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This article presents a new formulation of the solution for fully nonlinear and unsteady planar
flow of an electron beam in a diode. Using characteristic variables - i.e., variables that follow particle
paths - the solution is expressed through an exact analytic, but implicit, formula for any choice of
incoming velocity v0, electric field E0 and current J0. For steady solutions, this approach clarifies
the origin of the maximal current Jmax, derived by Child and Langmuir for v0 = 0 and by Jaffe for
v0 > 0. The implicit formulation is used to find (1) unsteady solutions having constant incoming
flux J0 > Jmax, which leads to formation of a virtual cathode, and (2) time-periodic solutions whose
average flux exceeds the adiabatic average of Jmax.

I. INTRODUCTION

Space charge limiting (SCL) current is a fundamental
constraint on the flow of an electron beam in a diode.
For a fixed potential difference φ1 and incoming velocity
v0, the maximal sustainable steady-state current Jmax
was derived by Child [1] and Langmuir [2] for v0 = 0
and by Jaffé [3] for v0 > 0. The physical origin of the
SCL effect is clear: the electromotive force from elec-
trons in the beam limits the current in the diode. If
the incoming current is maintained above this maximum,
then the electron density builds up inside the diode and
a virtual cathode develops. The basic physics and tech-
nological applications of SCL flows and virtual cathodes
are well reviewed in [4, 5]. Extensions to more general
physics and geometries have been carried out, mostly
using perturbation methods or simulations, e.g., [6] for
multi-dimensional geometries.

The mathematical derivation of the maximal cur-
rent in [1–3] is based on equations for the steady, one-
dimensional electron flow in a diode. The authors derive
a formula relating the current and the potential jump,
but the analysis for v0 > 0 in [3] is complicated. Simpli-
fied derivations for the maximal steady current, as well as
stability analyses for electron–ion diode flows, were per-
formed [7–11] through a Lagrangian formulation of the
diode equations in terms of particle paths. A Lagrangian
formulation was also used to show that formation of a
virtual cathode is related to cusp formation in the elec-
tron trajectories [12–14], and to describe multivalued so-
lutions [15].

This article presents a new formulation for the com-
plete solution of the one-dimensional diode equations.
The solution is based on a Lagrangian formulation (i.e.,
particle paths or characteristics) so that it is an exten-
sion of [7–11]. Our main result (not found in any of the
previous references) is a new implicit solution that ap-
plies to both steady and unsteady flows and to the fully
nonlinear equations with no approximations.

This implicit solution is analogous to the implicit so-
lution for the inviscid Burgers equation (e.g., see [16]),

since velocity v, density ρ, electric field ψ, and spatial
position x are found through simple, explicit formulas in
terms of characteristic variables s and τ . From this im-
plicit formulation, it is staightforward to derive the max-
imal current that was first found by [1–3]. In addition,
the implicit solution formulation enables construction of
unsteady solutions that exhibit important properties, in-
cluding singularity formation corresponding to cusp for-
mation in the characteristics and formation of a virtual
cathode, and time-periodic solutions whose average flux
exceeds the adiabatic average of Jmax.
The one-dimensional continuum equations for the flux

of electrons in a diode are

∂tρ + ∂x(ρv) = 0 (1)

∂tv + v∂xv = ∂xφ (2)

∂2xφ = ρ (3)

in which x, t, v, φ, ρ are the scaled position, time, velocity,
potential and density given by

(x, t, v, φ, ρ) = (x′/L, t′/T, v′/(L/T ), φ′/Φ, ρ′/R)

Φ = (me/qe)(L/T )
2 R = (ε0/qe)(Φ/L

2).

The primed variables are unscaled, L, T are length and
time scales, me is the electron mass, qe the fundamental
charge (positive), and ε0 is vacuum permittivity. The
boundary conditions at the cathode x0 = 0 and anode
x1 = d are

φ = 0
v = v0
ρ = ρ0







on x = 0 (4)

φ = φ1 on x = d.

so that φ1 is the potential difference across the channel.

II. CHARACTERISTIC FORMULATION

Consider characteristic (particle path) variables in
which x(s, τ) is the position at time t = s + τ for a
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particle that entered the domain at time τ . The defining
equations for s and τ are

∂sx = v (5)

x(0, τ) = 0 (6)

t = s+ τ.

Derivatives in (x, t) and in (s, τ) are related by

∂s = ∂t + v∂x (7)

∂τ = ∂t + (∂τx)∂x.

Denote (scaled) negative electric field by ψ = ∂xφ
(since the electric field is E = −∂xφ). Since ∂xψ = ρ,
then ψ(x, t) is the total mass between 0 and x, plus some
boundary terms, which implies

∂tψ + v∂xψ = f ′′′′(t) (8)

for some function f ′′′′ (the four derivatives are for nota-
tional convenience below). Combine eq. (8) with eq. (2)
and eq. (5), using eq. (7), to get the following system

∂sψ = f ′′′′(s+ τ)

∂sv = ψ (9)

∂sx = v.

The general solution for this system, using eq. (6), is

ψ(s, τ) = θ(τ) + f ′′′(s+ τ)

v(s, τ) = w(τ) + θ(τ)s + f ′′(s+ τ) (10)

x(s, τ) = w(τ)s +
1

2
θ(τ)s2 + f ′(s+ τ) − f ′(τ).

For notational convenience below, we also set

f ′′′(s+ τ) = g′′′(s+ τ) + (s+ τ)a0

θ(τ) = γ(τ)− a0τ + γ0 (11)

in which a0 and γ0 are constants. The system (10) pro-
vides a new general method for solving the unsteady
diode eqs. (1)-(3).

In eq. (10) f , θ and w are related to boundary data by

f ′′′′ = ∂τψ0 + J0

θ = ψ0 − f ′′′

w = v0 − f ′.

in which J0 = ρ0v0 and ψ0 = ψ(x = 0) are incoming
flux and negative electric field. Specification of boundary
data on x = d requires identification of the crossing time
s = T (τ) at which characteristics (particle paths) hit
x = d; i.e.

x(T (τ), τ) = d. (12)

The density, flux and potential satisfy (using ∂x = (v−
∂τx)

−1(∂s − ∂τ ) and ∂τx = 0 at x = 0)

ρ = (v − ∂τx)
−1(∂s − ∂τ )ψ (13)

J = v(v − ∂τx)
−1(∂s − ∂τ )ψ

J0 = (∂s − ∂τ )ψ(0, τ)

(∂s − ∂τ )φ = (v − ∂τx)ψ. (14)

Eq. (14) can be integrated (using φ(0, τ) = 0) to get

φ(s, τ) =

∫ s

0

(v − ∂τx)ψ(s
′, τ + s− s′)ds′. (15)

III. STEADY SOLUTIONS

Next consider steady solutions, which cannot depend
on τ , so that f ′′′′ = J0 is a constant, and the resulting
solutions of system (9) , using the variables of (11) with
γ0 = ψ0, a0 = J0 and γ = g = 0, are

ψ(s) = ψ0 + J0s

v(s) = v0 + ψ0s+ J0s
2/2

x(s) = v0s+ ψ0s
2/2 + J0s

3/6 (16)

φ(s) =
1

2
(v(s)2 − v20).

In particular, the value φ1 of the potential at x = d is

φ1 =
1

2
(v(T )2−v20) =

1

2
(v0+ψ0T+

1

2
J0T

2)2−
1

2
v20 . (17)

This is equivalent to formulas derived in [1–3, 7, 11].
They showed that there is maximal value Jmax of the
current for given values of the potential difference φ1, or
equivalently that there is a minimal value φmin of the
potential difference φ1 for given values of the incoming
current J0.
The characteristic solution eq. (16) shows that there

is a solution of the diode equations for any choice of
the mathematically natural boundary data v0, J0 and
ψ0. The reason for the minimal potential jump φmin (or
equivalently the maximal current Jmax) is that φ1 has a
minimum value as a function of ψ0, for fixed values of
velocity v0 and current J0.
To find this minimum value, first calculate ∂ψ0

T and
∂ψ0

φ1 by differentiating the equation v0T + ψ0T
2/2 +

J0T
3/6 = d and eq. (17) with respect to ψ0 to get

∂ψ0
T = −

1

2
v(T )−1T 2

∂ψ0
φ1 = T (v0 +

1

2
ψ0T ).

The minimal value of φ1 occurs when ∂ψ0
φ1 = 0 which

implies

ψ0 = −2v0T
−1

d = J0T
3/6.
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At this value of T , the potential difference φ1 = φmin
and current J0 = Jmax are

φmin = −
1

2
v0(36d

2J0)
1/3 +

1

8
(36d2J0)

2/3

Jmax =
2

9
d−2

(

v0 +
√

v20 + 2φ1

)3

. (18)

in which Jmax is Child-Langmuir space-charge limited
current for a 1D, planar diode (as a function of the in-
coming velocity v0 and potential jump φ1). This expres-
sion was derived by Jaffe [3] using a nonzero value of
v0 to avoid an infinite electron density at the minimum
of the potential as found in simpler derivations of Child
and Langmuir [1, 2] which used v0 = 0. Furthermore,
φmin is the corresponding minimum value of the poten-
tial jump φ1 for given values of the incoming velocity v0
and the (incoming) current J0. Note the φmin is just
the inverse function for Jmax as a function of φ1; i.e.,
Jmax(v0, φmin(v0, J0)) = J0.

Finally, under the assumptions v0 > 0 and φ1 > 0,
we show that −

√
2v0J0 < ψ0 is the allowable parameter

set for steady solutions. Allowable solutions are those
for which the velocity is always positive (i.e., v(s) > 0
for 0 < s < T ) since otherwise the particle paths are
crossing and the model breaks down.

To show this, note v is quadratic in s, with minimum
at s = s∗ = −ψ0/J0 at which v(s∗) = v0 − 1

2J
−1
0 ψ2

0 . The
assumption that φ1 > 0 implies that v(T ) > v0, which is
equivalent to −J0T/2 < ψ0. If ψ > 0, then s∗ < 0 and
v0 = v(0) > 0 implies that v(s) > 0 for 0 ≤ s ≤ T . If
−J0T/2 < ψ0 < 0, then 0 < s∗ < T so that v(s) > 0
for all 0 < s < T if and only if v(s∗) > 0, which is
true if and only if ψ0 > −

√
2v0J0. It follows that the

allowable set of values of ψ0 is −
√
2v0J0 < ψ0. These

results are consistent with, but more easily stated than
those of [3, 11].

IV. SOLUTIONS WITH CONSTANT INCOMING

VELOCITY AND FLUX

A. Simplified formulas for the implicit solution

Consider unsteady solutions having constant incoming
velocity v0 and flux J0. The implicit solution, using the
variables of (11) with a0 = J0 and γ = 0, then has the
form

ψ(s, τ) = γ0 + J0s+ g′′′(s+ τ)

v(s, τ) = v0 + γ0s+ J0
1

2
s2 + g′′(s+ τ) − g′′(τ)

x(s, τ) = v0s+
1

2
γ0s

2 + J0
1

6
s3 (19)

+g′(s+ τ)− g′(τ) − g′′(τ)s.

The resulting potential φ is

φ(s, τ) = (γ0 + g′′′(s+ τ))x(s, τ) + p3(s)− dγ0

+2J0(−g(τ) + g(τ + s)− sg′(τ) −
1

2
s2g′′(τ))

in which p3 is defined by eq. (21). At s = T (τ), the
equations for φ1(τ) = φ(T, τ) and T (τ) become

φ1(τ) = dg′′′+ + p3(T ) + 2J0(−g + g+ − Tg′ −
1

2
T 2g′′)

d = p1(T ) + g′+ − g′ − g′′T (20)

in which

p1(T ) = v0T + γ0
1

2
T 2 + J0

1

6
T 3

p3(T ) = dγ0 + J0(v0
1

2
T 2 + γ0

1

3
T 3 + J0

1

8
T 4) (21)

g = g(τ)

g+ = g(τ + T ).

B. Stability Analysis for Steady Solutions

As described in Section III, the steady state has γ0 =
ψ0, g = 0 and φ1 constant. It follows that the lineariza-
tion of eq. (20) about a steady state solution is

dg′′′1+ + 2J0(g1+ − g1 − T0g
′

1 −
1

2
T 2
0 g

′′

1 ) + p′3(T0)T1 = 0

(p′1(T0)T1 − g′′1T0 + g′1+ − g′1 = 0 (22)

in which T1 and g1 are the perturbations around the
steady state values T0 and g0 = 0, and g′1+(τ) = g′1(τ +
T0). Solve for T1 from the second equation in eq. (22) and
substitute it into the first equation, using the definitions
of p1 and p3 from eq. (21), to obtain

0 = dg′′′1+ + 2J0(g1+ − g1 −
1

2
T0g

′

1 −
1

2
T0g

′

1+). (23)

Now look for a mode of the form g1 = ĝ1e
λτ/T0 . The

resulting dispersion curve is given by

1− d̃ = z(λ) (24)

in which

z(λ) = 12λ−3(1 −
1

2
λ− e−λ(1 +

1

2
λ)) + 1

d =
1

6
J0T

3
0 d̃. (25)

The result eq. (24) is equivalent to the dispersion relation
found by Lomax [17] and by Kolinsky and Schamel [11]
using a Lagrangian approach, which differs from the im-
plicit solution approach used here. As found numerically
by Sun and Rosin [18], eq. (24) has exactly one solution λ
for every 0 < d̃ < 1 and it is positive (i.e., nonoscillatory,
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unstable mode). This corresponds to the linear instabil-
ity of, what is known in the literature as, the “C-overlap
flow”. For d̃ > 1 all solutions have Re(λ) < 0. In the lim-
iting case d̃ = 0, there are a discrete set of pure imaginary
solution λ = iκ. Although these have no direct physical
meaning for the linear problem, they could be meaning-
ful for nonlinear solutions. In summary, the steady state
solution for the Child-Langmuir system is stable if and
only d̃ > 1 which is equivalent to the condition

ψ0 > −2v0/T0 (26)

found by [3, 11].

C. Solutions with Cusp Formation

For a given function φ1, we solved the system eq. (20)
for g(τ) and T (τ) as a delay-differential equation, using
the matlab routine ddesd, after some transformation to
convert it into standard form for which the delays are
backwards. This amounts to solving for incoming electric
field ψ for given values of the potential difference φ1.
We present numerical results for a solution that starts

in the steady state F̄ with (v̄0, J̄0, φ̄1) = (0.5, 1, 1) on a
system with thickness d = 4/3 (and with ψ̄0 = −0.5), for
t < 0. This steady state is critical in that the potential
difference is at its minimum (i.e., φ1 = φmin) and the
flux is at its maximum (i.e., J0 = Jmax). The potential
φ1 varied linearly over the time interval 0 < t < 2 up
to the value φ̃1 = φ̄1 − 0.2, and then held constant at
this value. Since this decreases the value of the potential
jump φ1, the solution is not steady.
The resulting density ρ is presented in Figure 1, which

shows development of a singularity. Nevertheless, the
function f ′′′ remains smooth and bounded, so that im-
plicit solution formulation remains valid up to the time of
singularity formation. Characteristics are shown in Fig-
ure 2, which shows formation of a caustic. Note that the
velocity becomes negative before the cusp singularity.

V. PERIODIC SOLUTIONS THAT EXCEED THE

CHILD-LANGMUIR LIMIT ON AVERAGE

As a second example, consider unsteady solutions hav-
ing constant incoming velocity v0 but periodic flux J0(τ)
and periodic incoming electric field ψ0(τ). The implicit
form of the solution eq. (9), using the variables in (11),
is given by

ψ(s, τ) = γ0 + γ(τ) + a0s+ g′′′(s+ τ)

v(s, τ) = v0 + γ0s+ γ(τ)s+ a0
1

2
s2 + g′′(s+ τ)− g′′(τ)

x(s, τ) = v0s+
1

2
γ0s

2 +
1

2
γ(τ)s2 + a0

1

6
s3 (27)

+g′(s+ τ) − g′(τ)− g′′(τ)s

in which γ and g are prescribed periodic functions.
We set

g(τ) = g1 sin(kτ)

γ(τ) = γ1 sin(kτ + τ1)

with period P = 2π/k. The incoming flux is

J0(τ) = a0 − γ′(τ).

For given values of the constants v0, γ0, a0, g1, k, γ1
and τ1, the solution is constructed numerically: First,
the crossing time T (τ) is found by solving eq. (12) and
the potential φ1 = φ(T (τ), τ) is found by numerical com-
putation of the integral eq. (15); i.e.,

φ1(τ) =

∫ T (τ)

0

(v − ∂τx)ψ(s
′, τ + T (τ)− s′)ds′

for a discrete set of values of τ . Second, the mean average
incoming current J̄0, the adiabatic average of the maxi-
mal current J̄max and their difference Jdiff are defined
as

J̄0 = P−1

∫ P

0

J0(τ)dτ = a0

J̄max = P−1

∫ P

0

Jmax(τ)(1 + T ′(τ))dτ

Jdiff = J̄0 − J̄max.

in which Jmax(τ) is defined by eq. (18) using φ1 = φ1(τ).
Note that J̄0 is averaged over s = 0 (i.e., x = 0) where
dt = dτ and J̄max is averaged over s = T (τ) (i.e., x = d)
where dt = (1 + T ′(τ))dτ . Note that for a periodic flow,
the average current is independent of the spatial position
at which the average is performed. On the other hand,
J0 is the incoming current that is specified at x = 0 and
φ1 (the variable in Jmax) is the potential jump, which we
think of as defined at x = d.
The adiabatic average is the pseudo steady-state aver-

age that occurs in the asymptotic regime where P ≫ T ,
so that average flux J̄max can be achieved (at least
in principle) by slowly varying the boundary condi-
tions. Moreover, Jmax is a convex function, so that
Jmax(v̄0, φ̄1) < J̄max, in which v̄0 and φ̄1 are the mean
averages of v0 and φ1. These are the reasons that we
compare J̄0 to J̄max
Solutions with Jdiff > 0 (i.e., that exceed the Child-

Langmuir limit on average) were found by Monte Carlo
search over the values of the parameters k, γ1, τ1.
Results are shown below for (v0, a0, γ0, g1, k, γ1, τ1) =
(0.5, 1,−0.5, 0.1, 1.949, 0.368, 2.268) on a system with
thickness d = 4/3. In unscaled variables, the ratio of the
potential energy difference across the domain (i.e., qeφ

′

1)
to the kinetic energy of incoming particles (12mev

′2
0 ) is

approximately 6.5 corresponding, for example, to 100eV
electrons entering into a 0.65kV potential jump. The
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density ρ and characteristics are presented in Figures
3 and 4. The resulting average values are J̄0 = 1 and
J̄max = 0.8503, so that Jdiff = 0.1497 and the average
incoming current J̄0 exceeds the adiabatic average of the
maximal current J̄max by about 17%.

Recent work [19] presents evidence that the average
flux cannot exceed Jmax, under additional constraints
that v0 = 0 and that φ1 is constant. However, there are
experimental and numerical results showing that short,
and even single electron, current pulses can exceed the
Child-Langmuir Limit, and periodic oscillations in the
electron density at the cathode is a signature of a large
potential difference across the domain [20–23]. Both ef-
fects may be related to the results found here.

VI. CONCLUSIONS

The unsteady solutions constructed above suggest that
the implicit solution formulation may be useful for ex-
ploring additional properties of the diode equations, such
as solutions that maximize the electric field strength and
control methods to prevent formation of virtual cathodes.
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FIG. 1: The density ρ for steady boundary data for which
J0 > Jmax. Values of ρ are presented at 11 times starting
at t = 0 and ending at t = 4 with intervals dt = 0.4. Near
x = 0.2 value of ρ is becoming singular as t increases.

FIG. 2: Characteristics (i.e., particle paths) for steady bound-
ary data for which J0 > Jmax. The solution breaks down
when there is a cusp in the characteristics.

FIG. 3: The density ρ at various times for periodic boundary
data for which J̄0 > J̄max. Values of ρ are presented at 21
times starting at t = 0 (bold curve) and at intervals of dt =
0.161. The highest value of ρ occurs at approximately t = 0.8,
the time of bunching of characteristics in Figure 4.

FIG. 4: Characteristics (i.e., particle paths) for periodic
boundary data for which J̄0 > J̄max. Note that a cusp nearly
forms in the characteristics.
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