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Given a complex networked system whose topology and dyrsremuations are unknown, is it possible
to foresee that a certain type of collective dynamics caertlly emerge in the system, provided that only
time series measurements are available? We address tlsisofquiey focusing on a commonly studied type of
collective dynamics, namely, synchronization in couplgdainical networks. We demonstrate that, using the
compressive-sensing paradigm, even when the couplinggstrés not uniform so that the network is effectively
weighted, the full topology, the coupling weights, and tleela dynamical equations can all be uncovered
accurately. The reconstruction accuracy and data reqaeimeare systematically analyzed, which includes a
validation of the reconstructed eigenvalue spectrum ofititerlying coupling matrix. Master-stability function
(MSF), the fundamental quantity determining the networkcéyonizability, can then be calculated based on the
reconstructed dynamical system, the accuracy of which eaasbessed as well. With the coupling matrix and
MSF fully uncovered, the emergence of synchronous dynaimitte network can be anticipated and controlled.
To forecast the collective dynamics on complex networksisxaremely challenging problem with significant
applications in many disciplines, and our work representsidial step in this important area.

PACS numbers: 05.45.-a,89.75.-k

I. INTRODUCTION is nothing but the largest Lyapunov exponent charactegizin
the transverse stability of the synchronous dynamicaéstat

The most amazing feature of a complex dynamical systen'1:Or a typi_cal nonI_inear or chaotic oscillator, the_re maysexi_
an open interval in the space of some generalized coupling

consisting of a large number of interacting units (or compo- ter [71. where the MSF i i that int
nents) is the emergence of collective dynamics. Indeed, it jparameter [7], where the IS negative so that any poin

this feature of “more is different” [1] which makes complex in this interval can lead to stable synchronization. When th
systems extremely interesting and the study of collective d netwgrk structure Is given, the set of e|_genvalueS of the un-
namics fundamentally important to many natural and technoderying coupling matrix can be determined. For a network

logical systems. Given a complex system, if the underlyin%f coulplrefd r(:scnl?r:ors, the Ehase-sptace d|men5|otr)1 can-be ?r(]
mathematical rules or equations are completely known, the emely nign, So theré can be many transverse subspaces. 1he

in principle the possible types of collective dynamics in the set of eigenvalues, after suitable normalization, gives#t of

system can be predicted and studied, and most existing Worﬁfeft've generalléed couplllillgt\r:varimeters as_soct|_atd1n| alit
on complex systems are of this nature. In realistic applica- € lransverse subspaces. INetwork synchronization cai occ

tions one may encounter the situation where, for a compIeiny when all these parameters fall into the interval of nega

system of interest, the local system equations and thesitter tive MSF.
tions among the components are not knapriori but only In this paper, we propose a general approach to forecasting
a set of time series are available. Can one still forecast Ofhe emergence of Synchronization in Comp|ex oscillator net
anticipate whether a certain type of collective dynamias ca works based on a complete set of time series collected from
potentially occur in the system? all components of every oscillator. The specific settinghef t
Even when the system equations of a complex system angroblem is, as follows. Assume that at the time of interest th
known, it is still extremely challenging to predict, invigstte,  oscillator network is in an asynchronous state and timeseri
and explore the emergence and evolution of collective dynanfrom each node in the network can be obtained. Assume fur-
ics. In order to address the issue of time-series basedgaredither that there exists a parameter characterizing the geera
tion of collective dynamics, one must focus on a relativelycoupling strength among the nodes. The question we ask is
well known class of such dynamics. We shall then considewhether it would be possible to predict that synchronizatio
synchronization [2—4]. Specifically, we shall study couple can or cannot occur when the coupling parameter is allowed
oscillator networks [5], a paradigm for probing and under-to change. Our method consists of two steps. Firstly, we re-
standing the synchronous behavior of interacting unité wit construct the full topology of the network, together witke th
nonlinear dynamics. When the system equations are knowmpupling strengths and the nodal dynamics, based solely on
a widely used tool to determine whether synchronization caime series. This is accomplished by casting the prediction
emerge physically is the master-stability function (MSF) a or reverse-engineering [8—10] problem into the framewdrk o
ticulated by Pecora and Carroll [6]. In the MSF framework,compressive sensing, a recently developed, powerful conve
synchronization under various combinations of networkestr — optimization paradigm [11-15] for recovering sparse vecto
tures and oscillator dynamics can be predicted [5]. For exbased on very limited amount of data. Here the relevant vec-
ample, given the nodal dynamical equations, possiblesstatdor to be reconstructed originated from both nodal dynamics
of synchronization can be determined, which are basicadly t and topology, which is typically sparse due to the spardity o
possible dynamics on the synchronization manifold. The MSFEomplex networks. Secondly, from the predicted nodal dy-
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namics and network structure, we perform synchronizgbilit can uncover not only the full topology of the underlying net-
analysis by using the standard MSF approach [5]. We valiwork, but also the detailed nodal dynamics and link weights
date our method by using randomeighted networks [16] of  (interaction strengths), making it possible to forecastsyo-
both continuous-time and discrete-time chaotic systengs,(e nization.
the classical Lorenz system [17] and Hénon map [18]). Our The problem of compressive sensing [11-15] can be for-
computation and analysis indicate that with only small amiou mulated as to reconstruct a sparse veXore RY with U
of measured data, the synchronization regions in the paramenknown coefficients from measurement vec¥oof M lin-
ter space as identified by MSF and the network structure caearly independent measurements under the projectionxmatri
be accurately predicted, rendering possible inferencgmf s A inthe formY = A-X, whereY € RM™ andA isanM x U
chronous dynamics. The critical data requirement and sanmatrix. Because of the sparsity of the vecXgrthe number of
pling frequency for different network sizes and degreerdist required measurements can usually be much smaller than the
butions are studied in detail. The issue of the effect of meanumber of unknowns, i.elM <« U. Accurate reconstruction
surement noise on prediction accuracy is also addressed. &an be achieved by solving the convex optimization problem:
addition, the dependence of data requirement and computa-
tional time on the network size are studied. Finally, we spec min[[ X[, st A-X =Y. 1)
ulate on one potential application of our prediction method
controlling coupled oscillators to bring the system to yne
nization.

In Sec. |II, we describe our compressive-sensing base

Recently we developed a method based on compressive sens-
ing to infer the full network topology but for cases where
We network is unweighted [20]. Here we shall show that

method for reconstructing weighted complex oscillator- net & COMPressive-sensing based framework can be formulated

works and for estimating the MSF. In Sec. lll, a detailed ac—ven for weighted complex networks, for both continuous-

. . .time and discrete-time nodal dynamics.
count of representative examples is presented, togetiiar wi We first discuss the continuous-time case where the dynam-

a systematic analysis of the prediction accuracy, datanequ ics of a sinale isolated node is governed b
ment from different perspectives, effects of network siad a 9 9 y

noise, and computation time. In Sec. 1V, we discuss how pos- % = F(x), )

sible emergence of synchronous dynamics can be anticipated

based on data. In Sec. V, a conclusion and discussions aygherex is a d-dimensional vector, anB(x) is the velocity

provided. field of dimensioni. Without loss of generality, we choose the
parameters such that the individual nodal dynamical system
generates a chaotic attractor. For a weighted network of

II. NETWORK SYSTEM RECONSTRUCTION AND coupled oscillators, the system equations are
SYNCHRONIZABILITY ANALYSIS

N

A. Reverseengineering of weighted complex networked xi = F(x) - Z G (%)), p=1e, N ()

dynamical systems J=1
where theH(x) is the coupling function fronR™ to R™,

Our method is in fact a combination of two problems:and G is the N x N coupling matrix with symmetric

compressive-sensing based reverse engineering of complereightsG;; = G;; and diagonal elements satisfyidg; =

networked dynamical systems [19, 20] and synchronizabil— Z#i Gij. A nonzeroG,; is the necessary condition for

ity analysis [5]. Reverse engineering of complex networksnode: andj to be connected, regardless of the form of the

to uncover network topologies from experimental time serie coupling functionH (x).

is a problem of tremendous interest with significant appli- To separate different variables we rewrite Eq. (3) in the fol

cations [21-32]. Earlier examples include reconstructbn lowing form:

gene regulation networks [22] from gene expression data and

identification of neuronal interactions based on spikesifias x; =Ti(x;) — Z Gi;H(x;), (4)

cation methods [23-25]. More recently, a number of meth- i

ods for network reconstruction have been proposed, which ) )

include reverse engineering of coupled differential equast ~ WhereI'i(x;) = F(x;) — GiiH(x;) is the term associated

[26], response-dynamics-based method for coupled phase 04ith components at nodeonly which, in general, can be ap-

cillators [27], phase-space reconstruction based on @mim Proximated by a power series of tieomponents ir; up to

tion [28], noise-induced scaling law [29], noise-inducad d ordern in the following form:

namical correlation [30], random phase resetting [31] and i n "

ner composition alignment [32]. While these methods can 1, — , N (k) )l

successfully determine the network structure, they arélena Tl =2_ - D [, aalleid] (ci)al™, (3)

to determine two pieces of key information needed for prtedic

ing the emergence of synchronization: the interactiomgtite  for all components = 1,---,d. Here[(a;)x]i, ... 1, IS the

among nodes and the nodal dynamical equations. As wiltoefficient assigned to each polynomial term for fie com-

be explained, our compressive-sensing [11-15] based mheth@onent of nodé. For many well studied nonlinear dynamical

11=0 1la=0
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systems, most of these coefficients are in fact zero so that thwhere node itself is excluded. The measurement vector for
vector of coefficients is typically sparse, justifying thepé- nodei is denoted by
cability of the compressive-sensing paradigm. B

For simplicity and illustrative purpose, we choose linear Ci(t) = [21(),41(t), 21(8), -+ ;&N (), yn (1), 2n (1)]. (8)
coupling form_for the s&_—zcond term on the rlght-hand_ side c_)flf coupling is linear and applies to a single dynamical vialea
Eg. (4). Consider the simplest case where each oscillaior i, g coefficient vectoe; is generally sparse. The velocity vec-
teracts with every other oscillator through only one compo+,, %; can be calculated from time series &t sample time

nent. In this ca§e, when the coupling is fromlfhm com- t1,to, ..., ty . Finally, we have a set of linear equations, each
ponent of nodg to the kth component of nodé the only i, 'the matrix form of Eq. (4):

non-zero coupling term between nodand; is [H(x;)], =
[x;]x . A general expression for this type of linear coupling is &i(t1) Bi(t1) Ci(t1)
@i (ta) B Bi(t2) Ci(t2) (bz)

C;

. 9)

d
[H(Xj)]h :5kh Z 5k’h’[xj]h’, h = 1,...,d, (6) . . .
hi=1 @i(tar) Bi(tar) Ci(tar)

wheredy,, is the Kronecker delta. For nonlinear coupling be- Note that the above linear equation [33] is only for compdnen

tween multiple variables, we can group all terms containingr of node:. For the entire oscillator network, there a¥el

non-zero powers af; into T';(x;). such linear equations that need to be solved in order to fully
Having obtained a power series expansion of the right-handeconstruct the network topology and the nodal dynamics. A

side of EqQ. (4), the next step is to estimate the velocity fieldkey advantage of the compressive-sensing framework is that

%, on the left-hand side, which can be extracted directly fromit requires only relatively short time-series data to acplish

time series by using some typical finite-difference or ipter  this task.

lation methods. In this way, with all expansion coefficients We now discuss the case where the nodal dynamics are de-

as unknowns, Eg. (4) can be transformed into a set of linscribed by discrete-time maps:

ear equations, which can be solved by using some standard N

compressive-sensing algorithm. After all the expansiagf-co

ficier?ts are determinged,gthe nonlinear nodal dyrrl)amical equa xi[t +1] = F(x[t]) — Z Gy H(x;[t]), (10)

tions and the coupling functions are known, uncovering the =1

full networke_zd dyngmical system including accurate estésa where F(x;[t]) is the map on node iH(x;]]) is the cou-

of the coupling weights. pling function, andG;; is the coupling strength. Similar to

~ To better illustrate the steps to cast the nonlinear dynamgne continuous-time cas6 is the weighted matrix. In order

ical network equations into the compressive-sensing frameyg estimate the derivatives of the dynamical variables, sve a

work, we consider a concrete example off@roscillator net- - syme that in one measurement two successive observations of

work, where the nodal dynamics of each oscillator is threghe nodal states are availabe{t] andx;|t + 1], for all nodes

dimensional { = 3, sayz, y andz). In this case, we have jn the network. In particular, the time series & used to con-

x; = [w;,y;,2]" forl <4 < N. Take component for  struct the power series, as in the continue-time case, and th

example. According to Eq. (5), we expafid], up to order  gpservation at+ 1 can then be used to construct the measure-

n =3 ment vector on the left side of Eq.(9). The networked system

of discrete-time maps can then be cast into the framework of
TiGai)le = lanalooowiyrz? + -+ [(ai)z]OOBx%)ng;‘; compressive sensing:

+ [(ai)o]oroiy; 2 + - - + [(@i)a]io02; 97 24 [ 1 B, Cilt)
ot (a)s B33, zi|th + ill1 ill1
[(a ) ]33396 Y; 2 :Ci[tz n 1] Bi[tz] Ci[tg] b,
Letting b; = ([(a:)z)ooo; [(@i)z]oor, -, [(ai)z]ss3)" be the ; - : : “\e ) (11)
coefficient vector ofT'; (x;)]., and wiltar + 1] Bi[tw] Ciltu]
(1) = 12 ()00 (1) 2 ()0 s (0) s (£)0 2 (£) L - - .
Bi(t) = [wi(t) (1) i (1), i (8) wi (1) 24 (1), whereB;[t] is a function of the observation of nodat¢, and

zi(t)°yi(t)°zi(1)°’],  (7)  C,]t] relies on the observation of all other nodes coupled to
at the same time The isolated map and the network topology
(the coupling interactions) can then be extracted sepgrate
from the coefficients ifb; andc;.

we havdl;(x;)]. = B;-b;. Similarly, for the coupling terms
we can write

ZGin(Xj) = Cl - Cj,
i B. Stability analysisfor synchronous dynamics
and
After the nodal dynamics and the network structure have
Ci = Oke[Girdpa, GinOhry, GinOprzy - - been uncovered from time series, we can use the MSF frame-
GiNOz, GiNOpry, Gz-N(Sku]T, work to assess the emergence of synchronous dynamics and
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its stability [5]. For the network system Eq. (3), the syn-obtained for other network topologies and different types o
chronous state; = x2 = -+ = xy = s, whereds/dt = nodal dynamics besides the cases presented here.

F(s), is an exact solution. The time evolutions of small vari- The classical Lorenz system is given by, 2] = [o(y —
ations from the synchronous stafe&; (t) = x;(t) —s(t), are  z),x(p — 2) — y,zy — Bz], where we set = 10, p = 28,
governed by and = 2 so that the oscillator is chaotic. Time-series data
are generated from x 10° numerical-integration steps with
maximum step size of0—*. The Hénon map system is given
by (2111, ve41] = [1 — az? + v, bz, and we set, = 1.4 and

b = 0.3 so that the map exhibits chaotic dynamics, for which

whereDF (s) andDH(s) are thed x d Jacobian matrices of time series of lengtfi’y = 100 are generated. However, the
the corresponding vector functions evaluates(&t, and¢ isa ~ @mount of measurement data used in the compressive-sensing
parameter characterizing the global coupling strengttighvh  @lgorithm can be much smaller. Using an adjustable sampling
can be set to unity for convenience. We denote the eigerwalud’eéquencyl/AT (or iterative intervall'y), we obtain sparse
of the coupling matrixG asyi1, s, . . ., v and the associated Measurementdata to reconstruct the nodal dynamics, ogupli
eigenvectors ae, e, -+ ,ey. While compressive sensing Pattern anq the network structure. In a typlcal application
does not require network connectivity, it is meaningfulxe e SO0me physical knowledge about the underlying complex net-
plore synchronizability only when the underlying netwaslai ~ Worked system may be available. This can in fact help reduce
single connected component. Since the network is connecteth® computational complexity and increase the efficiency an
there is only one zero eigenvalue, so the eigenvalues can @curacy significantly. For example, in the case of Lorenz-
sorted a%) = 1 < gz < --- < pun. We then diagonalize O0scillator networks, some preliminary understanding & th
the coupling matrix to a block matrix form composed of all System can facilitate the choice of the power-expansion or-

déxi
dt

N
=DF(s)-6x; — &Y _GyDH(s) - 0x;,  (12)
j=1

the eigenvectorsQ = [e1;ey; - - ;en], Which can be used der in Eq. (5). To be illustrative, we apply the constraint
in the transformationjx = Q - dy, to bring Eq. (12) into the 1 + /2 + I3 < 4 on the powers of the componentsy, =
following block-diagonally decoupled form, so that the number of unknown coefficients can be reduced.
s The Jacobian matrix of the Lorenz system is

Yi _ [DF(s) — K;DH(s)| - dy;. (13)

dt —oc o 0
whereK; = &u,; (i = 2, ..., N) are the coupling strength in DF=|p-z -1 -z |. (14)
the oscillator network. For eachi; value, the corresponding y = =B

MSF ¥ (K) is the largest Lyapunov exponent of Eq. (13) [6]. i , ) i
If, for all possible values ofs;, the corresponding MSFs are 1N€ Jacobian matrix of the coupling functidbH, for one

all negative, a small perturbation about the synchronate st SPecific node component, issax 3 matrix with only one
will vanish exponentially so that it is stable. Since MSFs dolOnZero element at the corresponding position determigied b

not depend on the specific network topology but on the coutn® coupling pattern. In order to compute the MSF, we need

pling parameters, we can first infer the parameters from onlf reéconstructthe network structure, find coupling pattend
set of specific measurements and calculate the MSF for arpfi€t€rmine the parameters characterizing the nodal dysamic
trary K so that the emergence of synchronous behavior can

be anticipated. This can be done even when links are added

or removed, because of MSF’s independence of the network A. Predicting weighted networks

structure.

After the MSF is known, the synchronization behavior of  Figure 1 shows the results of predicting a snvedighted
the whole oscillator networks can be assessed. For exampleorenz-oscillator network. There are in tof@?2 terms in the
suppose the system is not currently in a synchronous stateoefficient vecton for each node, in which thest to the35th
but there is a region oK, K, < K < Kj,, in which the  terms correspond to nodal dynamics vedterand the rest
MSF satisfies(K) < 0. We can find a suitable positive to the coupling vectoe; with other nodes. The inferred cou-
coupling strengtlg such thatk, < {us < {uny < Kp SO pling strengths of node Na.with other nodes is shown in Fig.
as to drive the system into synchronization. This is becausel (a) where, with respect to the number of power-expansion
under the stretching/squeezing effect{ofall possible/’;’s  terms with nonzero coefficient values, the predicted cogpli
can be brought into the negative MSF region. terms with other nodes are marked in Fig. 1(b). The net-

work structure with node degrees and link weights is shown in

Fig. 1(c). We see that all existent couplings have been ssece
1. EXAMPLES fully predicted, together with the corresponding link whetis)

Results of prediction of all22 terms ina for all three vari-

To illustrate our method to forecast synchronization, weablesz, y, z in the coupled Lorenz-oscillator network are pre-
first choose the Erd6s-Rényi (ER) type of homogeneous rarsented in Fig. 1(a). Besides the nonzero coupling termsyoth
dom network consisting of identical Lorenz oscillators as a nonzero terms represent various power-series terms in the
example, and then extend to scale-free networks and discretnodal dynamics in each variable. The related forms of the
time nodal dynamics as well. In fact, similar results haverbe nonzero terms are remarked. For example; — Cy is in
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FIG. 1: (Color online.) Results of detecting dynamical andging
terms via compressive sensing. The network used is the EfRman
network with N = 30 nodes and connection probability= 0.04.
The network is weighted and the symmetric weights are rahgdom
distributed in[0.1, 1.0]. Panel (a) shows the prediction results for
all three components, y, z of node No.1, where the number of
data points (after sampling) used78% of the total number of the
power-series coefficients assumed. Terms with nonzerdicieets
are marked by open circles, while others by plus-signs. The3fs
terms are for nodal dynamical equations, and the rest atbdarou-
pling functions. In the first panel for component the data points
surrounded by the dashed box represent coupling-term cieeits
from other node components to componertdf node No.1, which

is magnified in panel (b) with numbers above data points atelic
ing the nodes from which the couplings come. Panel (c) shbes t
original ER network, where the thickness of the edges indgthe
corresponding coupling strength. One-to-one correspaelean be
identified between the predicted coefficients in panel (d)tae cou-

pling strengths in panel (c) for each of node N.neighbors.

fact a combination of nodal function and coupling, as indi-
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of all power-series terms in the velocity field and coupling
function associated with node Nb. We have also examined
the prediction results for all other nodes in the network and
found excellent agreement between the predicted and actual
power-series terms governing the whole networked dynami-
cal system.

The efficiency of our method for reconstructing weighted
networks can be assessed by addressing the issue of data re-
quirement and sampling frequency when nearly perfect pre-
diction accuracy is achieved. It is useful then to define pre-
diction errors in the coefficient vectar. Sincea is sparse,

i.e., most of its elements are zero, it is necessary to Gieul
the errors for nonzero (existing) and zero (non-existieg)s
separately. In particular, the relative error of a nonzermt
Eerm, is defined as the ratio to the true value of the abso-
lute difference between the inferred and the true valueg Th
prediction errorE,, . of all nonzero terms in a component,

Enz = <Eterm> )

is the average over them. For a zero term, a relative errer can
not be defined. As an alternative, we define the absolute error
as the average value of the inferred zero terms. The predicti
errors can then be computed as functions of the am&ynt

of measurements, normalized by the total number of unknown
coefficients to be determined, i.e.,

number of measurements
number of all unknown coefficients

m

and the sampling time intervAlT", as shown in Fig. 2, where
AT is the average time interval between two pairs of data
points, with each pair containing two nearby data points for
the purpose of estimating the corresponding derivative. In
Fig. 2(a), we see that, for sufficiently large valued®f, F,,.
reduces essentially to zero with extremely small error,biars
dicating accurate reconstruction of both nodal dynamick an
network structures with complete information about the lo-
cations of the links and their weights. From Fig. 2(b), we
observe that a larger sampling interval” tends to facilitate
prediction. This can be intuitively understood by notingtth
suitably largeAT values weaken the correlation between two
adjacency data points, from which reconstruction may be ben
efited. In both Figs. 2(a) and 2(b), thecomponent appears
to be the most difficult one to be fully reconstructed, as the
required data amount is the largest. This is due to the pres-
ence of thepx term in theY component, where the value of
the coefficientp is much larger than other nodal dynamical
and coupling coefficients, requiring more measurements and
larger sampling intervals. Our experience indicates timat,
general, the data requirement for equations that involle re
tively larger coefficients tends to be higher.

In order to assess the accuracy of the predicted weighted

cated in Eq. (4). Based on the indices of the coupling termspetwork, it is necessary to reconstruct the adjacency matri

we can identify that the couplings are froyto x, because
of the terij‘V:1 Gi;(y; — y;) in the equation oft. There-

for any given coupling scheme. With all expansion coeffi-
cients obtained from compressive sensing for all dynamical

fore, the term—C'y comes from) . —G,,;y;, which has been variables of each oscillator, we can readily form the matrix
merged into the nodal dynamical equation. Since all cogplin by using the terms associated with the various coupling-func
terms are successfully identified, the’'y term can be sepa- tions. For example, coupling coefficients from each node con

rated from the combination, resulting in complete preditti

tribute to a single row of the adjacency matrix, given any
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Fig. 1(c). The coupling schemegs— z and the normalized amount
FIG. 2: (Color online.) Prediction errors as functions oé thor- ~ Of measurements i&8,,, = 0.3.
malized amount of measuremeRt,, and sampling interval\T for
a random symmetric weighted network &f = 60 Lorenz oscilla-
tors, where the connection probabilityps= 0.04 and the weights
are randomly distributed if9.1, 1.0]. There are possibilities that the Although R, depends on the choice of the threshold, the qual-
generated networks are disconnected, but in order to be@bten-  itative behavior ofR,.. is insensitive to the network structure.
sider synchronizability, we disregard rare cases whera¢works For example, we can calculai&. for different ratiosR,,, de-
generated consist of isolated components. In (a), the sagnipter-  fined as
val is fixed atAT = 0.1, whereas in (b), the amount of measurement
is fixed atR,,, = 0.6. In both panelsE,. is averaged over0 inde- _ __number of nonzero coefficients

o R,. = —
pendent network realizations. "% ™ number of all unknown coefficients

whereR,,, can be adjusted by varying the network size while
keeping the average degree unchanged. Figure 4(a) shows
R, versusR,,, for different ER random networks. We see

coupling scheme. Figure 3 shows, fOIT m% x.couphng that, asRR,,, becomes smaller so that the network becomes
scheme, the reconstructed and the original adjacency-matr, re sparse, the value &, tends to decrease, indicating that

g?ﬂ& r;ra r:/eé ?r?eol(ijnigl(r)izt[?oenn; Esévrv,eigc}iré?et;v%jfaggg,ﬁsagat' rE(Fﬁaller amount of data is required to achieve the same pre-
y P ’ diction accuracy. This is due to the merit of our compressive

of the corresponding weights. ) . ] sensing based method in dealing with large networks, ae., |
To further address the practically important issue of datayata requirement. This feature does not depend on the retwor
requirement in reconstructing weighted networks, we define opology either, as shown in Fig. 4(b) for scale-free nekwor
quantity ., which is the critical amount of data required for \yhereR, is shown as a function of, the power-law exponent
the prediction errotZ,,. to fall below some predefined small i, the degree distribution. When the network size and the av-
threshold value (e.g0,01), namely, erage degree are fixed, a smaller valuevaforresponds to a
more heterogeneous network structure. In this case, the val
R.=inf{R,, : Ey.(Ry) < 0.01}. of R, is relatively large. The reason is that for a more het-
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(b) FIG. 5: (Color online.) For the random Lorenz network undes t
coupling schemey — =z, accuracy measurd g of the eigenvalue
0.55¢ 1 spectrum of the reconstructed network coupling matrix agatfon
of the normalized data amou#,,,.
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Here we use a continuous region instead of a set of individual
0.45} . eigenvalues of the coupling matrix for the definition of the
true regionR?,, because the necessary condition for the system
to be synchronizable is that all eigenvalues must be located
0.4 : : : in the negative region of MS® (K). Since the MSF is not

2 3 4 5 involved in the definition ofd, a convenient choice is to

o compare the region from the minimum nonzero eigenvéalye

to the maximumk n;, which limits our discussion within the
systems possessing the type of MSF [see, e.g., Fig. 9(b)]. A
representative plot ofig as a function ofR,,, is shown in
Fig. 5. We see that, the eigenvalue spectrum can be predicted

FIG. 4: (Color online.) (a) For ER random networks, meastfre o
critical data requiremenk, as a function of the density of nonzero
coefficientsR,,., whereR,, . is adjusted by fixing the average degree

atk = 3 and increasing the network size froMi = 20to N = accurately wherR,,, exceeds abow5%, due to the low data
200. (b) For scale-free networks.. as a function of the power-law requirement of compressive sensing.
exponent in the degree distributiop(k) ~ k~“. The network size Similar results are obtained from networks of HEnon map

is N = 60 with the minimal degreé:.., = 3. For both panels, systems. In the following examples we discuss the effect of

the data points are results of averaging overdifferent network  the network size and noise on system reconstruction, and als

realizations. the issue of computational time. To be illustrative, we as-
sumed weighted random networks with weights distributed
in the rangew;; € [5 x 107%,1073] (so that dynamical tra-

erogeneous network, the probability of having dense sets dectories from the Henon map do not diverge). The coupling
coefficients for the hub nodes is larger, requiring more datafunction is chosen to be linear, and it occurs betweemthe
As « is increased so that the network becomes less heteroggariables among the nodes. Applying the compressive sgnsin
neous,R,. can be reduced. algorithm allows us to infer the nodal dynamics and network
Eigenvalues of the network coupling matrix can be calcutopology from the coefficienta.
lated upon determining the structural parameters of the net The performance of our method with respect to different
work. It is thus useful to define another quantity to charachetwork size is an important issue. As shown in Fig. (6), as
terize the accuracy of the reconstructed weighted networkhe data amounk,,, is increased, for different network sizes
Specifically, we first define the eigenvalue interval that-con ranging fromN = 20 to N' = 200, the normalized predicted
tains all the original eigenvalues & = (K, Ky) and the  errorsk,, approach zero, as indicated by the horizontal solid
predicted one a&;, = (K%, K}). We then define the fol- line, suggesting that the system can be reconstructed vgith h
lowing quantityA  to characterize the accuracy of the recon-accuracy based on small amount of data, regardless of the net
structed eigenvalue spectrum: work size. While slightly more data are required for larger
networks, the amounts are still quite small, i.e., less than
total number of unknown coefficients in the power-series ex-
pansion. We also find that the critical data rafiig defined as

_ R,NR,  min(Ky, K)y) — max(Ko, K)

Ap = = .
"7 RIUR, max(Ky,Kpy) — min(Ks, K})

(15)
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FIG. 6: (Color online.) For weighted, random networks ofnidé
maps, prediction errors as functions of the normalized dataunt
Ryr. The network size varies from 20 to 200, and all the networks
tested have the same connection probabijlitg 0.04 with weights ol
distributed in[5 x 10~*,10~3]. Each point is the result of averaging

over 10 independent network realizations. The horizordkd dine A
at Enz = 0.01 is used to indicate the critical data requirem&ht |V 1.5
for each case.
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FIG. 8: (Color online.) For weighted, random networks ofnidé
maps, (a) the average computational tiffigin an arbitrary unit)
required for one variable on one node versus the data Eatipfor
fixed network size = 100), (b) T" versus the network siz& for
fixed R, (0.75) for which accurate reconstruction can be achieved.
For both panels, 20 network realizations are used.

O

10_ E SEEEEEEH

0.2
R surement noise on reconstruction. In our framework, olaserv
tions of the variable states in one measurement are asstciat

FIG. 7: (Color online.) For uniform measurement noise, jutih with the state of the system at the particular time, so measur

error E,,. versus the normalized data amoury,, where the net-
works are the same as in Fig. 6. The amplitude of additiveenisis

ment noise can be quite important. Figure 7 shows the recon-
struction result when additive noise of amplitugle 10~° is

5 x 10~° for both curves. Each point is the result of averaging overpresent. We see that compressive sensing is capable of gener

10 different network realizations.

ating approximate solutions of the networked system even in
the presence of noise. The data amount required to reconhstru
the network, however, tends to be slightly larger than that i
the case where no noise is present.

the relative data amount required to make the normalized pre \We have also considered the issue of computational time.

dicted errorE,, , less than a small threshold value (e(g01),

In our method, the main computational load lies in solving

decreases with the network size This is in accordance with  Eq. (11), which depends on the number of unknown coeffi-

the results in Fig. 4(a), since the degree of sparsity of the U cients and the number of measurements. We first fix the net-
known vectoia increases with the random network size as thework sizes afV = 100 and record the computation time as the

connection probability is fixed.

relative data amounk,, is changed. As shown in Fig. 8(a),

Another issue that we have studied is the effect of meathe required time to reconstruct one coefficient vectordfo



variable of one node in the network) scales approximatety li (@) x—>X (b) y—>x
early with the data amount. Next we fix,, and monitor the 1 2

required computation time as a function of the network size
For linear coupling, the number of unknown coefficients is
proportional to the network siz&' if it is sufficiently large. g
We setR,,, = 0.75 to ensure accurate reconstruction in each S
case, so the amount of data used for reconstruction inceas -1
linearly with the number of unknown coefficients. Figure)3(b

Model
Predicted

Model
Predicted

W(K)

e
Loses

shows the result, where the network size varies frgm: 20 @ 7
to N = 500. We see that the required computation time in- Model
deed increases approximately linearly with the number ef un 0.5 ©  Predicted
known coefficients. obL? - 7%
o Predicted -0.5
B. Prediction of network synchronizability from data 00 10 20 30 0 50 100
K K

A full reconstruction of nodal dynamics allows us to cal-
culate the MSFI as a function ofK = ¢u for any given  FIG. 9: (Color online.) Comparison of MSFs calculated frore-p
coupling scheme. To be illustrative, we calculate the MSFdlicted parameters (open circles) and from real ones (soks) for

for four different coupling schemes (& z, y — z, z — z, the random Lorenz oscillator network. Panels (a-d) are doipting

andz — z) for the coupled network of Lorenz oscillators, Schemese — z,y — @, z — z, andz — z, respectively. Al
me-series data are generated by the same oscillator rieasoin

as shown in Fig. 9. These coupling patterns generate distin Ii @)
behaviors of the MSF in terms of its number of zeros. Ifa 0 <
region of U(K) < 0 exists, emergence of stable synchroniza-
tion is likely for the oscillator network, regardless of thet-
work structure; otherwise synchronization is unlikely &y
network structure. In Fig. 9, for example, for the — =
coupling scheme, there is a relatively large synchroropati
region for K beyond a critical value. For the — 2 scheme,

a synchronization region exists but its size is not as lagge a min(K,, K)

that for the case of — z coupling. For thez — = cou- Am = max(Ko, K!)' 17)

pling scheme, there are in fact two separated synchroaizati wa

regions. In contrast, for the — = coupling scheme, synchro- \hereo < A,, < 1. In cases where there are multiple syn-
nization is Unlikely becaUS'é(K) is pOSitive for all values of chronization regionS, e.g., as happened forthe 2 Coup“ng

K. Amore systematic analysis of the MSF behaviors for typ-scheme in Fig. 9 (d), the agreement measure can be taken as

ical nonlinear oscillators can be found in Ref. [7]. The dxce the average of all measures, one calculated from each separa
lent agreement between the true and predicted MSFs shown fagion.

Fig. 9 suggests that our compressive-sensing based approac
can lead to quite reliable estimate of the MSF at a quantita-
tive level. Likewise, the boundaries between synchronadsa |y paTA-BASED ANTICIPATION AND CONTROL OF
asynchronous regions can also be precisely identifiederend NETWORK SYNCHRONIZATION

ing possible anticipation of the emergence of synchroiunat
in the underlying network system.

T iy th f f thod in identifvi Based on the reconstructed network structure and dynam-
0 quantify the performance of our method in identifying ics, we now propose a strategy to anticipate and control col-

:jheen?tlggT;On'Zagg&::g:?&:’erg3{Q:;;@?ﬂf:gi%ﬁ%ﬁg? ctive dynamics of complex oscillator networks. The base
YA, P Y of control is prediction of future behavior by decoding the

t'OR regmrg as e.f>.<en|1|pllf|edc|in F'Qt]' QtE]b) Iort}ye—> :chcou_plnt'l_g available time series at the present. If the natural dynsmic
scheme. specitically, we denote the true synchronizalion 1§, y,q tre are undesirable, one can implement certain con

gion R, by (Kq, Kp) inwhich the MSF is negative, and denote trol scheme to drive the system to avoid the undesirable stat

. . ey .
the predicted regio®, by (K7, K}). We thus define before it occurs. This, however, requires relatively castel
R,NR: wmin(Ky, K]) — max(K,, K!) knowledge about the networked dynamical system which, as

predicted. For the case of single intersectionof MSF with
V(K) = 0, as shown in Fig. 9(a) for the — =z coupling
scheme, we can define an agreement measure in a similar way:

Ay = = 16 ; " ng
MR UR T max(Ky, K]) — min(Ka, K))' (16) we have demonstrated in Sec. Ill, can be achieved by exploit
ing the compressive-sensing paradigm.
where generallyd,; < 1. Two extreme cases arg); = 0 To be concrete, we discuss the case where synchronization
whenR, R, = 0, andAy = 1 whenR, = R,, whichin- is a desirable state of operation for the system, assumatg th

dicate perfect prediction. Results are shown in Fig. 10,r&he the system is not synchronized at the present. The first step
Ay approaches unity as the amount of measurement exceesto determine, from currently available time series, wibet
only about65% of the number of assumed coefficients to besynchronization is intrinsically likely to emerge. An ar@mw
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into the negative MSF interval. To illustrate this metho, w
1t d use the network system of coupled chaotic Lorenz osciliator
in Sec. lll. Figure 11(a) shows some representative time se-
ries in a case where the network is not synchronized, and the
corresponding MSF and eigenvalue spectrum calculated from
the reconstructed network structure and dynamics are shown
< 0.61 1 in Figure. 11(c). We see that some valuegid{data points
in Figure. 11(c)], the product between the coupling strengt
0.4 1 ¢ and eigenvalueg, are not located in the synchronizable re-
gion as indicated by the MSF [curve in Figure. 11(c)]. Thus,
0.2 | at the current parameter setting, synchronization carecg-b
alized in the system. In order for synchronization to emerge
‘ ‘ ‘ ‘ all K values mustfall into a region where the MSF is negative.
8/_“4 05 06 07 0.8 0.9 A simple and practical way to manipulafe is to adjust the
R coupling strength but to keep the nodal dynamics and network
m structure unchanged. When the coupling stregthmodi-
fied, the network system can indeed achieve synchronization
as shown by the synchronous time times in Figure. 11(b). Ex-
amination of the MSF and eigenvalue spectrum indicates that
indeed, in this case alk values fall into the negative MSF
interval. We stress that a prerequisite to this simple abntr
scheme is full knowledge of the network structure and dy-
namics which, as we have demonstrated, can be faithfully re-
constructed based solely on small amount of data.

0.87

FIG. 10: (Color online.) Measure of agreement of synchratidn
predictionA s as a function ofR,,, for the MSF shown in Fig. 9(b),
where the coupling schemegjs— x.

V. CONCLUSION AND DISCUSSION

Reconstructing dynamical systems based on time series is
a problem of significant interest with broad applications in
many areas of science and engineering. However, this prob-
lem has been outstanding in nonlinear dynamics because, de-
spite previous efforts [34] in phase-space reconstrucisimg
the standard delay-coordinate embedding method [35] to de-
code the topological properties of the underlying systesw h
0 10 20 30 4O 10 20 30 to aC(_:urater infer the underlyinmpnlinear System equations
K K remains largely an unsolved problem. In principle, a nonlin
ear system can be approximated by a large collection oflinea
FIG. 11: (Color online.) (a,b) Time series gfcomponent for 10  equations in different regions of the phase space, which can
of the N = 30 nodes in two random networks of global coupling indeed be achieved by reconstructing the Jacobian matrices
strengthf = 1 and{ = 1.6, respectively. The network is not syn- on g proper grid that covers the phase-space region of gitere
chronized in (a) but there is synchronlz_atlon in (b)_._ Othemameters [36, 37]. However, the accuracy and robustness of the proce-
are the same for both bases: connection probabiliy0.2and the 0 are challenging issues, which include the difficuloas
weight distribution interval i40.9, 1.0]. (c,d) Rescaled eigenvalues ciated with the required computations. The recently energe

K;(= &u) (denoted by open circles) of the network coupling ma- . . . . 7
trices with respect to the MSF (denoted by solid lines) irferfrom  Paradigm of compressive sensing [11-15] provides a p@ssibl

the same nodal dynamics and coupling scheme from the tinesser @PProach to addressing the dynamical-system reconsiructi
in (a,b), respectively. problem [19, 20]. In particular, to be able to fully reconstr

dynamical systems using only time series data is based on the

fact that the dynamics of natural and man-made systems are

determined by smooth enough functions that can be approxi-
can be obtained by using the reconstructed network struanated by finite expansions. The major task then becomes esti-
ture and dynamics to estimate the network eigenvalue specnating the coefficients in the series representation of éte v
trum and MSF. The answer can be affirmative, for exampletor field governing the system dynamics, for example, from
if the MSF is predicted to be negative in an open generalized power-series expansion. In general, the power series can
coupling-parameter interval. That the system is not cdlyen contain high-order terms, and the total number of coeffisien
synchronized indicates that the normalized eigenvalue-speto be estimated can therefore be quite large. This is a very
trum does not fall into the interval and, hence, suitablermdn difficult problem to solve, since large amounts of data would
can be applied to rescale and shift the eigenvalue spectrube needed, making the computations extremely demanding.
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However, most of these coefficients are either zero (orgegli factors with significant magnitude, the error caused will be

ble), rendering sparse the vector of coefficients and agipléic ~ distributed onto the rest of the coefficients, leading tainc

of the compressive-sensing paradigm. rect reconstruction. While this remains to be an outstandin
The main achievement of this paper is to extend our reproblem in the reverse engineering of complex dynamical sys

cently developed method of reconstructing dynamical syste tems, we speculate that traditional nonlinear time-sexies-

[19, 20] to complexweighted oscillator networks and then ysis methods such as phase-space reconstruction may be used

to address the problem of forecasting collective dynamicsto determine the intrinsic dimension of the system priorto a

In general, to predict the emergence of collective dynamicglying compressive sensing, which is an issue worth of firth

is an extremely difficult problem, and it is necessary to fo-investigation.

cus on a relatively well understood type of collective dyram e emphasize that a full reconstruction of a complex os-
ics. We choose synchronization. We have detailed the basjjator networked system from time series is possible only
sic principle of time-series based prediction of synchzani hen the system is not in synchronization, and the informa-
tion in complex oscillator networks. We have also demon+ion can then be used to forecast or anticipate synchraaieat
strated, using a prototype of oscillator networks with non-ip the future. If the system is already synchronized, time se
uniform coupling strengths (so that the network is weighted ries from different nodes are practically identical so i

that our compressive-sensing approach can indeed fully rejot possible to reconstruct the network structure. However
construct the network structure and dynamics, based orfwhignere may exist a solution to this problem. In particularegi

the emergence of synchronous dynamics can be anticipateq.network system that is already synchronized, we hypoth-
We have also articulated and demonstrated a method, basgdjze using small, random, and rare perturbations to tistur
on full reconstruction of complex networked dynamical sys-the system so that it desynchronizes temporally. Since the
tem that is not yet synchronized, to make it synchronizale b synchronization state is stable, the system will settlekbac
parame.)terad_Justment.. . . ) being synchronous quickly. However, the window of tem-
One issue is the continuity of the available data. We wish thoral desynchronization provides us with an opportunity to
point out that compressive sensing in general does not depefyope the system structure. While the transient desynchro-
strictly on this property of the observed time series. When,ization phase may be short, our compressive-sensing thetho

constructing the linear equations, we need to approxinh@te t can pe particularly suitable because of the extremely laa da
derivatives of dynamical variables for all oscillators.cBase  requirement.

of this, insofar as a small slice window of the time series (ei
ther continuous or discrete) is available so that the dévies

can be calculated, compressive sensing can be carried out to
recover the network structures and nodal dynamics. In fact,
slices of time series can be collected at different timesto f
cilitate collection of measurements.

Another issue is the hidden dimensions, which presents a We thank Dr. Liang Huang for extremely valuable and
serious obstacle to network and dynamical-system reagastr stimulating discussions. This work was supported by AFOSR
tion. This is similar to the case to search for power-exgansi under Grant No. FA9550-10-1-0083, by NSF under Grants
basis. If the expansion basis is not complete to cover alNo. CDI-1026710 and No. BECS-1023101.
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