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ABSTRACT

Three-dimensional numerical simulation using the front-tracking method is presented on

the dynamics of a vesicle in a linear shear flow. The focus here is to elucidate the parametric

dependence and the self-similarity of the vesicle dynamics, quantification of vesicle deforma-

tion, and the analysis of shape dynamics. A detailed comparison of the numerical results is

made with various theoretical models and experiments. It is found that the applicability of

the theoretical models is limited despite some general agreement with the simulations and

experiments. The deviations between the perturbative results and the simulation results

occur even in the absence of thermal noise. Specifically, we find that the vesicle dynam-

ics does not follow a self-similar behavior in a two-parameter phase space, as proposed in

a theoretical model. Rather, the dynamics is governed by three controlling parameters,

namely, the excess area, viscosity ratio, and the dimensionless shear rate. Additionally, we

find that a linear scaling of the tank-treading angle, as proposed in the theoretical model,

is possible only for nearly spherical vesicles. The breakdown of the scaling occurs at higher

values of the excess area even in the absence of thermal noise. We find that the vesicle

deformation saturates at large shear rates, and the asymptotic deformation matches well

with a theoretical prediction for nearly spherical vesicles. The dependence of the critical

viscosity ratio associated with the onset of unsteady dynamics on the vesicle excess area is

in excellent agreement with the experimental observation. We show that near the transi-

tion between the tank-treading and tumbling dynamics, both the vacillating-breathing-like

motion characterized by a smooth ellipsoidal shape, and the trembling-like motion charac-

terized by a highly deformed shape are possible. For the trembling-like motion, the shape

is highly three-dimensional with concavities and lobes, and the vesicle deforms more in the

vorticity direction than in the shear plane. A Fourier spectral analysis of the vesicle shape

shows the presence of the odd harmonics and higher-order modes beyond fourth order.

2



I. INTRODUCTION

Vesicles are viscous liquid drops enclosed by membranes of lipid bilayers. They are often

considered as the model particles for the human red blood cells. The bilayer membrane

has two unique characteristics: it behaves as a two dimensional incompressible fluid, and

exhibits a bending resistance. Because of the interior fluid, and the liquid nature of the

membrane, vesicles are highly deformable. Vesicles are also present in other eukaryotic cells

where they form by membrane budding and pinching and act as the intracellular transport

vehicles. Synthetic vesicles (liposomes) can be used as drug carriers for targeted delivery.

Because of their biological and engineering applications, the dynamics of vesicles in flow

has received a significant attention in recent years.

When placed in a linear shear flow, a single vesicle undergoes primarily two types of

motion: a steady tank-treading motion (hereafter referred to as TT) in which it aligns at

a fixed angle with the flow direction while the membrane and the interior fluid execute a

rotary motion, and an unsteady tumbling motion (hereafter referred to as TU) in which it

flips like a rigid body. If deformation is neglected, the vesicle dynamics is controlled by two

parameters: the excess area ∆ = A/a2o − 4π, and the viscosity ratio λ = µi/µo, where A

is the surface area, ao is the radius of a sphere having the same volume, and µi and µo are

the dynamic viscosities of the interior and exterior fluids, respectively. In this limit, the

dynamics can be described by the theory of Keller & Skalak [1]. For a given excess area,

the tank-treading motion occurs when the the viscosity ratio λ is less than a critical value

λc, and tumbling motion occurs when λ > λc.

When deformation is considered, a third controlling parameter, namely, the capillary

number, or the dimensionless shear rate, χ = µoγ̇a
3
o/Eb, also arises, where Eb is the mem-

brane bending modulus, and γ̇ is the shear rate. Vesicle deformation can occur in tumbling

as well as tank-treading motion. The role of deformation, however, becomes most important

in trembling [2-4], vacillating-breathing [5-7], and swinging [8] motions, which are new types

of unsteady motion that have been observed recently. In such motions, the inclination angle

oscillates about the flow direction while the vesicle may undergo a periodic shape defor-

mation. While differences exist between the trembling, vacillating-breathing and swinging

modes, particularly because they were observed or predicted by different tools, experimen-

tal, numerical or analytical, one common feature is that they occur in the vicinity of the

transition between the TT and TU modes. Hereafter, we refer to these new modes as the
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transition (TR) mode. Phase diagrams in χ–λ plane, which depend on ∆, can be used to

describe the transition from one mode to the other. For small values of χ, the transition

occurs directly from TT to TU with increasing λ. For χ & 1, the transition occurs as TT to

TR to TU with increasing λ. Complex and highly convoluted shapes of trembling vesicles,

in the form of membrane budding and pinching, have been observed in experiments [3,9,10].

The role of the controlling parameters, particularly, the capillary number χ, has received

a significant attention in the recent years. Numerous theoretical studies have been carried

out, starting with Seifert [11], in the framework of perturbation analysis of nearly spherical

vesicles (∆ ≪ 1) in which the shape is represented by a series of spherical harmonics, and the

vesicle dynamics is expressed in terms of two coupled ODEs. In the leading-order analysis

of Misbah [5] and Vlahovska & Gracia [12], the χ-dependent terms drop out from the

expansion, and the parametric space is reduced to two variables, namely, ∆ and λ. Danker

et al. [6], Kaoui et al. [7], and Lebedev et al. [4,13] considered the second-order terms

in the expansion, and up to the second harmonics, and thus, retained the χ-dependence.

Lebedev et al. [4,13] showed that the parametric space could still be reduced by introducing

two new dimensionless variables S and Λ defined as

S =
7π

3
√
3

χ

∆
, (1)

and

Λ =
23λ+ 32

8
√
30π

√
∆ . (2)

Using these two parameters, a self-similar behavior of the vesicle dynamics was obtained;

that is, the transition boundaries between different regimes in the S–Λ plane were found to

be independent of ∆. Experimental works by Steinberg’s group [3], and a recent analysis

of their data by Zabusky et al. [2] tend to suggest that the data can be presented in

the two-parameter phase diagram proposed by Lebedev et al. [4,13], within the margin of

uncertainty in the experiments, despite the fact that the experimental observations did not

support some key assumptions in the models. In addition to the fact that the models are

strictly applicable to nearly spherical vesicles, they are also based on the assumptions that

the thermal fluctuations (except Seifert’s [11]), and the odd harmonics in the vesicle shape,

are neglected.

The notion of self-similarity in vesicle dynamics, however, remains an issue of recent

debate. In contrast to the model of Lebedev et al. [4,13], the models of Danker et al. [6]
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and Kaoui et al. [7] found that the self-similar solution did not exist, and the dynamics

explicitly depended on the three parameters, χ, λ, and ∆. Farutin, Biben & Misbah [14]

included the fourth-order harmonics in the expansion, resulting a 14-ODE model, and also

found the absence of the self-similarity. Very recently, Biben, Farutin & Misbah [15] used

a 3D boundary integral simulation to study vesicle dynamics in shear flow, and concluded

that the self-similarity did not exist. Using the self-similarity model, Zabusky et al. [2]

showed that all experimental tank-treading angle θ for different ∆ collapsed to a single line

when plotted against Λ (excluding the data points which are presumed to be affected by

thermal noise). Further, the boundary integral simulations of Kraus et al. [16] predicted

that the tank-treading angle was independent of χ. In contrast, all higher-order theoretical

models found an explicit dependence of θ on χ.

The above discussion clearly suggests that further analysis is necessary with regard to

the parametric space that controls the vesicle dynamics, without the limitation imposed

by the assumption of the quasi-sphericity, in particular. The first objective of this article

is to provide further insight to the parametric dependence and the self-similar behavior of

the vesicle dynamics in the range of ∆ = O(1) using a three-dimensional direct numerical

simulation in which vesicle deformation is fully resolved but thermal noise is neglected.

Quantitative data on vesicle deformation is relatively scarce. The vesicle shape changes

from its initial shape under the application of the shear, while the volume and surface area

remain constants. In their experiments, de Haas et al. [17] observed that deformation in-

creased non-linearly with increasing shear rate and tend to saturate at large values. Seifert’s

theoretical work [11], which included thermal noise, predicted a linear behavior in the limit

of vanishingly small shear rate, and a deformation saturation at large shear rates similar

to that observed by de Haas et al. [17]. Kantsler & Steinberg [18] also observed a similar

crossover behavior, and saturation of deformation at large shear rate. Here, we present a

quantitative comparison of the theoretical and experimental results with our 3D simulation

results.

Another objective of this article is to analyze the shape dynamics for vesicles in the

transition regime. As mentioned above, highly convoluted shapes are observed for the

trembling vesicles in the experiments. These shapes are drastically different from those

predicted for the vacillating-breathing vesicles by Danker et al. [6] in which the vesicle

shape remains nearly elliptical during its oscillation. In this article, we show that our
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simulations are able to predict that, in the absence of thermal noise, both the vacillating-

breathing mode characterized by relatively smooth elliptical shapes, as well as the trembling

mode characterized by complex shapes with concave regions are possible.

Because of the role of deformation and higher-order modes, a fully resolved numerical

approach is deemed necessary in the analysis of vesicle dynamics. Several numerical methods

have been developed till date: the boundary integral methods of Kraus et al. [16] and

Biben, Farutin & Misbah [15], the phase field approach of Biben, Kassner & Misbah [19],

2D simulations of Ghigliotti, Biben & Misbah [20], simulations using multi-particle collision

dynamics by Noguchi & Gompper [8,21], and Messlinger et al. [22], spectral boundary

integral simulations of Zhao & Shaqfeh [23], boundary integral method of Veerapaneni et

al. [24,25], to name a few. Here we present a 3D simulation using the front-tracking

method. The article is organized as follows: in the next chapter the numerical method

and its validation are presented. Then we present a comprehensive analysis of the scaling

of the tank-treading angle, and deformation, followed by the analysis of vesicle shapes in

transition region, and the phase diagrams.

II. COMPUTATIONAL METHODOLOGY

Three-dimensional numerical simulations using front-tracking method are considered for

vesicles immersed in a linear shear flow u∞ = {γ̇y, 0, 0}. The initial shape is taken to be a

prolate spheroid with the axis of symmetry in the shear plane. The vesicle is represented as

a liquid drop surrounded by a zero-thickness membrane. The interior and suspending fluids

are assumed to be incompressible and Newtonian with viscosities λµo and µo, respectively.

The membrane is assumed to possess the resistance against bending and area dilatation.

The bending resistance is modeled following Helfrich’s [25] formulation for bending energy

Wb =
Eb

2

∫

S
(2κ− co)

2 dS + Eg

∫

S
κgdS, (3)

where Eb is the bending modulus associated with the mean curvature κ, Eg is the bending

modulus associated with the Gaussian curvature κg, co is the spontaneous curvature, and S

is the vesicle surface area. According to the Gauss–Bonnet theorem of differential geometry

the second integral in (3) remains invariant for topologically equivalent shapes. The surface

force density can be derived by calculating the first variation of Wb. Then, the expression

will involve both κ and κg, but not Eg. The resistance against area dilatation gives rise to
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a local in-plane tension σ, and an associated energy
∫

S σdS. Thus, the total energy of the

membrane becomes

W =
Eb

2

∫

S
(2κ− co)

2 dS +

∫

S
σdS. (4)

The membrane force density acting on the fluid as a reaction force becomes

fn = Eb

[

(2κ+ co)
(

2κ2 − 2κg − coκ
)

+ 2∆LB κ
]

n− 2σκn , (5)

ft = ∇sσ , (6)

where n is the unit vector that is normal to the vesicle surface and directing outward,

∇s = Is · ∇ is the surface gradient operator, ∆LB = ∇s · ∇s is the Laplace–Beltrami

operator, and Is = I−nn is the surface projection matrix [26]. Here fn is the normal force,

and ft is the in-plane force arising due to the constraint of area dilatation. It should also

be mentioned that based on our conventions a sphere will have a positive mean curvature.

The fluid motion inside and outside the vesicle is governed by the continuity and Navier-

Stokes equations

∇ · u = 0 , (7)

ρ

[

∂u

∂t
+ u · ∇u

]

= −∇p+∇ · µ
[

∇u+ (∇u)T
]

(8)

The membrane and the fluid are coupled in a two-way manner by adding a source term to

the r.h.s. of (8) as

F =

∫

S
(fn + ft) δ(x− x′)dx′ (9)

where δ is the three-dimensional Dirac-Delta function, x′ is a location on the vesicle surface,

and x is a location in the flow. Once the fluid velocity u(x, t) is known, the vesicle surface

is advected as dx′/dt = uS where the surface velocity uS is obtained by interpolating the

local fluid velocity u using the Delta function as

uS =

∫

S
u(x)δ(x − x′)dx . (10)

The computational domain is a cubic box of length 2πao, and contains one vesicle of equiv-

alent radius ao. The domain is periodic in the x and z directions, and wall-bounded in the y
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direction. The no-slip condition is imposed on the walls. The domain is discretized using a

fixed (Eulerian) rectangular and uniform grid of 1203 points. For this resolution, there are

about 38 Eulerian points across the diameter of the equivalent sphere. Thus the flow field

inside the vesicle is well resolved. A smooth representation of the Delta function spanning

over four Eulerian points is used [27]. A combined second-order finite difference scheme

and Fourier transform is used for the spatial discretization, and a second-order time-split

scheme is used for the temporal discretization of the Navier-Stokes equations.

We now describe the numerical technique to compute the normal force fn. The vesicle

surface is discretized using small flat triangular elements (Fig. 1). Typically, we use 5120

triangular elements, or 2562 Lagrangian nodes or vertices. Each vertex is surrounded by

five or six elements. The curvatures κ and κg on the triangulated surface is calculated by

a quadratic surface fitting,

z′ = ax′
2
+ bx′y′ + cy′

2
+ dx′ + ey′, (11)

where (x′, y′, z′) is a local coordinate system with origin at a Lagrangian point of interest,

and the coordinate z′ is aligned with the estimated normal vector. The technique of com-

puting the curvatures and their derivatives is described in detail by Garimella & Swartz

[28] and Petitjean [29]. One-ring neighbor points are used to find the coefficients using

a least-square method, and iterations are performed to obtain an accurate fitting until a

satisfactory convergence for the estimated normal vector is reached. The curvatures, κ and

κg, are expressed in terms of the fitted coefficients as

κ = −a+ c+ ae2 + cd2 − bde

(1 + d2 + e2)3/2
, (12)

and,

κg =
4ac− b2

(1 + d2 + e2)2
. (13)

To discretize the Laplace–Beltrami operator, we work in the framework of computational

image reconstruction [30,31]. For a Lagrangian node x′
i, the Laplace–Beltrami operator is

written as

∆LB κi =
1

2A
∑

j∈N1(i)

ñj · (∇sκj +∇sκj+)
∥

∥x′
j − x′

j+

∥

∥ , (14)

where N1(i) represents the set of vertices in the first ring neighborhood of i (see Fig. 1b),

ñj is the unit outward normal to the edge [j, j+], and A is the area of all triangles sharing
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Figure 1: (a) Discretization of the vesicle surface; (b) schematic for the first-ring neighbors
of the vertex i; (c) Convergence test of Eulerian resolution: —- 803, - - - 1203, -·-·- 1603;
The inset shows the magnified view of a part of the contours. (d) Convergence test of
Lagrangian resolution: -·-·- 1280; - - - 5120; —- 20480 triangles.
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the node i. Further, the gradient ∇sκi at a node i is approximated by a weighted average

of the gradients on the adjacent triangles as

∇sκi =
1

A
∑

j∈N1(i)

Aj∇Tj
κ , (15)

where ∇Tj
κ is the surface gradient approximation of the mean curvature on each adjacent

triangle Tj = [i, j, j+], and Aj is the area of Tj. Assuming that κ varies linearly in each

triangle, ∇Tj
κ can be written as

∇Tj
κ =

1

4A2
j

{

κi
[

(x′
i − x′

j) · (x′
j − x′

j+)(x
′
j+ − x′

i) + (x′
i − x′

j+) · (x′
j+ − x′

j)(x
′
j − x′

i)
]

+ similar terms with i and j interchanged

+ similar terms with i and j+ interchanged

}

(16)

The in-plane force ft is computed by invoking a strain energy function for the membrane

following the work of Skalak et al. [32] as

Wa = Ea

(

ǫ21ǫ
2
2 − 1

)2
, (17)

where ǫ1 and ǫ2 are local principal stretch ratios, and Ea, which has the dimension of energy

per unit area, is large enough to ensure a strong resistance against area dilatation. The

detailed method of calculating ft has been described in our earlier publications (e.g. , [33]).

Here we present a brief description for the purpose of completeness. The force in each

triangular element on the vesicle surface is obtained from Wa by applying the principle of

virtual work as

f
p
t = −∂Wa

∂v
, (18)

where v is the displacement. The principal in-plane stretch ratios can be expressed in terms

of the displacement gradient tensor D as

ǫ2i =
1

2

[

G11 +G22 ±
√

{

(G11 −G22)
2 + 4G2

12

}

]

, i = 1, 2 , (19)

where G = DTD. A finite-element method is used to find the stretch ratios ǫ1, ǫ2, and f
p
t

for each triangular elements [34]. Then, the force ft at each vertex is found as the resultant

of fpt on the triangles surrounding the vertex. We note that (17) and (6) are not specifically

related to each other. The former was derived by Skalak et al. for red blood cell membrane,
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which behaves as a nearly incompressible surface. Hence, (18) is more convenient to use

in the context of the front-tracking method as the Lagrange multiplier σ is not needed.

In applying the virtual work principle, the membrane elements are considered to remain

planar during the course of deformation, and hence, the forces remain in-plane.

We use the equivalent radius ao as the length scale and the inverse shear rate γ̇−1 as

the time scale. The dimensionless time is denoted by t∗, and defined as tγ̇. Three relevant

dimensionless parameters of the problems are the excess area ∆, the viscosity ratio λ and

the capillary number χ which are defined in Section I. In our simulations, ∆ is varied from

0.12 to 2.17. The corresponding range of the reduced volume V ∗ = (1 + ∆/4π)−3/2 is 0.99

to 0.79. This range is chosen primarily for two reasons: first, the theoretical results with

which comparisons are made are valid for low values of the excess area only, and second,

the experimental data with which comparisons are made are for ∆ < 2.5. The numerical

method is able to handle lower reduced volumes than what is considered here. Using the

same methodology, we have considered dynamics of red blood cells in shear flow for which

the reduced volume is about 0.64 [35]. The only probable numerical limitation to consider

even lower values of the reduced volume is that very fine mesh is needed to resolve the

vesicle surface. The viscosity ratio λ and the capillary number χ are varied from 1 to

14, and 0.2 to 50, respectively. The non-linear terms in the Navier-Stokes equations are

retained in the computation; however, the Reynolds number Re = ρ a2o γ̇/µo ≈ 10−2, and

hence, the effect of inertia is negligible. The time integration scheme in our numerical

technique is based on second-order Adams-Bashforth explicit method for the convective

terms and membrane forces, and the semi-implicit Crank-Nicolson method for the viscous

terms. Since the bending forces depend on the 2nd-order derivatives of curvature, the

system could become stiff for very small values of χ; such cases are not considered here as

thermal fluctuations may also be important then. Moreover, in the front-tracking method,

the membrane force is distributed smoothly over 4 Eulerian grid points surrounding the

Lagrangian point to avoid numerical instability. The integration time step is ∆t∗ ∼ 10−4,

and is set by the area incompressibility condition, which appears to be more stringent than

the bending stiffness.

Figure 1(c) and (d) present the convergence tests for the Eulerian and Lagrangian reso-

lutions, respectively. Fig 1(c) shows the two-dimensional contours of the steady-state shape

of a tank-treading vesicle in the shear plane for three different Eulerian grids: 803, 1203,

and 1603, while the Lagrangian resolution is kept constant at 5120 triangles. No signifi-
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Table 1: Convergence of deformation parameter D, and tank-treading inclination angle θ/π
for different Eulerian resolutions. The Lagrangian grid is fixed at 5120 elements. Here
∆ = 0.63, λ = 5, χ = 50.

No. of points D θ/π

403 0.265 0.094

803 0.298 0.080

1203 0.299 0.077

1603 0.299 0.077

Table 2: Convergence of deformation parameter D, and tank-treading inclination angle θ/π
for different Lagrangian resolutions. The Eulerian grid is fixed at 1203. Here ∆ = 0.63,
λ = 5, χ = 50.

No. of elements D θ/π

1280 0.298 0.071

5120 0.299 0.077

20480 0.293 0.081

cant difference is observed between the three cases, and thus, 1203 resolution is used in this

study. Fig. 1(d) shows the result for three different Lagrangian resolutions: 1280, 5120, and

20480 triangles, while the Eulerian resolution is fixed at 1203. The result for 1280 elements

is slightly different from the other two, whereas 5120 and 20480 resolutions give almost the

same shapes. Tables 1 and 2 present the deformation parameter and inclination angle for

different Eulerian and Lagrangian resolutions, which confirm that convergence is attained

for 1203 mesh.

In order to verify the accuracy of the surface fitting method used to obtain the curva-

tures, and their discrete gradients, we compare the numerically obtained values with the

exact (analytical) values for a fixed oblate spheroid with an excess area ∆ = 1.62. The

normalized L2 error is defined as L2 =
∥

∥

∥
V− V̂

∥

∥

∥

2
/ ‖V‖2, where V and V̂ represent the

exact and numerical solutions, respectively. Table 3 presents the L2 error for κ, κg, and

∆LB κ. The L∞ error which is the maximum relative error between the numerical and exact

values is also given in Table 4. Values in Table 3 show that the L2 error can be significantly

improved by increasing the number of elements from 1280 to 5120, while only a marginal

improvement occurs when the number of elements is further increased to 20480. The same
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Table 3: Normalized L2 error for different Lagrangian resolutions. The shape is an oblate
spheroid with ∆ = 1.62.

No. of elements κ κg ∆LB κ

1280 0.010 0.017 0.303

5120 0.003 0.005 0.108

20480 0.001 0.002 0.059

Table 4: Normalized L∞ error for different Lagrangian resolutions. The shape is an oblate
spheroid with ∆ = 1.62.

No. of elements κ κg ∆LB κ

1280 0.019 0.030 0.360

5120 0.008 0.012 0.166

20480 0.005 0.009 0.321

trend can be noticed for L∞ error of κ and κg. One exception is the L∞ error in ∆LB κ

which first decreases as the number of elements increases from 1280 to 5120, but increases

thereafter. It is mentioned in Ref. [31] that the convergence of the Laplace–Beltrami op-

erator depends on the mesh structure, and hence, a uniform reduction in L∞ error can be

achieved for some specific triangulations only. It was noted in Fig. 1(d) that the vesicle

shape does not show a significant change when the Lagrangian resolution is increased from

5120 to 20480. Hence, the mesh with 5120 elements was used in the simulations of the

tank-treading and tumbling vesicles for which the shape is found to be smooth. For vesicles

near the transition boundary, which show highly complex shapes, it was necessary to use

the higher Lagrangian resolution. Our numerical scheme for the calculation of curvatures

and their discrete gradients is robust for any smooth surfaces regardless of the shape; e.g.,

in [35], we considered dynamics of red blood cells for which the initial shape is a biconcave

discoid, which was observed to evolve into more complex shapes than those reported here

for vesicles.

A series of tests are performed to set an appropriate value of the prefactor Ea in (17). It

is found that for the dimensionless value of ∼ 103, the vesicle surface area is conserved within

0.4% globally and locally. Further, because of the area constraint, a nearly spherical vesicle

may deform by losing its volume. Such volume loss is observed in our simulation for lower

values of ∆ only, typically < 0.5. In such cases, we find that the tank-treading inclination
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angle is rather sensitive to a small change in volume. The volume loss is prevented by

adding a uniform force

fv = −Kv
∆V

V0
n , (20)

where V0 is the initial volume, ∆V = (V − V0) is the change, and Kv is a sufficiently large

positive number [36]. While the method has been applied for red blood cells in vacuum [36],

we find it to be convenient and consistent within the framework of the immersed-boundary

method for fluid-filled vesicles as well, and it also assures that the no-slip condition on the

vesicle surface is automatically satisfied as the surface velocity is obtained by interpolating

the local fluid velocity. It may be noted that volume preservation could be alternatively

performed by using a surface normal velocity. We have performed multiple simulations

using this alternate method and found that both methods gave similar results; e.g., for χ =

10, λ = 1,∆ = 0.44, the force method gave D = 0.257, θ/π = 0.176, and the velocity method

gave D = 0.256, θ/π = 0.178. Table 5 presents the volume change and the tank-treading

angle θ for a sample case at a high capillary number over a range of the dimensionless values

of Kv. We see that from Kv = 2.5 × 104 to 4× 104, there is no significant improvement in

volume and θ. After careful tests, we find that Kv = 2.5× 104 is satisfactory for which the

volume loss is about 0.12%. It should be emphasized that the volume loss is observed for

the nearly spherical vesicles (∆ < 0.5), and not for higher values of ∆. Note that for higher

values of ∆, the surface area is higher, and hence, the distance between the Lagrangian

nodes are also higher. However, this increased Lagrangian-to-Eulerian mesh size ratio did

not cause any increased volume loss. We also observed that increasing the Lagrangian

mesh from 1280 to 5120 and 20480 never improved the volume loss for a fixed Eulerian grid

spacing of 1203. This suggests that the volume loss in our simulations is not due to higher

Lagrangian-to-Eulerian mesh size ratio. For vesicles near the transition boundary, which

show highly complex shapes (Figs. 11 and 12), we use 20480 Lagrangian resolution for

improved curvature estimation. Also, we do not observe local coarsening or entanglement

of surface mesh over the length of the simulations; thus, no remeshing is done. Figure

1(a) shows the surface mesh on a deformed vesicle; no mesh skewness is seen here. For

all reported runs, we have made similar checks that the mesh skewness does not appear.

Further, in our earlier studies on capsules with no area constraint, we did not observe any

significant volume loss [33,37]. No significant volume loss was found also in our study on

the dynamics of red blood cells, which have highly oblate resting shape (∆ ∼ 5), and nearly

constant surface area using the same numerical technique [35]. Thus, it is unlikely that the

volume loss observed here is due to the way the area constraint is implemented. Instead, we
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Table 5: Volume loss and cell inclination angle for different dimensionless values of Kv.
Here, ∆ = 0.44, λ = 5, and χ = 50. The tabulated values are taken at t∗ = 20.

Kv θ/π ∆V
V0

(%)

5× 103 0.14 -0.43

2.5 × 104 0.148 -0.12

4× 104 0.149 -0.07

believe that the constraint prevents the area change of surface triangles, and thus, prevents

mesh skewness.

We have verified that there is no significant effect on the vesicle dynamics due to confine-

ment by increasing the wall-to-wall distance from 2πa0 to 3πa0 and 4πa0. The tank-treading

angles decrease by at most 5%, and the deformation parameter D increases by less than 1%

upon increasing the size to 3πa0; no further changes in θ and D occur upon further increase

to 4πa0. We have also verified that the tumbling and swinging motions, and the transition

borders are not affected by increasing the wall-to-wall distance.

III. RESULTS

A. Analysis of tank-treading vesicles

First we present the results for the tank-treading vesicles, and address the scaling issues

related to the inclination angle. For the range of ∆ considered here (∆ ≤ 2.17), only a

prolate equilibrium shape is possible [38]. First, we verify that by starting with an initially

oblate or prolate shapes, our numerical technique leads to the same final shape. This is

illustrated in Fig. 2(a)-(b) where the shape evolution is shown for a vesicle of an initially

oblate shape at ∆ = 0.88. The final shape after the initial transience shows that the vesicle

has assumed a prolate-like shape. A marker particle on the surface is tracked over time to

show the tank-treading motion. Fig. 2(c) shows the time evolution of the semi-major axis

L, semi-minor axis B, the half of the end-to-end length in the vorticity direction, Z, and

the major-axis inclination angle θ for initially oblate and prolate shapes, but at the same

value of ∆. It is clear that both shapes reach the same final steady-state as L, B, Z, and θ
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Figure 2: Sample results on a tank-treading vesicle and oblate-to-prolate transition. (a) and
(b) shows the time-lapse shapes viewed along the vorticity direction and velocity gradient
direction, respectively, for ∆ = 0.88, χ = 50, λ = 5. A marker point (black dot) is shown
in (a) to illustrate the membrane tank-tread. (c) Time evolution of semi-major axis L,
semi-minor axis B, the half of the end-to-end length Z in the vorticity direction, and the
tank-treading angle θ for initially oblate (—) and prolate (- - -) vesicles for ∆ = 0.44, χ =
50, λ = 5. Both initial shapes lead to the same final results. All lengths are scaled by ao.
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approach the same values.

A.1. Dependence of θ versus ∆

The dependence of the tank-treading inclination angle θ (angle between the major axis

and the flow direction x) on the excess area ∆ is shown in Fig. 3. The simulation data

is presented for a fixed value of the capillary number χ = 10 in the figure, but different

values of the viscosity ratio λ. The present front-tracking simulation results are compared

with the boundary integral simulation results of Kraus et al. [16] (who considered λ = 1

only), the recent spectral boundary integral simulations by Zhao & Shaqfeh [23] (λ = 1 and

2.7 from their simulations), and the experimental results of Steinberg and co-workers. The

data points for the experimental results and the associated error bars are extracted from

Fig. 4 in Zabusky et al. [2]. In general, the present results agree well with the experimental

results and the earlier boundary integral simulations; however, certain subtle points must be

mentioned. As noted in Refs. [2,3,9], each experimental data point represents an ensemble-

averaged value over some bins of ∆ obtained from more than 500 individual measurements.

In the early measurements of Kantsler & Steinberg [9,18], the uncertainty of ao, ∆, and

λ was up to 20%. In the newer measurements of Deschamps et al. [3], the uncertainty

of ao and ∆ was 3.5% and 16%, leading to the maximum errors of 25% and 8% in S and

Λ, respectively, though the inclination angle uncertainty was not reported. Given the error

bars of the experimental data, we can conclude that there are very good agreements between

the present results and the experimental data.

The qualitative trend of θ versus ∆ suggests a power-law dependence at smaller values

of ∆, but much slower decay at higher values. According to Zabusky et al. [2], thermal

fluctuations become significant at higher values of ∆ (and, lower θ) causing the slower decay

similar to what was observed in [22] in MPC simulations that implicitly included thermal

noise. However, the present results which do not include thermal noise tend to suggest that

the thermal noise is not the only factor that is responsible for the slower decay of θ. As

a matter of fact, it can be said from Fig. 3 that the decay rate observed in our results is

slower than that observed in the experiments, despite an increasingly large scatter in the

experimental data at higher ∆.

We now study the effect of capillary number χ on the numerical results. For this, we
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Figure 3: Color online. Effect of the excess area ∆ on the inclination angle for tank-treading
vesicles at different values of the viscosity ratio λ. Numerical results are shown by open
symbols and lines, and for a fixed capillary number χ = 10. Comparison is done with
the experimental results (filled symbols) from Steinberg and coworkers, boundary integral
simulations by Kraus et al. [16] (+), and spectral boundary integral simulations by Zhao &
Shaqfeh [23]. The experimental data and the error bars are taken from Fig. 4 of Zabusky
et al. [2].
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consider three values of χ = 1, 10, and 50. The θ versus ∆ curves are plotted in Fig. 4

for λ = 1, 2.7, 5, and 8, each for χ = 1, 10, and 50. Two important observations are

made here. First, for λ = 1 and 2.7, the inclination angle is nearly independent of χ;

only a weak dependence on χ is observed for low values of ∆. This result is in agreement

with that of Kraus et al. [16] who observed almost no χ-dependence for λ = 1. On the

contrary, a χ-dependence can be clearly seen for λ = 5 and, in particular, for λ = 8. Thus

the χ-dependence appears in the numerical results as λ increases. The same trend can be

observed in the work by Zhao & Shaqfeh [23] where the χ-dependence of inclination angle

becomes more significant upon increasing λ. We have included two data points from their

work for comparable parameters: λ = 1, ∆ = 0.44, χ = 1 and 10, which match very well

with ours. The second observation is regarding the saturation of θ at large χ. As evident

from the figure, the inclination angle first decreases as χ increases from 1 to 10; beyond

χ ≈ 10, the inclination angle shows no significant change. Thus, the results for χ = 10 and

50 in the figure are found to coincide. This saturation of θ at large shear rates is related

to vesicle deformation. As will be shown later, the vesicle elongates more with increasing χ

for up to χ ≈ 10. Hence, the inclination angle increases as a more elongated shape seeks to

align with the flow direction. We find that the vesicle deformation saturates beyond χ ≈ 10,

and so does the angle.

As mentioned in section I, all theoretical models except Misbah’s [5] predict an explicit

dependence of the inclination angle on the capillary number χ. Therefore, we now compare

the numerical results with the theoretical models as done in Fig. 5(a). We consider the

higher-order models of Danker et al. [6] (hereafter, referred to as DBPVM), Kaoui, Farutin

& Misbah [7] (hereafter, referred to as KFM), Lebedev, Turitsyn & Vergeles [4,13] (hereafter,

referred to as LTV), and the leading order model of Misbah [5]. In the DBPVM model, the

vesicle dynamics is expressed in terms of the inclination angle θ and a variable Θ associated

with the vesicle shape defined as R =
√
∆cosΘ/2 where R is the amplitude of deformation.

Then,

τ
∂θ

∂t
=

S

2

[

cos 2θ

cosΘ

(

1 +
√
∆Λ2 sinΘ

)

− Λ

]

, (21)

τ
∂Θ

∂t
= −S sinΘ sin 2θ + cos 3Θ +

√
∆Λ1S (cos 4Θ + cos 2Θ) sin 2θ

+
√
∆Λ2S cos 2Θ sin 2θ , (22)
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Figure 4: Simulations results showing the effect of χ on the θ versus ∆ plot. For each
value of λ, from 1 to 8, three values of χ are considered. The numerical results show a
χ-dependence at λ = 5 and 8. The red diamonds are data from Zhao & Shaqfeh [23] for
λ = 1, ∆ = 0.44, and χ = 1 and 10.
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where

τ =
7
√
π(23λ+ 32)

72
√
10

χ

γ̇
, (23)

Λ1 =

√
10

28
√
π

(

49λ+ 136

23λ+ 32

)

, (24)

and

Λ2 =
10
√
10

7
√
π

(

λ− 2

23λ + 32

)

. (25)

The terms involving Λ1 and Λ2 are the higher-order terms. From the DBPVM model, one

can obtain the KFM model by setting Λ2 = 0, the LTV model by setting Λ1 = Λ2 = 0,

and Misbah’s [5] model by setting Λ1 = Λ2 = 0, and omitting the cos 3Θ term. We

solve the above system of ODEs for a tank-treading vesicle for which the inclination angle

and the shape are fixed so that the left hand sides of (21) and (22) are zero. A close

form solution exists for Misbah’s [5] model as θ = (1/2) cos−1
[

(23λ+ 32)
√
15∆/120

√
2π

]

.

These theoretical results and the linearized form of Misbah’s [5] model, θ = π/4 − (23λ +

32)
√
15∆/240

√
2π, are shown in Fig. 5(a) and compared with the present front-tracking

simulations. To avoid cluttering of the data, we consider χ = 1 and λ = 1 and 5. The figure

shows that the difference between the DBPVM, LTV and KFM model is not significant but

they differ from Misbah’s model.

When we compare our numerical results with the above theoretical models (Fig. 5(a)),

we find an agreement at small ∆ but not at higher ∆, as expected, since these models are

applicable to vesicles of nearly spherical initial shapes (∆ << 1). Interestingly, Misbah’s [5]

leading-order model predicts better the numerical results than the other three models. The

differences between the simulation results and the theoretical results are found to increase

quite significantly with increasing λ. Further, the numerical results predict a much slower

decay of θ than the theoretical models, particularly for λ ≥ 5. Hence, the theoretical models

deviate from the numerical results not only at large values of ∆, but also at large values of

λ. Therefore, while we find that that the inclination angle (weakly) depends on the shear

rate as in the theoretical models, the exact nature of the dependence differs.

Fig. 5(b) compares the χ-dependency in theoretical models and simulations. We con-

sider only the DBPVM model and plot the results from this model for χ = 1, 10, and 50,

and compare with the numerical results. There are some subtle but important differences

between the two results. For λ = 1, the theoretical curves for different χ nearly collapse
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Figure 5: (a) Comparison of the present numerical results (θ versus ∆ plots) with the
theoretical models for a constant χ = 1, but two values of λ = 1 and 5. Theoretical models
of Misbah [5], Danker et al. [6] DBPVM, Lebedev et al. [4,13] LTV, and Kaoui et al. [7]
KFM are considered. (b) Comparison by varying χ as 1, 10, and 50, for two values of λ = 1
and 8. Here only the DBPVM model is compared to avoid cluttering of the data.
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at lower ∆ but diverge at higher ∆. In contrast, the numerical results predict the opposite

trend. This discrepancy might be in part due to the fact that the theoretical models are valid

for small ∆. Second, for higher λ, the theoretical curves for different χ are indistinguishable

but the numerical results show a strong dependence on χ.

A.2. Dependence of θ on Λ

Zabusky et al. [2] found that the experimental TT angles θ for different ∆ collapsed when

they were plotted against Λ despite the scatter in the data due to thermal fluctuations.

This finding has motivated us to present our numerical results for TT angles w.r.t Λ as

well. Figure 6 shows the present numerical results for two different values of ∆ = 0.12

and 0.44 (Figs. 6(a) and (b), respectively), and the experimental data points for the closest

∆ values obtained from Fig. 6 of Zabusky et al. . Also, in the same figure, we show the

DBPVM theoretical solution, and the solution given in [5], namely, θ = (1/2) cos−1Λ. Note

that the numerical results and the theoretical results by DBPVM both are presented for

three values of χ = 1, 10, and 50. It is clear from the figure that both the numerical and

the experimental results agree well with each other within the error bars of the experiments

(despite the lack of thermal noise; see error bars here and in Fig. 3). On the contrary, They

both disagree with the theories not only for large values of ∆ (e.g. , for ∆ = 0.44 in Fig.

6(b)), but also for large values of Λ.

Further, the theoretical curves for different values of χ are almost identical for small Λ

and start to branch out as Λ increases, where the difference between χ = 1 and χ = 10

is more prominent. A similar trend can also be identified for the numerical results. The

numerical results for χ = 10 and χ = 50 are almost the same for all range of Λ, but differ

from those at χ = 1. Thus, a collapse of data for all χ values is found in our numerical

results only for small values of Λ. For higher values of Λ, a collapse may occur for χ & 10

when vesicle deformation saturates.

Now we present θ for all the numerical data points w.r.t Λ for all ∆ and χ in Fig. 7.

The figure shows that the data collapse very well for approximately Λ < 1, where they

can all be fitted by a straight line. The rest of data for Λ > 1, however, show a more

scattered behavior and strongly vary with ∆. Zabusky et al. noted that the quality of the

experimental data did not allow one to distinguish between different sets of ∆, and hence, a
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Figure 6: Tank-treading inclination angle as a function of Λ. The numerical (open sym-
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experimental (filled symbols) data are taken from Fig. 6 of Zabusky et al. [2]. (a) ∆ = 0.12;
(b) ∆ = 0.44.
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and 50. A collapse is possible for approximately Λ < 1, but not for higher values.

two-parameter scaling was sufficient within the error bars. Based on our simulation results,

it is very clear that the scaling of the TT angles θ using a single variable Λ is only valid for

small values of Λ. The breakdown of the scaling at higher Λ occurs even in the absence of

thermal noise.

A.3. Critical viscosity ratio

If the data in the linear regime (Λ < 1) in Fig. 7 is fitted by a straight line, the intercept of

this line with θ = 0 can be taken as the critical Λc for the onset of the unsteady dynamics.

Λc, thus obtained, is a constant and independent of ∆. It is informative to compare the

value of Λc obtained from our simulations with the theoretical and experimental values.

The linear approximation of the theoretical expression of θ obtained by Misbah [5] and
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LTV gives Λc = 1.57 and 1.81, respectively. Using all ∆ values (excluding the ones affected

by thermal noise), Zabusky et al. [2] obtained Λc = 1.74 ± 0.2 for the experimental data.

Our simulation results yield Λc = 1.78 which is very close to the value found by Zabusky

et al. and by LTV.

If one assumes that Λc is a constant, then the critical viscosity ratio λc varies as ∆
−1/2.

In reality, however, this scaling is not possible due to the slow (non-linear) decay of θ as well

as the breakdown of the scaling at higher Λ, as the transition is approached (see Fig. 7).

Indeed, Kantsler & Steinberg [9] found that λc ∼ ∆−0.24±0.02 based on their experiments.

We have examined the dependence of λc on ∆ based on the numerical results and plotted

them in Fig. 8. In order to estimate the exponent, without extrapolating the linear fit up to

θ = 0, we conducted simulations to clearly find when the TT angle falls to zero. The critical

viscosity ratio thus obtained are presented in Fig. 8 for χ = 1 and 10. We have verified that

the transition threshold for χ = 50 is the same as that of χ = 10; hence, the χ = 50 results

are not shown. For each value of ∆, simulations are performed in small increments of λ,

until the vesicle is observed to align at θ = 0 while undergoing a steady tank-treading. The

corresponding value of λ is considered as the lower bound of λc. If λ is further increased,

the vesicle shows an oscillatory dynamics with periodic shape deformation. The onset of

the oscillatory motion is taken to be the upper bound. These two bounds are plotted in

the figure for χ = 1 and 10. Remarkably, for approximately ∆ > 0.5, the results for two

different χ values coincide with each other. Next, we find the curve fits through the data

for χ = 1 and 10. The fits obey the λc ∼ ∆β relationship as found by Kantsler & Steinberg

[9]. We find the exponent β to be −0.3 for χ = 1, and −0.253 for χ = 10. Hence, the

exponent obtained for χ = 10 is in excellent agreement with the experimentally derived

exponent of −0.24±0.02 by Kantsler & Steinberg [9]. This agreement is remarkable despite

the absence of thermal noise in our simulations. The exponent for χ = 1 data found here is

slightly lower than the experimental value, since the experiments were performed mostly for

χ > 1. It should be mentioned that the method used to find λc is different than those used

in previous studies, e.g., in Zhao & Shaqfeh [23] where λc was calculated through linear

stability analysis of the steady-state solution. In that analysis a steady-state tank-treading

motion with negative inclination angles can be achieved for λ values close but less than λc,

which are not observed here. Further, most theoretical studies, e.g., Farutin et al. [14], and

analysis of Zhao & Shaqfeh [23] show that λc increases with χ. Since here we find λc by

considering actual simulations in finite steps of increasing λ, it is difficult to conclude from

the figure how λc depends on χ.
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A.4. Deformation

The deformation of the tank-treading vesicles is quantified by the Taylor deformation pa-

rameter D = (L − B)/(L + B), where L and B are the semi-major and minor axes of the

ellipsoidal contour in the shear plane. Fig. 9(a) shows D versus χ for different values of

∆, but for a fixed λ = 1. The results show that deformation first increases with increasing

χ, suggesting a nonlinear behavior in the range 1 . χ . 10. Upon further increase in χ,

deformation is found to saturate. This result is qualitatively similar to the experimental

findings of Kantsler & Steinberg [18], and the theoretical prediction of Seifert [11], that D

is independent of χ for large values.

It may be noted that thermal effect is usually dominant at small χ as it is the case in

Seifert’s [11] model and in Kantsler & Steinberg’s [18] experiments. Seifert [11] predicted

that D increases linearly with χ for vanishingly small values of χ, and shows nonlinear

behavior at the cross-over followed by a saturation for sufficiently large values of χ. Kantsler

& Steinberg [18] also observed a non-linear behavior of D for small values of χ. It is quite

remarkable that a nonlinear behavior of D is possible in the range χ . 10, even in the

absence of thermal noise, as found in our simulations.

Quantitative comparison with Seifert’s [11] prediction, Kantsler & Steinberg’s [18], and

Kantsler et al. [39] experimental results is given in Fig. 9(b) by plotting D versus
√
∆. In

this figure, we show all of our data points over the range of λ considered in the simulations,

and for χ = 1 and 10. For clarity, χ = 50 data are not shown as they coincide with those

of χ = 10. In the limit of large χ, Seifert predicted

D =
√

15∆/32π . (26)

In addition to the nearly-spherical limit, Seifert’s analysis is also limited to ‘weak’ external

flow. Despite these limitations, the theoretical line seems to match surprisingly well with the

simulation results in the approximate range of ∆ < 1. For ∆ > 1, the theory overpredicts

the simulation results.

The experimental data points shown in Fig. 9(b) are taken from two sources: from Fig.

5 of Kantsler & Steinberg [18] for the highest values of χEb/kBT given therein, where kB

is the Boltzmann constant and T is the room temperature, and from Fig. 1 of Kantsler et

al. [39] by averaging D after it reached a steady state w.r.t. time. Keeping in mind the
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uncertainty in the experimental data, a good agreement with our simulation results is also

evident.

Two interesting observations are worth mentioning. First, the saturation of D occurs at

χ ≈ 10 which holds for all values of ∆ and λ. Second, the trend of D with increasing χ can

explain the dependence of θ on χ as noted earlier in Fig. 4. For χ = 1 to 10, D increases,

and hence, θ decreases as more elongated objects tend to align with the flow direction.

Beyond χ ≈ 10, deformation saturates, and so does inclination.

B. Transition and tumbling modes

B.1. Analysis of vesicle shapes

We now turn attention to the unsteady regimes of vesicle dynamics. In general, two types of

unsteady dynamics are observed. First is the usual tumbling motion resembling a rigid-body

flipping. The second dynamics which is more difficult to analyze is the one that occurs on the

verge of transition between the TT and TU motion. Depending on the details of the dynam-

ics, this mode has been identified by various names, e.g., the vacillating-breathing (Misbah

& co-workers), trembling (Steinberg & co-workers), and swinging (Noguchi & Gompper).

Specifically, the vacillating-breathing mode predicted in the theoretical work is character-

ized by smooth elliptical contours undergoing time-dependent shape oscillation and angular

oscillation about θ = 0. In contrast, the trembling mode observed in the experiments is

characterized by highly convoluted vesicle shapes. In the present work, both modes are

grouped as the ‘transition’ mode. As will be shown below, our simulations predict that

both the vacillating-breathing-like motion, and the trembling-like motion are possible in

the transition zone.

Fig. 10 shows two sample results for the vacillating-breathing-like motion. As evident,

the vesicle shape remains nearly elliptical with time while it undergoes angular oscillation

about θ ≈ 0. A significant shape oscillation accompanies the angular oscillation resembling

a breathing-like dynamics. For ∆ = 0.44 shown in Fig. 10(a), the shapes look qualitatively

similar to the contours given in [6]. Higher-order even harmonics are particularly evident

in Fig. 10(b) where ∆ = 1.2 is considered. The time-dependent inclination angle θ, de-

formation parameter D, and the half of the end-to-end length Z in the vorticity direction
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Figure 9: (a) Taylor deformation parameter D versus capillary number χ for λ = 1, and
different values of ∆; (b) D vs.

√
∆ for all λ considered in the simulations, and for χ = 1

and 10. For clarity, χ = 50 data are not shown as they coincide with those of χ = 10.
Also shown in (b) are the theoretical prediction by Seifert [11], and experimental data of
Kantsler & Steinberg [18] and Kantsler et al. [39]. The experimental data points are taken
from Fig. 5 of Kantsler & Steinberg for large χ values (the data points for the highest values
of χEb/kBT given in that paper), and from Fig. 1 of Kantsler et al. (averages of D are
taken after D reached a steady state w.r.t. time given therein).
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Figure 10: Simulation results on the vacillating-breathing like dynamics similar to that
predicted by the theories: (a) ∆ = 0.44, λ = 10, χ = 5; (b) ∆ = 1.2, λ = 7, χ = 10.
A Lagrangian marker point is tracked in the snapshots which shows that the membrane
executes a TT motion. (c) Time-dependent deformation parameter D (left axis, solid line),
inclination angle θ (left axis, dashed line), and the half of end-to-end length Z in the vorticity
direction (right axis, dash-dotted line) for the case shown in (a).
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are plotted in Fig. 10(c). Large oscillation in D is observed. Further, Z versus time shows

that shape oscillation in the out-of-the-flow-plane direction could be significant as noted by

Vlahovska & Gracia [12] in their theoretical work.

The vacillating-breathing-like motion described above occurs in our simulations for low

values of χ, and in the vicinity of λc which corresponds to the border between the tank-

treading and transition zone (See Fig. 16 later). For higher values of χ and λ (near the border

between the transition zone and tumbling zone), vesicles show convoluted deformed shapes

resembling the trembling-like behavior. One such result is shown in Fig. 11. Remarkably,

the vesicle assumes a diamond shape in the x-z plane (view along the velocity gradient

direction) periodically when its long axis drops below θ = 0 (t∗ = 19 and 39 in the figure).

The smooth elliptical shape is recovered when the vesicle is aligned above θ = 0. We have

performed Fourier transform of the contours of the vesicle in x-y and x-z planes (see later

for more details), and found that the fourth harmonics is comparable to the second for

the x-z contour when the vesicle is in the compressional quadrant of the flow. In contrast,

for the x-y contour, the higher-order harmonics are much weaker compared to the second

harmonics. Clearly, the vesicle exhibits more deformation and more harmonics along the

vorticity direction than on the shear plane. This result underscores the importance of

three-dimensional effects for the vesicles in the transition region.

Another sample result for the trembling-like dynamics is shown in Fig. 12 corresponding

to ∆ = 1.2, λ = 7.5, and χ = 50. The vesicle becomes highly deformed with concavi-

ties and lobes when it is aligned in the compressional quadrant (t∗ = 21 in the figure).

The convoluted shape observed here is qualitatively similar to the experimentally observed

shapes (Zabusky et al. [2]). The shape is highly three-dimensional with more deformation

occurring along the vorticity direction. Fig. 12(b) shows the contour of the vesicle in the

x-z plane to further emphasize the appearance of concave regions on the vesicle surface.

The contour also shows an asymmetry along the z direction implying the presence of the

odd harmonics.

It is worth mentioning that in our simulations the higher modes are observed mostly

when the vesicle is in the compressional quadrant. These instabilities are suppressed when

the vesicle aligns in the extensional quadrant, and the smooth elliptical shape is recovered.

The vesicle spends a longer time in the extensional quadrant so that the bending forces

restore the shape. In the next cycle again the higher modes appear in the compressional
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Figure 11: Simulation results of a vesicle in the transition region resembling a trembling-like
motion. Here ∆ = 0.44, λ = 8, χ = 50. Top row shows the view in the shear plane (x-y
plane), and the bottom row shows the view along the velocity gradient (x-z plane). Fourth
order harmonics are present in x-z contours when the vesicle is aligned in the compressional
quadrant (t∗ = 19 and 39, above). A Lagrangian marker point on the vesicle surface suggests
that the membrane makes an oscillatory tank-treading motion.

quadrant. If the thermal noise were present, these modes would have sustained in the

extensional quadrant as well, as observed in the experiments (Zabusky et al. [2]). Further,

no mesh skewing is observed for such complex shapes, the simulations were done with

20480 Lagrangian elements, and the volume correction is not needed. The irregular shapes

observed here are only for the vesicles that are near the transition borderline. For the

vesicles that are far away from the transition border, such irregularities are not observed.

Fig. 13 shows the Fourier spectra of the vesicle contours shown in Fig. 12 for three time

instants when the vesicle is within and near the compressional quadrant. We consider the

radial amplitude of the contour R(φ, t), 0 ≤ φ ≤ 2π, relative to the centroid of the vesicle [2],

which is Fourier decomposed as R(φ, t) =
∑

k R̃k(t)e
ikφ. Higher order even modes beyond

the fourth harmonics are observed for both x-y and x-z contours. Odd modes appear in

the x-z contour at θ/π = −0.18, when the vesicle is near the compressional axis. It should

be mentioned that the odd harmonics are generated here by numerical noise.

The convoluted shapes can also appear during the tumbling motion at higher values of χ.

One such example is shown in Fig. 14(a) for ∆ = 0.44, λ = 12, and χ = 50. Concavity in the
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vesicle shape is observed here when it is aligned in the compressional quadrant. Of course,

the amount of deformation is much less than that observed earlier for the trembling-like

motion. The concavities disappear and the smooth elliptical shape is recovered as the vesicle

enters the extensional quadrant. Another example is shown in Fig. 14(b) at lower values of

χ = 1 to illustrate the effect of shear rate on vesicle deformation in the tumbling regime.

For this low value of χ the vesicle deformation from its equilibrium is almost negligible, and

no membrane concavity is observed.

B.2. Transient dynamics

Within the transition region, we find that the dynamics is often transient in nature; in

other words, the vesicle starts with one mode, and then settles to another after a long time.

Typically, we find two types of transient dynamics: In the first case, which occurs at the

border between the tank-treading and the transition zones, the vesicle starts with a swinging

motion and settles to a tank-treading motion; in the second type, it starts with a tumbling

motion and gradually relaxes to a swinging motion. The first situation is presented in Fig.

15(a) for λ = 8 and χ = 10. For this case the vesicle initially shows oscillatory deformation

and swinging motion, but the amplitudes of oscillation and deformation slowly decrease over

time. Eventually the vesicle aligns with the flow direction after about three oscillations.

This form of transient dynamics toward tank-treading motion is similar to the relaxation

dynamics of a vesicle close to the border between the tank-treading and transition zone

observed by Biben et al. [15]. Zhao & Shaqfeh [23] have also shown that the decay of the

most unstable mode of the stable tank-treading solution is the source of this behavior. The

second type of the transient dynamics occurs upon increasing λ, and is shown in Fig. 15(b)

for λ = 10 and χ = 5. Here the vesicle tumbles initially, and then gradually relaxes to the

final swinging dynamics at around t∗ ≈ 80. We also studied the effect of the shear rate on

the transient dynamics by keeping the same viscosity ratio, and found that higher shear

rates will delay the relaxation to the final mode by several more cycles. Note that higher

shear rates will reduce the flow time scale, which in turn will prolong the relaxation.
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Figure 12: (a) Simulation results of a vesicle near the border of transition/tumbling zone
resembling a trembling-like motion with highly deformed shape. Here ∆ = 1.2, λ = 7.5, χ =
50. Top row shows the view in the shear plane (x-y plane), and the bottom row shows the
view along the velocity gradient (x-z plane). A Lagrangian marker point shows that the
membrane makes a net tank-treading motion. (b) Vesicle contour is shown in the x-z plane
at t∗ = 21.
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Figure 13: Fourier spectra of vesicle contours for ∆ = 1.2, λ = 7.5, χ = 50 showing higher
modes for three different inclination angles within or near the compressional quadrant. (a)
Spectra for x-y contours, and (b) x-z contours. The modes higher than fourth-order, and
odd modes in the x-z contours are observed.

B.3. Phase diagram

The phase diagrams from our numerical simulations for two values of ∆ = 0.44 and 1.2 in

the (χ− λ) plane are presented in Fig. 16(a) and (b), respectively. Based on the dynamics

described above, three regions are identified in the phase diagrams: (i) Tank-treading, (ii)

Transition, and (iii) Tumbling. The general nature of the diagrams is similar to that pre-

dicted by the experiments and the theoretical models: For small values of χ, the transition

occurs directly as TT −→ TU with increasing λ, and for χ & 1, the vacillating-breathing

or the trembling modes appear. We find that the vacillating-breathing mode appears near

the lower bound of the transition region, and the trembling-like dynamics occurs near the

upper bound. The lower and the upper bounds are independent of χ for large values. The

qualitative nature of the phase diagrams is similar for ∆ = 0.44 and 1.2, except that the

transition boundaries shifted downward for the latter.

Certain differences exist in comparison to the experiments and the theoretical models.

First, the width of the transition zone obtained from our simulations is higher than that
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Figure 14: Snapshots of tumbling vesicles: (a) ∆ = 0.44, λ = 12, χ = 50 which shows
that concavity can appear in the tumbling motion at higher χ values. Here both views in
the shear plane (x-y) and along the velocity gradient direction (x-z plane) are shown. (b)
∆ = 0.44, λ = 12, χ = 1 which shows a smooth elliptical shape at lower χ values. Only the
shear plane view is shown here.
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Figure 15: Transient dynamics observed for vesicles in the transition zone. Time evolution
of θ and D are shown. (a) ∆ = 0.44, λ = 8, χ = 10. Here the dynamics changes from
swinging to tank-treading. (b) ∆ = 0.44, λ = 10, χ = 5. Here the dynamics changes from
tumbling to swinging.

38



predicted by the theoretical models of KFM, DBPVM, and LTV. From our phase diagram

for ∆ = 0.44, the range of λ for the transition zone appears to be 7.5 to 10, corresponding

to the lower and upper bounds, respectively. On the contrary, the KFM model predicts 5.92

to 6.7, the DBPVM modes predicts 5.97 to 6.65, and the LTV model predicts 5.87 to 6.33

(see Table 1 in Zabusky et al, [2]), giving a much narrower transition band even for such a

relatively low value of ∆. It should be noted, as in the figure, the bold lines are for visual

guide only, as one would need more simulations to improve the prediction of the transition

borders. Moreover, in the transition zone marked as (ii) in the figure, there are two types

of the transient dynamics: in one the vesicle relaxes from a swinging to a tank-treading

motion, and in another it relaxes from a tumbling to swinging motion. We identify these

two types of transient motion in the figure. We also include the neutral curve calculated

by Zhao & Shaqfeh [23] for ∆ = 0.44. The swinging-to-tank-treading region falls below the

stability boundary, and hence, there is an overall agreement between the two works.

Second, the phase diagrams reported in the experiments by Deschamps et al. [3], and

Zabusky et al. [2] are plotted in (S−Λ) plane. The range of the trembling band from their

phase diagram is Λ ∼ 1.5 to 2.25. Note that these two bounds appear to be independent of

∆ values within the margin of uncertainty in the experimental data suggesting a self-similar

behavior in the two-parameter space. When we try to scale our data in the two-parameter

space, we find that the results are not independent of ∆. In other words, the lower and

upper bounds of Λ are functions of ∆. Specifically, we find that the lower and upper bounds

are Λ ≈ 1.75 and 2.24 for ∆ = 0.44, and 2.4 and 2.88 for ∆ = 1.2. Thus, the transition

band shifts upward with increasing ∆. Hence, we do not find the self-similar behavior in

the two-parameter space, unlike found by the LTV model and in the experimental analysis

of Zabusky et al. [2]. However, Zabusky et al. ’s plot appears to suggest a transition band

of ∼ 0.75 which is higher than our value. This discrepancy could arise due to the presence

of the thermal noise in the experiments, as well as the experimental uncertainty.

Third, Farutin et al. [14] in their recent analytical work, and Biben et al. [15] in their

recent boundary integral simulations have shown that the inclusion of the fourth-order

harmonics in vesicle shape widens the transition band upon increasing χ. Their analytical

and numerical predictions for the transition band are close to our results. On the contrary,

the transition band found in our simulations does not show such widening effect for the

range of χ up to 50 considered. Further, similar to the KFM model, we observe that the

transition band in the (χ− λ) plane becomes narrower as ∆ increases.
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IV. CONCLUSION

We presented a 3D numerical simulation of vesicle dynamics in shear flow using the front-

tracking method. Our numerical technique is able to simulate the vesicles in the tank-

treading, vacillating-breathing, trembling, and tumbling modes. The main objectives were

to elucidate the parametric dependence and the self-similarity of the vesicle dynamics, quan-

tification of vesicle deformation, and the analysis of shape dynamics in the trembling mode.

The front-tracking method presented here is an alternative to the boundary integral method,

which has been often used for the vesicle simulations. The choice of the front-tracking

method over the boundary-integral method is due to the straightforward implementation

and versatility. The current method can be readily extended to include membrane shear

resistance (e.g., [35]), membrane viscosity, and most importantly finite Reynolds number

effect, which could be the case for giant vesicles. Further, the present method is very stable

over a large range of the control parameters, such as shear rate, viscosity contrast, bending

stiffness etc., and hence, long simulations can be performed without losing numerical sta-

bility. In contrast, in the boundary integral method by Kraus et al. [16], the effect of λ is

not considered. In addition, in case of a structured grid of the vesicle surface, there is the

possibility of mesh entanglement in the poles which is not the case here. We do not observe

local coarsening or entanglement of surface mesh over the length of the simulations; thus,

no remeshing is done. It is also encouraging that the results from our simulations agree

well with the spectral accurate simulations of Zhao & Shaqfeh [23]. A comparison of the

numerical efficiency of different methods, however, is beyond the scope of this work.

In general we find an agreement with the notion set forth in Zabusky et al. [2] that the

applicability of the perturbative results is limited despite some general agreement with the

direct numerical simulations, and experiments. Here we find that many of the deviations

between the perturbative results and the simulation results occur even in the absence of

thermal noise.

The major findings of this article are as follows:

(i) We do not observe a self-similar behavior of the vesicle dynamics in the two-parameter

phase space proposed by the LTV model, and suggested by Zabusky et al. in their analysis of

the experimental data. Rather, we find that the phase boundaries depend on the excess area

even when plotted in the two-parameter space. In other words, the dynamics is governed by
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three controlling parameters, namely, ∆, λ and χ, as in the models of DBPVM, and KFM.

(ii) The linear scaling of the TT angle using Λ is valid only for Λ < 1. The breakdown

of the scaling at higher Λ occurs even in the absence of thermal noise.

(iii) We show that in the transition regime, both the vacillating-breathing-like motion

characterized by a smooth elliptical shape, and the trembling-like motion characterized by

highly deformed shape are possible. For the trembling-like motion, the shape is highly three-

dimensional with concavities and lobes, and the vesicle deforms more in the vorticity direc-

tion than in the shear plane. This result underscores the importance of three-dimensionality

in vesicle dynamics. A Fourier spectral analysis of the vesicle shape shows the presence of

the odd harmonics and higher-order modes beyond fourth order.

(iv) Our estimation of the critical viscosity ratio λc is in excellent agreement with the

experimental observation of λc ∼ ∆0.24±0.02 by Kantsler & Steinberg [9]. The computed

tank-treading angles are also in very good agreement with the experimental measurements

within the margin of uncertainty. Similar to the experimental findings, the numerical TT

angles deviate significantly from the theoretical results at large values of ∆. Despite the

absence of thermal noise in the simulations, the slow decay of the TT angles found here

agreed very well with the experimental observation.

(v) Similar to the DBPVM, KFM and LTV models, we find an explicit dependence of

the tank-treading angle on χ for small values, but saturation at higher values. However,

contrary to the models, χ-dependence is observed to increase with increasing λ.

(vi) In agreement with Seifert’s prediction [11], and experimental measurements by

Kantsler & Steinberg [18], we find that vesicle deformation saturates with increasing χ.

Quantitatively, we find that Seifert’s prediction of D =
√

15∆/32π for nearly-spherical

vesicles at χ → ∞ agreed very well with the numerical results in the range ∆ < 1.
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Figure 16: Phase diagram for the vesicle dynamics in linear shear flow for: (a) ∆ = 0.44; (b)
∆ = 1.2. (i) Tank-treading zone •; (ii) Transition zone �: initially tumbling motion relax
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from the linear stability analysis (- - -). Bold lines are guide for the eyes.
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