(3 2
1 >−−τtx  exists almost always. Therefore, according to synchronization theory lag 

synchronization achieves between )(1 tx  and )(2 tx  in a statistical sense. 
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FIG. 4. Evolutions of )(1 tx (dashed line, blue), )(2 tx (dashdot line, red) and their error )(tΔ  

(solid line, black) for fixed time delay ( 10=τ ) and different noise intensity: 1.0=D 、 5.0 、



0.1 and 0.2 (from top to bottom).  

On the other hand, if a particle, trapped in the same potential, is perturbed by both )(tη  and 

)( τη −t , the position of the particle then can be stated by the following model, 

)()()( 33 τηη −++′−= ttxUx� .                       (2c) 

Figure 5 shows the correlation relationships between )(1 tx  and )(3 tx , )(2 tx  and )(3 tx , 

)(3 tx  and )(3 tx . From these panels it reads immediately that )(1 tx  and )(3 tx  are 

remarkably correlated at τ−=T  and 0=T , )(2 tx  and )(3 tx  are remarkably correlated at 

0=T  and τ=T , so as to )(3 tx  correlates with itself not only at 0=T  but also at τ±=T , 

which implies that )(3 tx  mainly contains two components, and if possible, it might be split into 

an )(tη -induced segment and an )( τη −t -induced segment. Hence, according to the 

relationship between )(1 tx  and )(2 tx , the )( τη −t -induced behavior will repeat the 

)(tη -induced one after τ time shift, for example, if a particle hops from one well to another at 

time t  under )(tη  then the same jump will occur at time τ+t under )( τη −t . 
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FIG. 5. Correlation relationship between )(1 tx  and )(3 tx , )(2 tx  and )(3 tx , )(3 tx  and 

)(3 tx  for variety time delays. Here, ),( ji xxC  stands for the correlation function of )(txi  and 

)(tx j .  

 



B. Two-state model 

According to the preceding analysis, apparently, in model (1) )(2 tη  will tend to assist or 

hinder an )(1 tη -caused switch after τ  time shift: Without loss of generality, the particle is 

supposed to be in the right well at time τ−t . Based on the above discussion, if the particle 

jumped from the right well to the left one at time τ−t  due to the master noise )(1 tη , and is in 

the right well again at time t  (It doesn’t matter whether the particle hops back from the left well 

to the right well again and then repeats the hopping-action ‘right-left-right’ many times in time 

interval ),( tt τ− ), the secondary noise )(2 tη will tend to assist a jump at time t  in the same 

direction, namely, )(2 tη will enhance the possibility (probability) of transition from the right well 

to the left one at time t . And if the particle jumped from the right well to the left one at time 

τ−t  caused by the master noise )(1 tη , and is in the left well at time t , the secondary noise 

)(2 tη will tend to hinder a jump at time t  in the opposite direction, viz, )(2 tη will reduce the 

possibility (probability) of transition from the left to the right well at time t . Similar analysis can 

be carried out for other situations and analogous results will be obtained. 

To make these arguments quantitative, we suggest a theoretical model by neglecting the small 

intrawell fluctuations and approximating model (1) as a two-state model in order to gain insight 

into the resonance dynamics, in which 1±=s  stand for 0>x  and 0<x , respectively. First 

of all, some notations are introduced: mp and sp  denote the switching rates caused separately 

by the master noise and the secondary noise; )(tW∓ denote the total transition rate out of the 

‘ ± ’wells, and )(, tW sm
∓ state the transition rate out of the ‘ ± ’wells induced by the master noise 

and the secondary noise, respectively. For small D  and ε , mp  and sp can be calculated by 

virtue of Kramers’ formula )/exp()()()2( 1 DUxUxUr uK Δ−′′′′= ±−π , wherein 0=ux  is 

the position of the potential barrier. Therefore, one obtains 

)4/1exp()2( 1 Dpm −= −π  and )4/1exp()2( 21 Dps επ −= − .        (4) 

Since the master-noise-induced transition is adjusted, i.e., enhanced or reduced, by the secondary 



noise, the transition probabilities are related to the state of the particle at both times τ−t  and t . 

Therefore, the master equation is modified as 

++=+=−−−−=−= −−−+ )1)(,1)(())()(( txtxPtWtWnn sm ττ��              (5) 

++=−=−−+− +− )1)(,1)(())()(( txtxPtWtW sm ττ  

+−=−=−−+ −+ )1)(,1)(())()(( txtxPtWtW sm ττ  

),1)(,1)(())()(( −=+=−−− −+ txtxPtWtW sm ττ  

where ±n  denote the probabilities that the particle occupies “ 1± ” states at time t , and ),( ••P  

states the joint probability of )( τ−tx  and )(tx . According to probability law, it yields 

)()]()()()()([ tntntWtntWtWnn ssm
+−++−−−+ −−−−−+−=−= ττττ��            (6) 

)()]()()()()([ tntntWtntWtW ssm
−+−+++ −−−−−++ ττττ . 

Therefore,  

)()()()()()( ττττ −−−−−+= −++−−− tntWtntWtWtW ssm ,          (7a) 

)()()()()()( ττττ −−−−−+= +−−+++ tntWtntWtWtW ssm .          (7b) 

And the master equation (5) can be recast formally as 

)()()()( tntWtntWnn −++−−+ +−=−= �� . 

From expression (7a), it reads that the switching rate caused by the master noise ( )(tW m
− ) is 

enhanced by the secondary noise in the same direction, saying )()( ττ −− +− tntW s , and is 

reduced by the secondary noise in the opposite direction, saying )()( ττ −−− −+ tntW s . Thus, 

the total switching rate from state “ 1+ ” to “ 1− ” ( )(tW− ) consists of three parts: )(tW− , 

)()( ττ −− +− tntW s  and )()( ττ −−− −+ tntW s . Analogously, the total switching rate )(tW+  

consists of )(tW m
+ , )()( ττ −− −+ tntW s  and )()( ττ −−− +− tntW s . These results are well 

coincident with the preceding analysis. 

Without loss of generality, we assume 00 =t  and 1)0( +=s , which reads that the particle is 



in the right well at the beginning. Utilizing the normalization condition 1)()( =+ −+ tntn  

together with (4), one obtains 

)()()()()()( 12121 τ−−++−=−= ++−+ tnqqtnqqqtntn �� ,          (8) 

with sm ppq +=1  and sm ppq −=2 , which can be solved precisely. The initial value of 

)(tn+  in ),0[ τ can be solved directly from (8), 

2
1]2exp[

2
1)( +−=+ trtn K ,                             

with )]1(4/1exp[)2( 21 επ +−= − DrK . Then one gets the whole expression of )(tn+ , 

{ }
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])(exp[])exp[())1(()()()(
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+−++−−+=+ ∫ +++ θθθτττ
 

with ),0[ τ∈t  and ",2,1=n . And )(tn− can be obtained directly from )(1)( tntn +− −= .  

Replacing )(tn± in (7), we acquire )]1(4/1exp[)2()( 21 επ +−= −
± DtW  and  

2
]2exp[

2
)( 1212 qq

tr
qq

tW K
+

+−
−

±=+± τ , 

))1(()
22

())1(()
22

()( 12121212 tnnqqqqtnnqqqqtnW −−
−+

+−−
−

±
+

=+ −+± τττ ∓ , 

with ),0[ τ∈t and ",3,2=n . 

The autocorrelation function )(TC  can be calculated from 

1)(2)0()()( −== + TnsTsTC ,                      (9) 

together with its evolution law 

)()()()()(
1212 τ−−++−= TCqqTCqq

dT
TdC

.              (10) 

According to (9), (10) and complementing with )()( TCTC =− , 1)0( =C , we obtain 

)2exp()(
)](2exp[)()2exp()(

)(
121212

12121212

τ
τ

qqqqqq
TqqqqTqqqq

TC
−−++

−−+−+
= , 

θθθτττ dTqqnCqqnCTqqTnC
T

)])(exp[())1(()()(])(exp[)( 1201212 −++−−++−=+ ∫
with ),0[ τ∈T and ",2,1=n . 



The power spectral density )(ωS can be determined through the Fourier transform of )(TC . 

Letting 

)(Im)(Re)exp()()(
0

ωωωω
τ

IiIdTTiTCI +=−= ∫ , 

and using (10), we obtain 

ωωτ
ωωωτω
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with 212 qq=λ . 

The theoretical values of PSD obtained in (11) are plotted in Fig. 6, and the comparison 

between the theoretical value and the numerical one is exhibited in Fig. 7. Good agreement can be 

found between the proposed theory and the simulations.  
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FIG. 6. Mesh of PSD of model (1) obtained theoretically from (11) with 25=τ  and 5.0=ε . 



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

D

PS
D

 

 

Theoretical value
Numerical value

 
FIG. 7. Comparison of PSD obtained numerically from model (1) with theory (11) at resonance 
frequency with 25=τ . 

Based on the above analysis, the physical mechanism of the undergoing SR-like dynamics are: 

For low level of noise strength, the master-noise-induced Kramers’ rate is very small and hence 

the average waiting time KK rT /1=  between two interwell transitions is very large. In this case, 

if half the time delay is much smaller than the average waiting time, viz., 2/τ>>KT , the 

secondary noise does not suppose to help the master-noise-induced hopping between the potential 

wells. Only if half the time delay is comparable with the average waiting time, i.e. KT ~ 2/τ , the 

secondary noise has the opportunity to assist the master-noise-induced hopping action. This kind 

of coincidence between the average waiting time and half the time delay signifies a species of 

statistical synchronization. While statistical synchronization achieves, resonance dynamics occurs. 

But for very large noise level the statistical synchronization would be destroyed again since 

2/τ<<KT . Therefore, the mechanism is the ‘resonance’ between the Kramers’ characteristic 

time and the time delay in noise recycling. As an example, for the parameters of Figs. 2 and 3, the 

maximum is achieved at 25.0≈D . So, the average waiting time 08.12≈KT  which is very 

closed to 50.122/ =τ . 

It is worthy to point out that the current physical mechanism of resonance is intrinsically 

different from that in [29]. Here, the time delay belongs to the noise recycling, physically, which 

means an extra probability current (populations) induced by the secondary noise. While the 

statistical synchronization achieves between the master-noise-caused current and the 

secondary-noise-caused one, resonance dynamics arises. In [29], differently, the time delay 

belongs to the feedback term, which implies a modulation of the barrier height according to the 



potential )(2/4/))(),(( 24 τετ −−−=− txxxxtxtxU , and hence causes two different 

switching rate depending on the sign of )( τ−txx (>0 or <0). While the time delay resonates with 

the Kramers’ rate, resonance dynamics arises. 

V. STOCHASTIC RESONANCE 

As another example, let’s study the dynamics of the Langevin model coupled with noise 

recycling in the presence of weak signal. Similar to the argument stated in [2-4], we assume the 

transition rates (7a) and (7b) are modulated with a frequency Ω  according to the Arrhenius rate 

law. Hence, it yields  

)()()( tetWtW γ∓
±± = ,                           (12) 

where )cos(ˆ)( 1
0 φγ +Ω= − tDAt  with 2)1(ˆ ε+= DD . Plugging (7a) and (7b) into (12), one 

reads 

)()]()()()()([)( tssm etntWtntWtWtW γττττ −
+−−+++ −−−−−+= , 

)()]()()()()([)( tssm etntWtntWtWtW γττττ +
−++−−− −−−−−+= . 

By introducing two notations sm ppq +=1  and sm ppq −=2 , defining 

)()()( tntnt −+ −=σ , then the time evolution of )(tσ  reads 

.)()]()()[()()]()()([ )(
1221

)(
1221

tt etntqqqqetntqqqq
dt
d γγ τστσσ −

−+ −−+++−−++−=

  Now suppose that 10 <<A , and write 1
1

00
ˆ σσσ −+= DA  with 0σ  the solution of (10), 

then in the linear approximation, this reduces to 

)cos()()cos()()()(

)()()()(

210012

112121
1

φφτσσ

τσσσ

+Ω+−+Ω−−+

−−++−=

tqqtttqq

tqqtqq
dt

d
.             (13) 

As is known, )(1 tσ  signifies the periodic component of the response at the frequency Ω , 

which can be solved analytically from (13) by using the ansatz )(
1 )( φσ +Ω= tiAet , after 

neglecting the cross term )cos()()()( 0012 φτσσ +Ω−− tttqq  based on the fact that 

0)(0 →tσ  as ∞→t . Thus the linear response is given by 
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2 ])sin()[()]()cos()[(
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ˆ2
1

Ω+Ω−++−Ω−
+

⋅=
ττ

η
qqqqqq

qq
D

,    (14) 

which coincides with that of [3] for the SR in a two-state model. At a closer inspection of (14), we 

note that the linear response depends nonlinearly on the time delay, showing the important impact 

of noise recycling on the periodic response. The relationship between the linear response and the 

time delay is represented in Fig. 8, from which a noteworthy maximum displays at a certain value 

of time delay, demonstrating a SR structure. We want to point out that the parameters in Fig. 8 are 

particularly specified as the values around which the signal-to-noise ratio shows its maximum. 

Hence, the nonmonotonous dependence of the linear response on the time delay provides one the 

tool to control the SR dynamics by merely modulating the noise recycling procedure. 
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FIG. 8. Linear response of model (1) in the presence of weak signal for 2.00 =A , 1.0=Ω , 

5.0=ε and 3.0=D .  

VI. CONCLUSION 

In conclusion, the current investigation is dedicated to the problem of how noise recycling 

affects the resonance dynamics of a particle trapped in a bistable potential. Because of noise 

recycling, the response process of the model is not Markovian. Therefore, it is quite difficult to 

deal with such problem because of the lack of analytical tools. In this paper, under the hypothesis 

of small noise we suggest a theoretical model by neglecting the small intrawell fluctuations and 

approximating model (1) as a two-state model, based on which we are able to derive the analytical 

formulae for the switching rate, the autocorrelation function, the PSD and the linear response in a 

good agreement with numerical simulations. We demonstrate that, with a proper modulating of 

time delay in noise recycling, the PSD can show several peaks and the amplitude of PSD at 



resonance frequency exhibits a pronounced maximum at a certain noise level, announcing the 

appearance of SR-like response in the absence of weak periodic signal. Furthermore, it is shown 

that, in the presence of weak periodic signal, the linear response also reaches its maximum at a 

certain level of time delay, displaying the signature of SR. According to the current research, it 

reads that one can control, evoke or suppress, resonance dynamics of a bistable system merely via 

reinjecting a recycled noise, and then modulating the time shift or the noise level in a proper way.  
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