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We propose that the rheological properties of background fluid play an important role in the inter-
action of microorganisms with the flow field. The viscoelastic-induced migration of microorganisms
in a vortical flow leads to the emergence of a limit cycle. The shape and formation rate of patterns
depend on motility, the vorticity strength, and rheological properties of the background fluid. Given
the inherent viscoelasticity of exopolysaccharides secreted by microorganisms, our results can sug-
gest new mechanisms leading to the vital behavior of microorganisms such as bacterial aggregation

and biofilm formation.

INTRODUCTION

Bacterial aggregation has several implications; it can
lead to pathogen colonization and development of dis-
eases and epidemics [1] and formation of biofilms [2]. It
also affects ecological processes in aquatic environments
such as development of patches of dissolved organic mat-
ter [3], nutrient turnover [4], and distribution of biomass
in the ocean [5]. In marine environments, high concentra-
tions of bacteria are present inside transparent exopoly-
mer particles (TEP) [6], referred to as oceanic gel [7].
TEP presence is essential for the formation of diatom
aggregates, the so-called “marine snow particles,” that
contribute to fluxes of carbon into the deep ocean [8]. In
addition, TEP plays an important role in the biofilm ini-
tiation and fouling during membrane filtration processes
(e.g. nanofilteration or reverse osmosis) [9]. Despite
these widespread implications of the viscoelasticity of the
microorganisms’ habitats, their underlying hydrodynam-
ics on the aggregation of bacteria and microorganisms
are poorly understood at present.

Recent small-amplitude results of Taylor’s infinite
swimming sheet [10] suggest that viscoelasticity hinders
locomotion [11]. On the other hand, an infinite swim-
ming sheet in a Brinkmann fluid and two fluid gels shows
increased swimming velocities [12, 13]. Both swimming
velocity and mechanical efficiency are increased with vis-
coelasticity for a free finite sheet swimmer with large
tail undulations. The peak corresponds to the relaxation
time of the fluid matching the stroke frequency of the
swimmer and is associated with regions of highly stressed
fluid near the undulating tail [14]. In the case of a spheri-
cal squirmer in a complex fluid, the swimming velocity is
found to be smaller than that in a Newtonian fluid, but
the swimming efficiency increases with the liquid relax-
ation time [15]. Although propulsion of microorganisms
in complex fluids has recently gained significant interest,
other than the recent work on stability of suspension of
microorganisms in a viscoelastic fluid [16], current studies
have only considered the role of background fluid rheol-

ogy on the propulsion of a single organism in stagnant
flows (e.g. [11-13]). Therefore, more studies are required
to understand the effect of non-Newtonian fluid proper-
ties on the interaction of microorganisms with the back-
ground flow. In this letter, we investigate the role of
viscoelastic-induced migration of microorganisms in the
presence of a vortical flow.

Recent experiments show that the presence of bacteria-
produced extracellular polymeric substances (EPS) made
of polysaccharides and proteins lead to aggregation of
bacteria in curved microchannels under laminar flow
regime and subsequently the formation of filamentous
biofilm streamers [17]. Biofilm barriers are also devel-
oped in porous media to reduce the porosity, permeabil-
ity, and mass transport in deep porous geological sites
by several orders of magnitude and prevent leakage of
CO4 [18]. Inherently, vortical structures and secondary
flows are present in porous media despite inertialess flows
[19]. Control of the growth of biofilm in porous media
and diagnostic microfluidic devices can be achieved with
the knowledge of the background vortical flow and its
effects on bacterial aggregation. We demonstrate that
viscoelasticity of the background fluid in the presence of
a vortical flow leads to the emergence of a limit cycle for
swimming microorganisms that causes their aggregation.
Aggregation patterns can be formed by various mecha-
nisms such as gyrotaxis [5], density-dependent motility
[20], and beating synchronization due to hydrodynamic
interaction between microorganisms [21]. Here, we report
a novel mechanism for microorganisms’ pattern forma-
tion mediated by viscoelasticity of the background fluid.

MODEL

In order to quantify motion of microorganisms in the
presence of flow, we proceed with a mathematical model
to describe spatiotemporal evolution of the orientation



and trajectory of each microorganism [22]
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where each microorganism is modeled as a prolate
spheroid of aspect ratio 7, swimming with a constant ve-
locity, Vs, along direction p. In these equations, ¢ is time,
w the background vorticity, u the background velocity
field, x,, the particle position vector, E = (Vu+Vu?)/2
the rate of strain tensor, and I is the identity tensor. The
orientation of elongated particles is affected by shear.
Elongated spheroids undergo periodic rotation depend-
ing on their aspect ratio, called Jeffery orbit, [23] which
is described by Eq. (1). The above equations have been
widely used to model self-propulsion of particles and phy-
toplankton (e.g. [5, 22, 24]). Microorganisms swimming
in extracellular polymeric substances are subjected to
lateral migration across streamlines due to viscoelastic-
ity of EPS which is not captured in Eqgs. (1) and (2).
Lateral migration in non-Newtonian fluids occurs due to
the normal stress coefficients. These nonlinear elastic
properties of complex fluids can lead to flow phenomena
in contrast with their counterpart in Newtonian fluids.
Rod climbing effects [25], elastic instabilities in inertia-
less flows [26], and microstructure formation in concen-
trated suspensions of particles of polymeric liquids [27—
29] are examples where normal stress difference can sig-
nificantly affect the flow. For a simple shear flow u, = 7y,
first and second normal stress differences are defined as
N1y = 0pz — Oyy = 1/}1':)/2 and Ny = Oyy — Ozz = 1/}2':)/27
where 4 is the magnitude of shear rate and 1,19 are
the first and second normal stress coefficients which are
zero for Newtonian fluids. For polymeric liquids, the first
normal stress coefficient is positive but the second nor-
mal stress coefficient is negative. The lateral cross stream
migration velocity can be described as a function of first
and second normal stress coefficients. The second-order
fluid is perhaps the simplest model to use for explicit
analysis of normal and extensional stresses and has been
widely used for analysis of particle motion in viscoelastic
fluids [30, 31]. The stress tensor for a second-order fluid
can be written as:
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where g is zero shear viscosity; A; = Vu+Vu? is twice
the strain rate tensor and
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The undisturbed flow field can be locally expanded
around location, x,,, in a Taylor series as

Ay = +(u-V)A; + A Vu+ Vu'A. (4)

u(x) = a(xp) + E(xp) - (x —xp)
+ x(xp) 1 (x —xp)(x — %) + h.0.L. (5)

Here, we can assume that the presence of microorganisms
does not modify the background flow field since the size
of the microorganisms (O(1-10)um) is much smaller than
the length scale corresponding to the vortical structures
in the background flow field. In addition, velocity fluctu-
ations produced by microorganisms’ collective behavior
is on the order of O(10-100 um/s) and is much smaller
than the background velocity field. Chan and Leal [32]
described viscoelasticity-induced lateral migration veloc-
ity, Vg, of a sphere of radius «a in a second-order fluid of
general quadratic flow described by Eq. (5) as
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where ; = —2(1+2/¢1)"! and in component notation
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where € is the permutation tensor also known as the Levi-
Civita tensor. The second normal stress coefficient 1o
is usually much smaller than 7 and we neglect it in
our analysis. The migration velocity of an ellipsoid in a
simple shear flow of a second-order fluid is the same as for
a sphere [33]. However, detailed numerical simulation of
the nonlinear equations is needed to calculate the lateral
viscoelastic-induced migration velocity of an ellipsoid in
an inhomogeneous background flow (e.g. quadratic flow).

Next, we justify the use of Eq. (1) for non-Newtonian
fluids. A transversely isotropic particle in a simple shear
flow of a Newtonian fluid rotates indefinitely on one of
an infinite, one-parameter family of Jeffery orbits [30].
There is no preferred orbit due to the “indeterminacy”
of the Stokes’ flow solution. Non-Newtonian behavior of
EPS, however, breaks the symmetry [30]. Non-spherical
axisymmetric particles in viscoelastic fluids show steady
drift to a preferred orbit that depends on the particle as-
pect ratio. Slender prolate particles drift to the orbit in
which the axis of rotation is parallel to the undisturbed
vorticity vector [30, 33]. The rate of drift, however, de-
pends on the magnitude of the rheological parameter,
(1 +12)F(1+2€1) /10, as well as the detailed geometry of
the particles. For spherical particles, the rate of rotation
of particles in a non-Newtonian fluid remains the same as
the one in a Newtonian fluid (3w x p) independent of the
value of the second normal stress coefficient. Thus, the
rate of orbit drift is nonzero for elongated ellipsoids only
in a fluid that exhibits a nonzero second normal stress,
which is usually small. It should be noted that the or-
bit drift is different from viscoelastic-induced migration
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FIG. 1: (Color online) Viscosity and first normal stress
coeflicient are calculated for EPS of Pseudomonas
aeruginosa biofilm using Cox-Merz [36] and Laun’s

[37, 38] rules for the data provided by Wloka et al. [34]

of particles across streamlines which is described by Egs.
(6)-(8) and occurs for both spherical and elongated ob-
jects in any viscoelastic fluids. In reality microorganisms
may not be transversely isotropic. In that case, Eq. (1)
should be modified to address the role of anisotropy of
the microorganism on the Jeffrey orbit. However, de-
tailed numerical calculation of the nonlinear equations
is needed to explore the effect of viscoelasticity of the
background fluid on the orbit drift of non-transversely
isotropic particles, which is outside the scope of this pa-
per.

Based on the discussion above, orientation and trajec-
tory of each microorganism in the extracellular matrix
can be written in dimensionless form as

dp 1. -1 -

e E-[I- 9
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dx, ~

—=op+ () + Ve, (10)

where ~ refers to the dimensionless variables. Here,
length and vorticity are scaled by L and wy, the represen-
tative length scale and vorticity scale of the background
flow field, respectively. ¢ is the dimensionless swimming
velocity, ¢ = Vi /Lwy.

RESULTS AND DISCUSSION

In order to examine the role of rheological proper-
ties of the background fluid in a vortical flow, we con-
sider a steady incompressible laminar flow field of a

Taylor-Green vortex (TGV). The TGV flow, which con-
sists of an array of counterrotating vortices, is given as
u = wo[— cosmasinmz/2,0,sinmaz cosmz/2]. Here, wg
is the maximum vorticity and L is taken to be L = 1/m.
Using TGV as the background velocity field, the migra-
tion velocity in dimensionless form can be written as

cos I sin z
Vi = —0.194a% Wi sin  sin 2 0
Sin & cos 2

where Wi = lwy is the Weissenberg number and A =
11/2n0 the relaxation time of the liquid. Wloka et al.
[34] measured rheological properties of extracellular poly-
meric substances for Pseudomonas aeruginosa biofilm.
They reported concentration of dissolved polymer chains
as 1.12 g/1 with average molecular weight of 2,370,000
g/mol and measured relaxation time of 17 ms. The vol-
ume fraction of bacteria within the biofilm is less than
0.2, and elasticity of the biofilm is essentially determined
by the rheological properties of EPS (shown in Fig. 1)
[35]. TEP assembles to form gels sparsely distributed
in the bulk of the ocean but they can be locally found
in higher concentrations (e.g. in diatoms blooms, or at
the entrance of filtration membranes where they lead to
biofilm initiation [9]). The use of a second-order fluid
is the first step toward understanding the interaction of
microorganisms and flow field in background fluids that
obey a more complicated constitutive relation. In a sec-
ond order fluid, the viscosity and normal stress coeffi-
cients are constant, whereas viscosity and normal stress
coefficients are shear thinning for EPS of Pseudomonas
aeruginosa biofilm as shown in Fig. (1). The basic
mechanism explained in this paper is due to the pres-
ence of the normal stress difference which is also present
in real polymeric fluids and extracellular polymeric sub-
stances. However, in order to quantitatively predict
the rate of pattern formation for shear-thinning fluids,
one needs to use other constitutive equations such as
Giesekus or FENE-P models where fully nonlinear com-
putational fluid dynamics calculations will be necessary.
The results presented in this manuscript are quantita-
tively correct in the limit of low Weissenberg number but
only provide a qualitative understanding in the limit of
large Weissenberg number since transient effects of poly-
meric fluids are neglected in this work.

The size and magnitude of vortex structure in differ-
ent applications are given as L ~ O(mm), wg ~ O(107%-
0.1s71) in the ocean and L ~ O(10-100pm), wy ~ O(1-
100 s7!) near a small swimming organism, L ~ O(1-
1000 pm ) and wp ~ O(1-1000 ~1) in porous media,
near membranes exposed to biofouling (e.g. nanofilter-
ation or reverse osmosis) or diagnostic microfluidic de-
vices. For a ~0.01-1 and Wi ~0.1-100, the coefficient
of lateral migration will be of order 3 = 0.194a? Wi ~
0(2 x 10~ — 20) where (3 is defined as 8 = 0.194a° Wi.

The autonomous nonlinear dynamic system described



FIG. 2: (Color online) (a)-(h) Spatial distribution of microorganisms in Taylor-Green vortex of a viscoelastic fluid at
~v =1 for different values of motility and viscoelasticity are shown. The contours show the magnitude of shear rate

tensor 4 = V 2E:E = | sin Z sin Z| and arrows represent velocity vectors for the background fluid. The size of the
Taylor-Green cell is 7/2 x 7/2 and dots represent bacteria. (i) Radius of the pattern and (j) orientation of
microorganisms as a function of the dimensionless swimming velocity and viscoelasticity of the background fluid are
plotted. The schematic shown in (j) illustrate polar angle and microorganism’s orientation angle, where origin, O, is
located at the center of the TGV cell.

by Egs. (9-11) is numerically solved for 400 microor-
ganisms using an explicit second-order time discritization
scheme to rationalize the role of swimming velocity, back-
ground vorticity, and rheological properties of the back-
ground fluid. Each microorganism is initialized in space
with random initial position and orientation. However
as time evolves, microorganisms orbit in a limit cycle
and eventually steady patterns emerge in the presence
of viscoelasticity (see supplemental material movie 1 in
[39]). Figure 2(a)-(h) shows microorganisms’ pattern for-
mation for different values of swimming velocity, ¢, and
fluid viscoelasticity, 8. Viscoelasticity of the background
fluid leads to migration of microorganisms towards re-

gion of low shear rate (3 = V OE : E), which comes to

balance with the motility of microorganisms at a par-
ticular radius leading to rotation of microorganisms on
a periodic orbit. As microorganisms’ motility increases,
they have a stronger tendency to move on a straight line
rather than as a passive tracer. This leads to formation
of square shaped orbits (Fig. 2(f)-(h) and supplemental
material movie 2 in [39]) rather than circular orbits ((Fig.
2(b)-(d)). The dynamical system describing microorgan-
isms’ trajectory and evolution (Egs. (9-11)) has a limit
cycle whose average radius, (R), depends on motility and
viscoelasticity of the medium (Fig. 2(i)). Note that ()
represents time average over a cycle. The angle 6 is a
measure of microorganism’s orientation angle relative to
the polar angle, ¢, and is positive in counter-clockwise
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FIG. 3: (Color online) Aggregation time at which (R)
reaches 90% of its steady value.

direction (see Fig. 2(j)). Microorganisms are oriented in
a tangential direction as they rotate on the limit cycle
for small values of 8 ((#) — —m/2) but oriented along
radial direction as /8 increases (Fig. 2(j)). For large val-
ues of 3, the dimensionless radius of the limit cycle is
much smaller than unity and an analytical expression for
it can be obtained after psuedo-linearization of Egs. (9)
and (10) around £ =0, Z = 0:

(R) = ~5(RY + b costt) (12)

where 6 is a periodic function of ¢, Fourier expansion of
which can be written as 6 = (0) + A cos(4¢p + B) + h.o.t.
When microorganisms are moving on the limit cycle,
(R) = 0 and consequently, (R) = (4¢ cos(f)/B)/3. This
solution is also confirmed by numerical analysis shown
in Fig. 2(i) where the radius of the limit cycle decays
as f1/3 and increases as ¢'/3 in the limit of large 3.
Aggregation rate of microorganisms is also controlled by
their motility, strength of the vortical flow, and viscoelas-
ticity of the background fluid. As shown in Fig. 3, ag-
gregation rate increases with both ¢ and 8. The higher
the motility of microorganisms and the more viscoelastic
the background fluid, the faster the limit cycle emerges.
As microorganism’s orbit approaches the limit cycle, the
difference between (R) and average radius of the limit
cycle, €, becomes small compared to (R). Using Eq.
(12) for large values of B, it can be easily shown that
de/dt oc /3. For small values of f3, the radius of limit
cycle is independent of 5 and Egs. (10)-(11) can be used
to show that de/dt o f5.

CONCLUDING REMARKS

In this letter, we analyze dilute suspension of non-
interacting microorganisms and show that they trap
within a vortex cell due to viscoelasticity of the back-
ground fluid. Particle trapping within the vortices driven
by shear-induced migration has been reported in the liter-
ature [40]. Shear-induced migration velocity of a particle
in a vortex scales as Ugp, ~ 7a2¢U/L where ¢,, is the vol-
ume fraction of particles [41]. The ratio of shear-induced
migration velocity relative to viscoelasticity-induced mi-
gration for microorganisms within a Taylor-Green vortex
can be estimated as Uy /Vp ~ ¢, /Wi which is small
for bacteria suspensions and biofilms and is neglected in
this analysis. The fundamental mechanism discussed in
this paper, leading to the emergence of the limit cycle
and eventually aggregation of microorganisms, is inde-
pendent of their concentration. In fact, a single microor-
ganism started at a random position and orientation will
eventually rotate on a limit cycle as time passes. This is
due to the fact that viscoelastic-induced migration, which
leads to their motion to regions of low shear, balances
with their motility, that acts as an opposing mechanism
leading to their dispersion. The interaction of microor-
ganisms with each other and their collective behavior can
be neglected in this work since the microorganism con-
centration is low and the fluctuations generated by mi-
croorganisms are smaller than the background flow field.

Equations (1) and (2) for spherical self-propelled par-
ticles (v = 1) do not predict any aggregation since the
trace of Jacobian of Egs. (1) and (2) is zero (due to
incompressibility condition). Thus, “according to Li-
ouville’s theorem, there can be no contraction in phase
space volume”[24] and no limit cycle occurs for spherical
microorganisms in Newtonian fluids. On the other hand,
considering viscoelasticity of the background fluid leads
to motion of microorganisms on periodic orbits within
a single vortex cell. These results await and invite ex-
perimental verification with natural or artificial swim-
mers [42]. The mechanism proposed here suggests that
patches of bacteria and microorganisms form in the pres-
ence of vorticity due to elastic properties of extracellular
polymers and can be used to generate large enough con-
centrations of microorganisms required for detection pro-
cedures. Detection of microorganisms such as bacteria is
important in medical diagnosis, microbiological analysis
of food, water and environmental samples.
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