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The analytical two- and three-dimensional vortex solitons with arbitrary values of vorticity are
constructed in the cubic defocusing media with spatially inhomogeneous nonlinearity. The values
of the nonlinearity coefficients are zero near the center and increase rapidly toward the periphery.
In addition to the analytical ones, a number of vortex solitons are found numerically. It is shown
that analytical vortex solitons are stable. Also, the stability region of the numerically constructed
vortex solitons are given.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is a ubiq-
uitous equation that has important applications in non-
linear optics [1], Bose-Einstein condensations (BECs) [2],
and fluid dynamics. It gives rise to solitons when the non-
linearity and dispersion/diffraction are balanced. The in-
vestigation of soliton solutions will help us to improve the
signal transmission capacity in nonlinear optical fibers, to
understand the ultracold gas dynamics in BECs, and to
explain the formation and decay of rogue waves in oceans
[3]. Due to the experimental controllability of system pa-
rameters such as the nonlinearity, dispersion, gain, and
external potential, intensive efforts have been devoted to
constructing analytical soliton solutions.

The standard one-dimensional (1D) NLSE supports
analytical bright and dark solitons when the cubic nonlin-
earities are self-focusing and self-defocusing, respectively.
By means of the self-similar transformation, these analyt-
ical solitons can also be found in nonautonomous NLSE
when the magnitudes of system parameters vary with the
propagation variable in delicate ways [4–7]. Unlike the
standard NLSE solitons, the amplitude, width, center-of-
mass, and frequency chirp of the nonautonomous solitons
can be manipulated by demand, offering the opportunity
for light guiding and compression.

Analytical solitons can also be constructed in 1D and
2D NLSEs by the canonical transformations [8–12] when
the nonlinearity varies with the transverse variable [13].
Thus far, it is found that the localized solitons, whose in-
tensities go to zero at the tails, exist only in the presence
of external potential (such as the periodic and harmonic
potentials) when the nonlinearity is self-defocusing. An-
other approach to finding the analytical solitons relies on
the use of the inverse problem [14]. Recently, it is re-
ported that the defocusing spatially inhomogeneous non-
linearity (DSIN) can support analytical localized solitons
in all three dimensions, as long as the DSIN strength in-
creases rapidly enough toward the periphery [15].

Despite the analytical progress, it is still challenging to
find the stable vortex solitons with high values of vortic-

ity S in the 3D NLSE. In the numerical studies, 3D stable
vortex solitons with S = 1 and |S| ≤ 2 have been found
in the conservative NLSE with a competing nonlinearity
[16] and the dissipative NLSE [17], respectively.
Here we construct the analytical vortex solitons with

arbitrary values of integer vorticity in 2D and 3D NLSEs
when the DSIN strength increases rapidly enough from
the center to the periphery. We adopt this kind of DSIN
because it supports 2D stable vortex solitons with high
values of vorticity [15]. Our results will yield the first
example of stable vortex solitons with higher vorticities
in the 3D conservative NLSE with the cubic nonlinearity,

iψξ = −∇2ψ + V ψ + g|ψ|2ψ. (1)

In nonlinear spatial optics, ψ is the amplitude of elec-
tromagnetic field, ξ is the propagation variable, V is the
local refractive index, and the spatially-dependent non-
linearity coefficient g can be achieved by the nonuniform
distribution of nonlinearity-enhancing dopants [18]. In
BECs, ψ is the wave function, ξ stands for the time, V is
the external potential, and g is related to the s-wave scat-
tering length which can be controlled via the Feshbach
resonance [19–21].

II. THE 2D VORTEX SOLITON SOLUTIONS

We first construct the 2D analytical vortex soliton so-
lutions in the absence of external potential. They are
searched in the form of

ψ(r, θ, ξ) = φ(r) exp(iSθ − iµξ), (2)

where r is the radial coordinate, θ is the azimuthal angle,
µ > 0 is the soliton eigenvalue, S (integer) is the vorticity,
and the real function φ(r) describes the amplitude profile
of the vortex soliton which satisfies

µφ = −φrr −
1

r
φr +

S2

r2
φ+ g(r)φ3. (3)

Note that at the vortex core r → 0, if the strength of
DSIN does not diverge, the asymptotic behavior of the
amplitude profile is φ(r) ∼ r|S|.
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In order to construct the analytical vortex solitons, we
introduce the canonical transformation [11]

φ(r) = ρ(r)U [R(r)], R(r) =

∫ r

0

η−1ρ(η)−2dη, (4)

to Eq. (3), and find U [R(r)] satisfies the following ordi-
nary differential equation

EU = −URR + g(r)ρ6(r)r2U3, (5)

where E = ρ3r2
[
ρrr + ρr/r +

(
µ− S2/r2

)
ρ
]
.

Assume that ρ(r) = f(r)/
√
r, one finds that f(r) sat-

isfies the Ermakov-Pinney equation [8]: frr+[µ− (4S2−
1)/4r2]f = Ef−3. To get the analytical solution for f(r),
let E be a constant. Then we have

ρ(r) =
√
αJ2 + 2βJY + γY 2, (6)

where J(S,
√
µr) and Y (S,

√
µr) are the Bessel functions

of the first and second kinds, respectively. The constants
α, γ, and E = 4(αγ − β2)/π2 are positive, ensuring that
ρ(r) is real and ρ(r) 6= 0.
The requirements for U(R) can be analyzed as follows.

At r → 0, we have ρ(r) ∼ r−|S| and R(r) ∼ r2|S|. Since
φ(r) ∼ r|S|, U(R) should vary as R when R → 0. Mean-
while, at r → ∞, we find ρ(r) ∼ (

√
µr)−1/2 and R(r)

increases linearly as r grows. Therefore, U(R→ ∞) → 0
is required. The two asymptotic conditions for U(R) can
be realized when the nonlinearity profile is

g(r) =
Ṽ (R)

ρ6(r)r2U2[R(r)]
, (7)

and U(R) is the first-excited-state solution of the linear

Schrödinger equation with the effective potential Ṽ (R):

EU = −URR + Ṽ (R)U. (8)

The virtue of the above transformation is that one can
utilize the abundant solutions of the linear Schrödinger
equation to construct the analytical vortex soliton solu-

tions. For example, let Ṽ (R) = E2R2/9 be the harmonic
potential, the first-excited-state solution of Eq. (8) is

U [R(r)] = R(r) exp

[
−E

6
R(r)2

]
, (9)

and the corresponding nonlinearity profile is

g(r) =
E2

9ρ6(r)r2
exp

[
E

3
R(r)2

]
. (10)

We can also let Ṽ (R) = 6E tanh2(
√
E/5R)/5, then

the first-excited-state solution of Eq. (8) is

U [R(r)] = tanh

[√
E

5
R(r)

]
sech

[√
E

5
R(r)

]
, (11)
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FIG. 1: Amplitude profiles φ(r) of the 2D analytical vortex
solitons (solid lines) and the corresponding nonlinearity land-
scapes g(r) (dashed lines, normalized by 10). Solutions are
given by Eqs. (4), (6), (9), and (10). Parameters are µ = 10,
α = γ = 1, and β = 0 in (a) and β = 0.5 in (b).

and the corresponding nonlinearity profile is

g(r) =
6E

5ρ6(r)r2 sech2[
√
E/5R(r)]

. (12)

It follows from Eqs. (10) and (12) that the nonlinearity
strength at r → 0 is determined by the vorticity, i.e.,
g(r) ∼ r6|S|−2, while at r → ∞ it is determined by the
soliton eigenvalue and the solution (9) or (11). For the
given solution, the larger the soliton eigenvalue, the faster
the nonlinearity strength approaches infinity. For the
given soliton eigenvalue, the nonlinearity strength given
by Eq. (10) grows faster than that of Eq. (12). In the
intermediate region, g(r) increases monotonically when
α = γ and β = 0, while when α 6= γ or β 6= 0, there could
be some oscillations in the nonlinearity profile. Typical
amplitude profiles of analytical vortex solitons and the
corresponding nonlinearity landscapes g(r) are depicted
in Fig. 1.
To elucidate the stability of the analytical vortex soli-

tons, we substitute a perturbed solution

ψ(r, θ, ξ) =[φ(r) + u(r) exp(iδξ + iMθ)+

v∗(r) exp(−iδ∗ξ − iMθ)] exp(iSθ − iµξ)

with azimuthal perturbation index M into Eq. (1) and
solve the following linearized eigenvalue problem:

δu =

[
d2

dr2
+

1

r

d

dr
− (S +M)2

r2
+ µ− 2gφ2

]
u− gφ2v,

δv = −
[
d2

dr2
+

1

r

d

dr
− (S −M)2

r2
+ µ− 2gφ2

]
v + gφ2u.

We have calculated the eigenvalue δ using the vortex soli-
ton solution (9) and (10) when µ = 10, α = γ = 1, β = 0
(or 0.5), and vorticity S = 1, 2, · · · , 100. The numerical
results show that all the eigenvalues δ are real, which
indicates all the analytical vortex solitons are linearly
stable.
Note that the analytical vortex solutions exist for posi-

tive soliton eigenvalue µ, and one particular nonlinearity
profile g(r) supports only one analytical vortex soliton
in general. However, for a given nonlinearity profile g(r)
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FIG. 2: (a-d) Amplitude profiles of the 2D numerically con-
structed vortex solitons. (e, f) Soliton norm N vs soliton
eigenvalue µ. Solid and dotted lines stand for stable and un-
stable solitons. The nonlinearity g(r) in left and right columns
are depicted in Fig. 1(a) and Fig. 1(b) when S = 1, respec-
tively.

that supports the analytical vortex soliton with particu-
lar values of µ and S, there are other vortex solitons with
different values of µ and S. The later can be constructed
numerically by the relaxation method.

The numerical results are summarized in Fig. 2. The
numerically constructed vortex soliton families are char-
acterized by the soliton norm N = 2π

∫
rφ2dr and the

integer vorticity S. For fixed vorticity S, the increase
of soliton eigenvalue µ results in the increase of the soli-
ton’s amplitude and norm. For fixed soliton eigenvalue,
the increase of vorticity yields the decrease of the soli-
ton’s amplitude and norm; although vortex solitons with
different values of vorticities have different asymptotic
amplitude profiles at r → 0, i.e., φ(r) ∼ rS , they share
the same amplitude profile at r → ∞. This asymptotic
behavior can be explained by the Thomas-Fermi approx-
imation: at r → ∞, terms such as φrr, φr/r, φ/r

2 in Eq.

(3) are not important, so that φ(r) ≈
√
µ/g(r) [22].

The linear stability of the numerically constructed vor-
tex solitons can be analyzed by the same way with that
for the analytical vortex solitons. The numerical results
indicate that all the numerically constructed vortex soli-
tons with S = 1 are stable, but the numerically con-
structed vortex solitons with S ≥ 2 exhibit a pattern:
switching between stable and unstable as µ increases.
The switching pattern has also been observed in [15].
In Fig. 3 we plot the instability growth rate vs the soli-
ton eigenvalue. We also show the perturbation index M
under which the vortex solitons are most likely unstable.
The switching pattern can be clearly seen in Fig .3(c).
However, it is difficult to generalize how the switching
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FIG. 3: Imaginary parts of the eigenvalue δ for vortex solitons
with (a) S = 2, (b) S = 3, and (c) S = 4. The numbers near
the lines are the azimuthal perturbation index M where the
vortex solitons are mostly unstable. The nonlinearity profiles
g(r) for the solid and dashed lines are depicted in Fig. 1(a)
and Fig. 1(b) when S = 1. Vortex solitons with 0 < µ < 50
are all stable.

pattern emerges, since the switching happens irregularly,
that is, the size of the instability region and the intervals
between two continuous instability regions are different.
Notice that the nonlinearity strength goes to infinity

as r increases. In experiments, it would be impossible
to have such rapid nonlinearity variations extending to
large r; instead, the rapid variation would saturate at
some point and g(r) would become constant for r > rs.
In this case, one would expect the leak-away of the soliton
energy. In numerical simulations we use the absorption
boundary condition to mimic the energy-leaking. We find
that when rs is larger than the size of the vortex soliton
(for example, rs = 3 for vortex soliton with S = 1 in
Fig. 1), the leak-away of the soliton energy is negligible.
On the other hand, if rs is too small, the localized vortex
solitons do not exist because of the repulsive nonlinearity
(the amplitude of the vortex soliton is a nonzero constant
when r → ∞).
It should also be noted that, although only the results

when g is given by Eq. (10) is shown, similar conclusions
hold when g is given by Eq. (12).

III. THE 3D VORTEX SOLITON SOLUTIONS

Next we construct the 3D analytical vortex soliton so-
lutions in the presence of external potential in BECs.
Experimentally, harmonic potentials are usually used to
confine the condensates. For pancake-shaped BECs, the
longitudinal trapping frequency ω is much larger than
the transversal one. Hence the transversal harmonic po-
tential is negligible. The 3D analytical vortex soliton
solution is searched in the form of

ψ(r, θ, z, ξ) = φ(r, z) exp(iSθ − iµξ), (13)
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FIG. 4: (a-d) Cross-section shapes of 3D vortex solitons and
nonlinearity landscapes (dashed lines, normalized by 10). (e)
Soliton norm vs soliton eigenvalue µ. The solid and dotted
lines stand for stable and unstable branches, respectively. Pa-
rameters are given in the text.

where r is the radial coordinate, θ is the azimuthal angle,
z is the longitudinal spatial coordinate, ξ is time, and the
amplitude profile φ (real function) satisfies µφ = −φrr −
r−1φr + S2r−2φ− φzz + ω2z2φ+ gφ3.
If the nonlinearity profile is separable in the transversal

and longitudinal directions, i.e.,

g(r, z) = A−2g1(r) exp(ωz
2), (14)

the 3D analytical vortex soliton solution can be given by

φ(r, z) = Aφ1(r) exp
(
−ω
2
z2
)
, (15)

where φ1 obeys (µ−ω)φ1 = −φ1rr−r−1φ1r+S
2r−2φ1+

g1(r)φ
3
1.

Following the above-mentioned process of constructing
the 2D analytical vortex solitons, φ1(r) can be exactly
constructed, then one can find the 3D analytical vortex
solitons. Typical cross-section amplitude profiles of the
3D analytical vortex solitons are shown in Fig. 4(a) and
(b) when S = 1, µ = 110, ω = 100, α = γ = 1, and
β = 0.5. The nonlinearity profile in the radial direction
g1(r) is the same as that in Fig. 1(b) when S = 1, while

that in the longitudinal direction is
√
π/ω exp(ωz2).

In addition to the analytical vortex soliton, the nonlin-
earity landscape used in Fig. 4 supports other vortex soli-
tons with different values of µ and S. They can be found

by substituting ψ(r, θ, z, ξ) = φ̃(r, z, ξ) exp(iSθ) into Eq.
(1) and then solving the following equation numerically

iφ̃ξ = −φ̃rr −
1

r
φ̃r +

S2

r2
φ̃− φ̃zz + ω2z2φ̃+ g|φ̃|2φ̃. (16)

FIG. 5: (Color online) Evolution of the 3D vortex soliton with
S = 2 at different propagation distances (here T = 2π/ω).
The first row shows the isosurface plot of the soliton ampli-
tude at the value of 50, while the second row shows the phase
structures at z = 0 plane. The soliton is initially perturbed
by white noises with the perturbation amplitude at the 1%
level, where the radial and longitudinal amplitude profiles of
the numerically constructed vortex soliton are shown in Fig.
3(c) and (d).

Given the value of soliton norm N = 2π
∫
rdr

∫
φ̃2dz,

the amplitude profile φ̃ can be solved by means of the
imaginary-time method [23], and the corresponding soli-
ton eigenvalue can be calculated by [24]

µ =
2π

N

∫
rdr

∫ [
φ̃2r + φ̃2z +

(
S2

r2
+ ω2z2

)
φ̃2 + gφ̃4

]
dz.

The linear stability of the 3D vortex solitons is checked
by inserting the perturbed solution

ψ(r, θ, z, ξ) =[φ̃(r, z) + u(r, z) exp(iδξ + iMθ)+

v∗(r, z) exp(−iδ∗ξ − iMθ)] exp(iSθ − iµξ)

into Eq. (1) and solving the linearized eigenvalue prob-
lem. Since the 3D analytical vortex solitons use the 2D
analytical vortex solitons as ’seeds’, behavior of the 3D
vortex solitons is similar as the 2D vortex solitons, except
that the numerically constructed 3D vortex solitons with
S = 1 are not all stable, see Fig. 4(e).
The stability analysis is also verified by direct simula-

tions of Eq. (1). Typical unstable dynamics are shown in
Fig. 5, where vortex soliton with S = 2 gradually decays
into four vortex solitons with S = 1. For vortex solitons
that were predicted to be linearly stable, they are indeed
stable even when they are perturbed initially by white
noises with the perturbation amplitude at the 20% level.

IV. CONCLUSIONS

In summary, analytical vortex solitons with arbitrary
integer values of vorticity, including the 2D vortex soli-
tons in the absence of external potential and 3D vortex
solitons in the presence of harmonic potential, have been
constructed in the NLSEs with the defocusing spatially
inhomogeneous nonlinearity whose strength increases
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rapidly toward the periphery. It has been found that
the analytical 2D and 3D vortex solitons are all stable,
and the numerically constructed ones with higher values
of vorticity could also be stable. Note that the vortex
solitons are constructed in the non-rotating frame.
However, the combination of the methods in this paper
and that in Ref. [25] could produce analytical vortex
soliton solutions in the rotating frame. We believe the
use of defocusing spatially inhomogeneous nonlinearity
whose strength increases rapidly toward the periphery

could yield stable vortex solitons with higher vorticity
in the rotating frame. Also, this kind of defocusing
nonlinearity may support more stable rotating azimuthal
vortex clusters than that in the conventional NLSE with
constant defocusing nonlinearity and harmonic potential
[26].
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