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Given a complex networked system whose topology and dynamical equations are unknown, is it possible
to foresee that a certain type of collective dynamics can potentially emerge in the system, provided that only
time series measurements are available? We address this question by focusing on a commonly studied type of
collective dynamics, namely, synchronization in coupled dynamical networks. We demonstrate that, using the
compressive-sensing paradigm, even when the coupling strength is not uniform so that the network is effectively
weighted, the full topology, the coupling weights, and the nodal dynamical equations can all be uncovered
accurately. The reconstruction accuracy and data requirement are systematically analyzed, which includes a
validation of the reconstructed eigenvalue spectrum of theunderlying coupling matrix. Master-stability function
(MSF), the fundamental quantity determining the network synchronizability, can then be calculated based on the
reconstructed dynamical system, the accuracy of which can be assessed as well. With the coupling matrix and
MSF fully uncovered, the emergence of synchronous dynamicsin the network can be anticipated and controlled.
To forecast the collective dynamics on complex networks is an extremely challenging problem with significant
applications in many disciplines, and our work represents an initial step in this important area.

PACS numbers: 05.45.-a,89.75.-k

I. INTRODUCTION

The most amazing feature of a complex dynamical system
consisting of a large number of interacting units (or compo-
nents) is the emergence of collective dynamics. Indeed, it is
this feature of “more is different” [1] which makes complex
systems extremely interesting and the study of collective dy-
namics fundamentally important to many natural and techno-
logical systems. Given a complex system, if the underlying
mathematical rules or equations are completely known, then
in principle the possible types of collective dynamics in the
system can be predicted and studied, and most existing works
on complex systems are of this nature. In realistic applica-
tions one may encounter the situation where, for a complex
system of interest, the local system equations and the interac-
tions among the components are not knowna priori but only
a set of time series are available. Can one still forecast or
anticipate whether a certain type of collective dynamics can
potentially occur in the system?

Even when the system equations of a complex system are
known, it is still extremely challenging to predict, investigate,
and explore the emergence and evolution of collective dynam-
ics. In order to address the issue of time-series based predic-
tion of collective dynamics, one must focus on a relatively
well known class of such dynamics. We shall then consider
synchronization [2–4]. Specifically, we shall study coupled-
oscillator networks [5], a paradigm for probing and under-
standing the synchronous behavior of interacting units with
nonlinear dynamics. When the system equations are known,
a widely used tool to determine whether synchronization can
emerge physically is the master-stability function (MSF) ar-
ticulated by Pecora and Carroll [6]. In the MSF framework,
synchronization under various combinations of network struc-
tures and oscillator dynamics can be predicted [5]. For ex-
ample, given the nodal dynamical equations, possible states
of synchronization can be determined, which are basically the
possible dynamics on the synchronization manifold. The MSF

is nothing but the largest Lyapunov exponent characterizing
the transverse stability of the synchronous dynamical state.
For a typical nonlinear or chaotic oscillator, there may exist
an open interval in the space of some generalized coupling
parameter [7], where the MSF is negative so that any point
in this interval can lead to stable synchronization. When the
network structure is given, the set of eigenvalues of the un-
derlying coupling matrix can be determined. For a network
of coupled oscillators, the phase-space dimension can be ex-
tremely high, so there can be many transverse subspaces. The
set of eigenvalues, after suitable normalization, gives the set of
effective generalized coupling parameters associated with all
the transverse subspaces. Network synchronization can occur
only when all these parameters fall into the interval of nega-
tive MSF.

In this paper, we propose a general approach to forecasting
the emergence of synchronization in complex oscillator net-
works based on a complete set of time series collected from
all components of every oscillator. The specific setting of the
problem is, as follows. Assume that at the time of interest the
oscillator network is in an asynchronous state and time series
from each node in the network can be obtained. Assume fur-
ther that there exists a parameter characterizing the average
coupling strength among the nodes. The question we ask is
whether it would be possible to predict that synchronization
can or cannot occur when the coupling parameter is allowed
to change. Our method consists of two steps. Firstly, we re-
construct the full topology of the network, together with the
coupling strengths and the nodal dynamics, based solely on
time series. This is accomplished by casting the prediction
or reverse-engineering [8–10] problem into the framework of
compressive sensing, a recently developed, powerful convex
optimization paradigm [11–15] for recovering sparse vectors
based on very limited amount of data. Here the relevant vec-
tor to be reconstructed originated from both nodal dynamics
and topology, which is typically sparse due to the sparsity of
complex networks. Secondly, from the predicted nodal dy-
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namics and network structure, we perform synchronizability
analysis by using the standard MSF approach [5]. We vali-
date our method by using randomweighted networks [16] of
both continuous-time and discrete-time chaotic systems (e.g.,
the classical Lorenz system [17] and Hénon map [18]). Our
computation and analysis indicate that with only small amount
of measured data, the synchronization regions in the parame-
ter space as identified by MSF and the network structure can
be accurately predicted, rendering possible inference of syn-
chronous dynamics. The critical data requirement and sam-
pling frequency for different network sizes and degree distri-
butions are studied in detail. The issue of the effect of mea-
surement noise on prediction accuracy is also addressed. In
addition, the dependence of data requirement and computa-
tional time on the network size are studied. Finally, we spec-
ulate on one potential application of our prediction method:
controlling coupled oscillators to bring the system to synchro-
nization.

In Sec. II, we describe our compressive-sensing based
method for reconstructing weighted complex oscillator net-
works and for estimating the MSF. In Sec. III, a detailed ac-
count of representative examples is presented, together with
a systematic analysis of the prediction accuracy, data require-
ment from different perspectives, effects of network size and
noise, and computation time. In Sec. IV, we discuss how pos-
sible emergence of synchronous dynamics can be anticipated
based on data. In Sec. V, a conclusion and discussions are
provided.

II. NETWORK SYSTEM RECONSTRUCTION AND
SYNCHRONIZABILITY ANALYSIS

A. Reverse engineering of weighted complex networked
dynamical systems

Our method is in fact a combination of two problems:
compressive-sensing based reverse engineering of complex
networked dynamical systems [19, 20] and synchronizabil-
ity analysis [5]. Reverse engineering of complex networks
to uncover network topologies from experimental time series
is a problem of tremendous interest with significant appli-
cations [21–32]. Earlier examples include reconstructionof
gene regulation networks [22] from gene expression data and
identification of neuronal interactions based on spike classifi-
cation methods [23–25]. More recently, a number of meth-
ods for network reconstruction have been proposed, which
include reverse engineering of coupled differential equations
[26], response-dynamics-based method for coupled phase os-
cillators [27], phase-space reconstruction based on optimiza-
tion [28], noise-induced scaling law [29], noise-induced dy-
namical correlation [30], random phase resetting [31] and in-
ner composition alignment [32]. While these methods can
successfully determine the network structure, they are unable
to determine two pieces of key information needed for predict-
ing the emergence of synchronization: the interaction strength
among nodes and the nodal dynamical equations. As will
be explained, our compressive-sensing [11–15] based method

can uncover not only the full topology of the underlying net-
work, but also the detailed nodal dynamics and link weights
(interaction strengths), making it possible to forecast synchro-
nization.

The problem of compressive sensing [11–15] can be for-
mulated as to reconstruct a sparse vectorX ∈ R

U with U
unknown coefficients from measurement vectorY of M lin-
early independent measurements under the projection matrix
A in the formY = A·X, whereY ∈ R

M andA is anM×U
matrix. Because of the sparsity of the vectorX, the number of
required measurements can usually be much smaller than the
number of unknowns, i.e.,M ≪ U . Accurate reconstruction
can be achieved by solving the convex optimization problem:

min‖X‖1, s.t.A ·X = Y. (1)

Recently we developed a method based on compressive sens-
ing to infer the full network topology but for cases where
the network is unweighted [20]. Here we shall show that
a compressive-sensing based framework can be formulated
even for weighted complex networks, for both continuous-
time and discrete-time nodal dynamics.

We first discuss the continuous-time case where the dynam-
ics of a single isolated node is governed by

ẋ = F(x), (2)

wherex is a d-dimensional vector, andF(x) is the velocity
field of dimensiond. Without loss of generality, we choose the
parameters such that the individual nodal dynamical system
generates a chaotic attractor. For a weighted network ofN
coupled oscillators, the system equations are

ẋi = F(xi)−
N
∑

j=1

GijH(xj), i = 1, · · · , N, (3)

where theH(x) is the coupling function fromRm to R
m,

and G is the N × N coupling matrix with symmetric
weightsGij = Gji and diagonal elements satisfyingGii =
−
∑

j 6=iGij . A nonzeroGij is the necessary condition for
nodei andj to be connected, regardless of the form of the
coupling functionH(x).

To separate different variables we rewrite Eq. (3) in the fol-
lowing form:

ẋi = Γi(xi)−
∑

j 6=i

GijH(xj), (4)

whereΓi(xi) ≡ F(xi) − GiiH(xi) is the term associated
with components at nodei only which, in general, can be ap-
proximated by a power series of thed components inxi up to
ordern in the following form:

[Γi]k =
n
∑

l1=0

· · ·
n
∑

ld=0

[(ai)k]l1,··· ,ld [(xi)1]
l1 · · · [(xi)d]

ld , (5)

for all componentsk = 1, · · · , d. Here[(ai)k]l1,··· ,ld is the
coefficient assigned to each polynomial term for thekth com-
ponent of nodei. For many well studied nonlinear dynamical
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systems, most of these coefficients are in fact zero so that the
vector of coefficients is typically sparse, justifying the appli-
cability of the compressive-sensing paradigm.

For simplicity and illustrative purpose, we choose linear
coupling form for the second term on the right-hand side of
Eq. (4). Consider the simplest case where each oscillator in-
teracts with every other oscillator through only one compo-
nent. In this case, when the coupling is from thek′th com-
ponent of nodej to thekth component of nodei, the only
non-zero coupling term between nodei andj is [H(xj)]k =
[xj ]k′ . A general expression for this type of linear coupling is

[H(xj)]h = δkh

d
∑

h′=1

δk′h′ [xj ]h′ , h = 1, . . . , d, (6)

whereδkh is the Kronecker delta. For nonlinear coupling be-
tween multiple variables, we can group all terms containing
non-zero powers ofxi intoΓi(xi).

Having obtained a power series expansion of the right-hand
side of Eq. (4), the next step is to estimate the velocity field
ẋi on the left-hand side, which can be extracted directly from
time series by using some typical finite-difference or interpo-
lation methods. In this way, with all expansion coefficients
as unknowns, Eq. (4) can be transformed into a set of lin-
ear equations, which can be solved by using some standard
compressive-sensing algorithm. After all the expansion coef-
ficients are determined, the nonlinear nodal dynamical equa-
tions and the coupling functions are known, uncovering the
full networked dynamical system including accurate estimates
of the coupling weights.

To better illustrate the steps to cast the nonlinear dynam-
ical network equations into the compressive-sensing frame-
work, we consider a concrete example of anN -oscillator net-
work, where the nodal dynamics of each oscillator is three
dimensional (d = 3, sayx, y andz). In this case, we have
xi = [xi, yi, zi]

T for 1 ≤ i ≤ N . Take componentx for
example. According to Eq. (5), we expand[Γi]x up to order
n = 3:

[Γi(xi)]x ≡ [(ai)x]000x
0
i y

0
i z

0
i + · · ·+ [(ai)x]003x

0
i y

0
i z

3
i

+ [(ai)x]010x
0
i y

1
i z

0
i + · · ·+ [(ai)x]100x

1
i y

0
i z

0
i

+ · · ·+ [(ai)x]333x
3
i y

3
i z

3
i .

Letting bi ≡ ([(ai)x]000, [(ai)x]001, · · · , [(ai)x]333)T be the
coefficient vector of[Γi(xi)]x, and

Bi(t) ≡ [xi(t)
0yi(t)

0zi(t)
0, xi(t)

0yi(t)
0zi(t)

1, · · ·

xi(t)
3yi(t)

3zi(t)
3], (7)

we have[Γi(xi)]x = Bi ·bi. Similarly, for the coupling terms
we can write

∑

j 6=i

GijH(xj) = Ci · ci,

and

ci ≡ δkx[Gi1δk′x, Gi1δk′y, Gi1δk′z, · · · ,

GiN δk′x, GiNδk′y, GiN δk′z]
T ,

where nodei itself is excluded. The measurement vector for
nodei is denoted by

Ci(t) ≡ [x1(t), y1(t), z1(t), · · · , xN (t), yN (t), zN (t)]. (8)

If coupling is linear and applies to a single dynamical variable,
the coefficient vectorci is generally sparse. The velocity vec-
tor ẋi can be calculated from time series atM sample time
t1, t2, . . . , tM . Finally, we have a set of linear equations, each
in the matrix form of Eq. (4):









ẋi(t1)
ẋi(t2)

...
ẋi(tM )









=









Bi(t1) Ci(t1)
Bi(t2) Ci(t2)

...
...

Bi(tM ) Ci(tM )









·

(

bi

ci

)

. (9)

Note that the above linear equation [33] is only for component
x of nodei. For the entire oscillator network, there areNd
such linear equations that need to be solved in order to fully
reconstruct the network topology and the nodal dynamics. A
key advantage of the compressive-sensing framework is that
it requires only relatively short time-series data to accomplish
this task.

We now discuss the case where the nodal dynamics are de-
scribed by discrete-time maps:

xi[t+ 1] = F(xi[t])−
N
∑

j=1

GijH(xj [t]), (10)

whereF(xi[t]) is the map on node i,H(xj [t]) is the cou-
pling function, andGij is the coupling strength. Similar to
the continuous-time case,G is the weighted matrix. In order
to estimate the derivatives of the dynamical variables, we as-
sume that in one measurement two successive observations of
the nodal states are available:xi[t] andxi[t+1], for all nodes
in the network. In particular, the time series att is used to con-
struct the power series, as in the continue-time case, and the
observation att+1 can then be used to construct the measure-
ment vector on the left side of Eq.(9). The networked system
of discrete-time maps can then be cast into the framework of
compressive sensing:









xi[t1 + 1]
xi[t2 + 1]

...
xi[tM + 1]









=









Bi[t1] Ci[t1]
Bi[t2] Ci[t2]

...
...

Bi[tM ] Ci[tM ]









·

(

bi

ci

)

, (11)

whereBi[t] is a function of the observation of nodei at t, and
Ci[t] relies on the observation of all other nodes coupled toi
at the same timet. The isolated map and the network topology
(the coupling interactions) can then be extracted separately
from the coefficients inbi andci.

B. Stability analysis for synchronous dynamics

After the nodal dynamics and the network structure have
been uncovered from time series, we can use the MSF frame-
work to assess the emergence of synchronous dynamics and
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its stability [5]. For the network system Eq. (3), the syn-
chronous statex1 = x2 = · · · = xN = s, whereds/dt =
F(s), is an exact solution. The time evolutions of small vari-
ations from the synchronous state,δxi(t) ≡ xi(t) − s(t), are
governed by

dδxi

dt
= DF(s) · δxi − ξ

N
∑

j=1

GijDH(s) · δxj , (12)

whereDF(s) andDH(s) are thed× d Jacobian matrices of
the corresponding vector functions evaluated ats(t), andξ is a
parameter characterizing the global coupling strength, which
can be set to unity for convenience. We denote the eigenvalues
of the coupling matrixG asµ1, µ2, . . . , µN and the associated
eigenvectors ase1, e2, · · · , eN . While compressive sensing
does not require network connectivity, it is meaningful to ex-
plore synchronizability only when the underlying network is a
single connected component. Since the network is connected,
there is only one zero eigenvalue, so the eigenvalues can be
sorted as0 = µ1 < µ2 ≤ · · · ≤ µN . We then diagonalize
the coupling matrix to a block matrix form composed of all
the eigenvectors:Q = [e1; e2; · · · ; eN ], which can be used
in the transformation,δx = Q · δy, to bring Eq. (12) into the
following block-diagonally decoupled form,

dδyi

dt
= [DF(s)−KiDH(s)] · δyi. (13)

whereKi = ξµi (i = 2, ..., N ) are the coupling strength in
the oscillator network. For eachKi value, the corresponding
MSFΨ(K) is the largest Lyapunov exponent of Eq. (13) [6].
If, for all possible values ofKi, the corresponding MSFs are
all negative, a small perturbation about the synchronous state
will vanish exponentially so that it is stable. Since MSFs do
not depend on the specific network topology but on the cou-
pling parameters, we can first infer the parameters from one
set of specific measurements and calculate the MSF for arbi-
traryK so that the emergence of synchronous behavior can
be anticipated. This can be done even when links are added
or removed, because of MSF’s independence of the network
structure.

After the MSF is known, the synchronization behavior of
the whole oscillator networks can be assessed. For example,
suppose the system is not currently in a synchronous state,
but there is a region ofK, Ka < K < Kb, in which the
MSF satisfiesψ(K) < 0. We can find a suitable positive
coupling strengthξ such thatKa < ξµ2 < ξµN < Kb so
as to drive the system into synchronization. This is because,
under the stretching/squeezing effect ofξ, all possibleKi’s
can be brought into the negative MSF region.

III. EXAMPLES

To illustrate our method to forecast synchronization, we
first choose the Erdős-Rényi (ER) type of homogeneous ran-
dom network consisting of identical Lorenz oscillators as an
example, and then extend to scale-free networks and discrete-
time nodal dynamics as well. In fact, similar results have been

obtained for other network topologies and different types of
nodal dynamics besides the cases presented here.

The classical Lorenz system is given by[ẋ, ẏ, ż] = [σ(y −
x), x(ρ − z) − y, xy − βz], where we setσ = 10, ρ = 28,
andβ = 2 so that the oscillator is chaotic. Time-series data
are generated from6 × 106 numerical-integration steps with
maximum step size of10−4. The Hénon map system is given
by [xt+1, yt+1] = [1− ax2t + yt, bxt], and we seta = 1.4 and
b = 0.3 so that the map exhibits chaotic dynamics, for which
time series of lengthTN = 100 are generated. However, the
amount of measurement data used in the compressive-sensing
algorithm can be much smaller. Using an adjustable sampling
frequency1/∆T (or iterative intervalTN ), we obtain sparse
measurement data to reconstruct the nodal dynamics, coupling
pattern and the network structure. In a typical application,
some physical knowledge about the underlying complex net-
worked system may be available. This can in fact help reduce
the computational complexity and increase the efficiency and
accuracy significantly. For example, in the case of Lorenz-
oscillator networks, some preliminary understanding of the
system can facilitate the choice of the power-expansion or-
der in Eq. (5). To be illustrative, we apply the constraint
l1 + l2 + l3 ≤ 4 on the powers of the componentsx, y, z
so that the number of unknown coefficients can be reduced.

The Jacobian matrix of the Lorenz system is

DF =





−σ σ 0
ρ− z −1 −x
y x −β



 . (14)

The Jacobian matrix of the coupling function,DH, for one
specific node component, is a3 × 3 matrix with only one
nonzero element at the corresponding position determined by
the coupling pattern. In order to compute the MSF, we need
to reconstruct the network structure, find coupling pattern, and
determine the parameters characterizing the nodal dynamics.

A. Predicting weighted networks

Figure 1 shows the results of predicting a smallweighted
Lorenz-oscillator network. There are in total122 terms in the
coefficient vectora for each node, in which the1st to the35th
terms correspond to nodal dynamics vectorbi and the rest
to the coupling vectorci with other nodes. The inferred cou-
pling strengths of node No.1 with other nodes is shown in Fig.
1(a) where, with respect to the number of power-expansion
terms with nonzero coefficient values, the predicted coupling
terms with other nodes are marked in Fig. 1(b). The net-
work structure with node degrees and link weights is shown in
Fig. 1(c). We see that all existent couplings have been success-
fully predicted, together with the corresponding link weights.
Results of prediction of all122 terms ina for all three vari-
ablesx, y, z in the coupled Lorenz-oscillator network are pre-
sented in Fig. 1(a). Besides the nonzero coupling terms, other
nonzero terms represent various power-series terms in the
nodal dynamics in each variable. The related forms of the
nonzero terms are remarked. For example,10y − Cy is in
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Terms No.

Terms No.

FIG. 1: (Color online.) Results of detecting dynamical and coupling
terms via compressive sensing. The network used is the ER random
network withN = 30 nodes and connection probabilityp = 0.04.
The network is weighted and the symmetric weights are randomly
distributed in[0.1, 1.0]. Panel (a) shows the prediction results for
all three componentsx, y, z of node No.1, where the number of
data points (after sampling) used is70% of the total number of the
power-series coefficients assumed. Terms with nonzero coefficients
are marked by open circles, while others by plus-signs. The first 35
terms are for nodal dynamical equations, and the rest are forthe cou-
pling functions. In the first panel for componentx, the data points
surrounded by the dashed box represent coupling-term coefficients
from other node components to componentx of node No.1, which
is magnified in panel (b) with numbers above data points indicat-
ing the nodes from which the couplings come. Panel (c) shows the
original ER network, where the thickness of the edges indicates the
corresponding coupling strength. One-to-one correspondence can be
identified between the predicted coefficients in panel (b) and the cou-
pling strengths in panel (c) for each of node No.1’s neighbors.

fact a combination of nodal function and coupling, as indi-
cated in Eq. (4). Based on the indices of the coupling terms,
we can identify that the couplings are fromy to x, because
of the term

∑N

j=1
Gij(yj − yi) in the equation oḟx. There-

fore, the term−Cy comes from
∑

−Gijyi, which has been
merged into the nodal dynamical equation. Since all coupling
terms are successfully identified, the−Cy term can be sepa-
rated from the combination, resulting in complete prediction

of all power-series terms in the velocity field and coupling
function associated with node No.1. We have also examined
the prediction results for all other nodes in the network and
found excellent agreement between the predicted and actual
power-series terms governing the whole networked dynami-
cal system.

The efficiency of our method for reconstructing weighted
networks can be assessed by addressing the issue of data re-
quirement and sampling frequency when nearly perfect pre-
diction accuracy is achieved. It is useful then to define pre-
diction errors in the coefficient vectora. Sincea is sparse,
i.e., most of its elements are zero, it is necessary to calculate
the errors for nonzero (existing) and zero (non-existing) terms
separately. In particular, the relative error of a nonzero term,
Eterm, is defined as the ratio to the true value of the abso-
lute difference between the inferred and the true values. The
prediction errorEnz of all nonzero terms in a component,

Enz ≡ 〈Eterm〉,

is the average over them. For a zero term, a relative error can-
not be defined. As an alternative, we define the absolute error
as the average value of the inferred zero terms. The prediction
errors can then be computed as functions of the amountRm

of measurements, normalized by the total number of unknown
coefficients to be determined, i.e.,

Rm ≡
number of measurements

number of all unknown coefficients
,

and the sampling time interval∆T , as shown in Fig. 2, where
∆T is the average time interval between two pairs of data
points, with each pair containing two nearby data points for
the purpose of estimating the corresponding derivative. In
Fig. 2(a), we see that, for sufficiently large values ofRm,Enz

reduces essentially to zero with extremely small error bars, in-
dicating accurate reconstruction of both nodal dynamics and
network structures with complete information about the lo-
cations of the links and their weights. From Fig. 2(b), we
observe that a larger sampling interval∆T tends to facilitate
prediction. This can be intuitively understood by noting that
suitably large∆T values weaken the correlation between two
adjacency data points, from which reconstruction may be ben-
efited. In both Figs. 2(a) and 2(b), theY component appears
to be the most difficult one to be fully reconstructed, as the
required data amount is the largest. This is due to the pres-
ence of theρx term in theY component, where the value of
the coefficientρ is much larger than other nodal dynamical
and coupling coefficients, requiring more measurements and
larger sampling intervals. Our experience indicates that,in
general, the data requirement for equations that involve rela-
tively larger coefficients tends to be higher.

In order to assess the accuracy of the predicted weighted
network, it is necessary to reconstruct the adjacency matrix
for any given coupling scheme. With all expansion coeffi-
cients obtained from compressive sensing for all dynamical
variables of each oscillator, we can readily form the matrix
by using the terms associated with the various coupling func-
tions. For example, coupling coefficients from each node con-
tribute to a single row of the adjacency matrix, given any
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FIG. 2: (Color online.) Prediction errors as functions of the nor-
malized amount of measurementRm and sampling interval∆T for
a random symmetric weighted network ofN = 60 Lorenz oscilla-
tors, where the connection probability isp = 0.04 and the weights
are randomly distributed in[0.1, 1.0]. There are possibilities that the
generated networks are disconnected, but in order to be ableto con-
sider synchronizability, we disregard rare cases where thenetworks
generated consist of isolated components. In (a), the sampling inter-
val is fixed at∆T = 0.1, whereas in (b), the amount of measurement
is fixed atRm = 0.6. In both panels,Enz is averaged over10 inde-
pendent network realizations.

coupling scheme. Figure 3 shows, for they → x coupling
scheme, the reconstructed and the original adjacency matri-
ces. The good agreement between the two suggests that, not
only have the link locations been predicted, but also thevalues
of the corresponding weights.

To further address the practically important issue of data
requirement in reconstructing weighted networks, we definea
quantityRc, which is the critical amount of data required for
the prediction errorEnz to fall below some predefined small
threshold value (e.g.,0.01), namely,

Rc ≡ inf{Rm : Enz(Rm) ≤ 0.01}.
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FIG. 3: (Color online.) Comparison of the reconstructed (a)and the
original (b) adjacency matrices for the weighted network shown in
Fig. 1(c). The coupling scheme isy → x and the normalized amount
of measurements isRm = 0.3.

AlthoughRc depends on the choice of the threshold, the qual-
itative behavior ofRc is insensitive to the network structure.
For example, we can calculateRc for different ratiosRnz de-
fined as

Rnz ≡
number of nonzero coefficients

number of all unknown coefficients
,

whereRnz can be adjusted by varying the network size while
keeping the average degree unchanged. Figure 4(a) shows
Rc versusRnz for different ER random networks. We see
that, asRnz becomes smaller so that the network becomes
more sparse, the value ofRc tends to decrease, indicating that
smaller amount of data is required to achieve the same pre-
diction accuracy. This is due to the merit of our compressive-
sensing based method in dealing with large networks, i.e., low
data requirement. This feature does not depend on the network
topology either, as shown in Fig. 4(b) for scale-free networks,
whereRc is shown as a function ofα, the power-law exponent
in the degree distribution. When the network size and the av-
erage degree are fixed, a smaller value ofα corresponds to a
more heterogeneous network structure. In this case, the value
of Rc is relatively large. The reason is that for a more het-
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FIG. 4: (Color online.) (a) For ER random networks, measure of
critical data requirementRc as a function of the density of nonzero
coefficientsRnz , whereRnz is adjusted by fixing the average degree
at k = 3 and increasing the network size fromN = 20 to N =
200. (b) For scale-free networks,Rc as a function of the power-law
exponentα in the degree distributionp(k) ∼ k−α. The network size
is N = 60 with the minimal degreekmin = 3. For both panels,
the data points are results of averaging over10 different network
realizations.

erogeneous network, the probability of having dense sets of
coefficients for the hub nodes is larger, requiring more data.
As α is increased so that the network becomes less heteroge-
neous,Rc can be reduced.

Eigenvalues of the network coupling matrix can be calcu-
lated upon determining the structural parameters of the net-
work. It is thus useful to define another quantity to charac-
terize the accuracy of the reconstructed weighted network.
Specifically, we first define the eigenvalue interval that con-
tains all the original eigenvalues asR′

t = (K2,KN) and the
predicted one asR′

p = (K ′
2,K

′
N). We then define the fol-

lowing quantityAE to characterize the accuracy of the recon-
structed eigenvalue spectrum:

AE =
R′

p

⋂

R′
t

R′
p

⋃

R′
t

=
min(KN ,K

′
N)−max(K2,K

′
2)

max(KN ,K ′
N)−min(K2,K ′

2)
. (15)
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FIG. 5: (Color online.) For the random Lorenz network under the
coupling schemey → x, accuracy measureAE of the eigenvalue
spectrum of the reconstructed network coupling matrix as a function
of the normalized data amountRm.

Here we use a continuous region instead of a set of individual
eigenvalues of the coupling matrix for the definition of the
true regionR′

t, because the necessary condition for the system
to be synchronizable is that all eigenvalues must be located
in the negative region of MSFΨ(K). Since the MSF is not
involved in the definition ofAE , a convenient choice is to
compare the region from the minimum nonzero eigenvalueK2

to the maximumKN , which limits our discussion within the
systems possessing the type of MSF [see, e.g., Fig. 9(b)]. A
representative plot ofAE as a function ofRm is shown in
Fig. 5. We see that, the eigenvalue spectrum can be predicted
accurately whenRm exceeds about35%, due to the low data
requirement of compressive sensing.

Similar results are obtained from networks of Hénon map
systems. In the following examples we discuss the effect of
the network size and noise on system reconstruction, and also
the issue of computational time. To be illustrative, we as-
sumed weighted random networks with weights distributed
in the rangewij ∈ [5 × 10−4, 10−3] (so that dynamical tra-
jectories from the Hénon map do not diverge). The coupling
function is chosen to be linear, and it occurs between thex
variables among the nodes. Applying the compressive sensing
algorithm allows us to infer the nodal dynamics and network
topology from the coefficientsa.

The performance of our method with respect to different
network size is an important issue. As shown in Fig. (6), as
the data amountRm is increased, for different network sizes
ranging fromN = 20 toN = 200, the normalized predicted
errorsEnz approach zero, as indicated by the horizontal solid
line, suggesting that the system can be reconstructed with high
accuracy based on small amount of data, regardless of the net-
work size. While slightly more data are required for larger
networks, the amounts are still quite small, i.e., less thanthe
total number of unknown coefficients in the power-series ex-
pansion. We also find that the critical data ratioRc, defined as
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FIG. 6: (Color online.) For weighted, random networks of Hénon
maps, prediction errors as functions of the normalized dataamount
RM . The network size varies from 20 to 200, and all the networks
tested have the same connection probabilityp = 0.04 with weights
distributed in[5× 10−4, 10−3]. Each point is the result of averaging
over 10 independent network realizations. The horizontal solid line
atENZ = 0.01 is used to indicate the critical data requirementRC

for each case.
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FIG. 7: (Color online.) For uniform measurement noise, prediction
error Enz versus the normalized data amountRm, where the net-
works are the same as in Fig. 6. The amplitude of additive noise is
5× 10−5 for both curves. Each point is the result of averaging over
10 different network realizations.

the relative data amount required to make the normalized pre-
dicted errorEnz less than a small threshold value (e.g.,0.01),
decreases with the network sizeN . This is in accordance with
the results in Fig. 4(a), since the degree of sparsity of the un-
known vectora increases with the random network size as the
connection probabilityp is fixed.

Another issue that we have studied is the effect of mea-
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FIG. 8: (Color online.) For weighted, random networks of Hénon
maps, (a) the average computational timeT (in an arbitrary unit)
required for one variable on one node versus the data ratioRm, for
fixed network size (N = 100), (b) T versus the network sizeN for
fixedRm (0.75) for which accurate reconstruction can be achieved.
For both panels, 20 network realizations are used.

surement noise on reconstruction. In our framework, observa-
tions of the variable states in one measurement are associated
with the state of the system at the particular time, so measure-
ment noise can be quite important. Figure 7 shows the recon-
struction result when additive noise of amplitude5 × 10−5 is
present. We see that compressive sensing is capable of gener-
ating approximate solutions of the networked system even in
the presence of noise. The data amount required to reconstruct
the network, however, tends to be slightly larger than that in
the case where no noise is present.

We have also considered the issue of computational time.
In our method, the main computational load lies in solving
Eq. (11), which depends on the number of unknown coeffi-
cients and the number of measurements. We first fix the net-
work sizes atN = 100 and record the computation time as the
relative data amountRm is changed. As shown in Fig. 8(a),
the required time to reconstruct one coefficient vector (forone
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variable of one node in the network) scales approximately lin-
early with the data amount. Next we fixRm and monitor the
required computation time as a function of the network size.
For linear coupling, the number of unknown coefficients is
proportional to the network sizeN if it is sufficiently large.
We setRm = 0.75 to ensure accurate reconstruction in each
case, so the amount of data used for reconstruction increases
linearly with the number of unknown coefficients. Figure 8(b)
shows the result, where the network size varies fromN = 20
to N = 500. We see that the required computation time in-
deed increases approximately linearly with the number of un-
known coefficients.

B. Prediction of network synchronizability from data

A full reconstruction of nodal dynamics allows us to cal-
culate the MSFΨ as a function ofK ≡ ξµ for any given
coupling scheme. To be illustrative, we calculate the MSFs
for four different coupling schemes (x → x, y → x, z → x,
and z → z) for the coupled network of Lorenz oscillators,
as shown in Fig. 9. These coupling patterns generate distinct
behaviors of the MSF in terms of its number of zeros. If a
region ofΨ(K) < 0 exists, emergence of stable synchroniza-
tion is likely for the oscillator network, regardless of thenet-
work structure; otherwise synchronization is unlikely forany
network structure. In Fig. 9, for example, for thex → x
coupling scheme, there is a relatively large synchronization
region forK beyond a critical value. For they → x scheme,
a synchronization region exists but its size is not as large as
that for the case ofx → x coupling. For thez → z cou-
pling scheme, there are in fact two separated synchronization
regions. In contrast, for thez → x coupling scheme, synchro-
nization is unlikely becauseΨ(K) is positive for all values of
K. A more systematic analysis of the MSF behaviors for typ-
ical nonlinear oscillators can be found in Ref. [7]. The excel-
lent agreement between the true and predicted MSFs shown in
Fig. 9 suggests that our compressive-sensing based approach
can lead to quite reliable estimate of the MSF at a quantita-
tive level. Likewise, the boundaries between synchronous and
asynchronous regions can also be precisely identified, render-
ing possible anticipation of the emergence of synchronization
in the underlying network system.

To quantify the performance of our method in identifying
the synchronization region, we define a measure of agreement,
denoted byAM , between the predicted and true synchroniza-
tion region, as exemplified in Fig. 9(b) for they → x coupling
scheme. Specifically, we denote the true synchronization re-
gionRt by (Ka,Kb) in which the MSF is negative, and denote
the predicted regionRp by (K ′

a,K
′
b). We thus define

AM =
Rp

⋂

Rt

Rp

⋃

Rt

=
min(Kb,K

′
b)−max(Ka,K

′
a)

max(Kb,K ′
b)−min(Ka,K ′

a)
, (16)

where generallyAM ≤ 1. Two extreme cases areAM = 0
whenRp

⋂

Rt = ∅, andAM = 1 whenRp = Rt, which in-
dicate perfect prediction. Results are shown in Fig. 10, where
AM approaches unity as the amount of measurement exceeds
only about65% of the number of assumed coefficients to be
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FIG. 9: (Color online.) Comparison of MSFs calculated from pre-
dicted parameters (open circles) and from real ones (solid lines) for
the random Lorenz oscillator network. Panels (a-d) are for coupling
schemesx → x, y → x, z → x, andz → z, respectively. All
time-series data are generated by the same oscillator network as in
Fig. (2).

predicted. For the case of single intersectionKa of MSF with
Ψ(K) = 0, as shown in Fig. 9(a) for thex → x coupling
scheme, we can define an agreement measure in a similar way:

AM =
min(Ka,K

′
a)

max(Ka,K ′
a)
, (17)

where0 ≤ AM ≤ 1. In cases where there are multiple syn-
chronization regions, e.g., as happened for thez → z coupling
scheme in Fig. 9 (d), the agreement measure can be taken as
the average of all measures, one calculated from each separate
region.

IV. DATA-BASED ANTICIPATION AND CONTROL OF
NETWORK SYNCHRONIZATION

Based on the reconstructed network structure and dynam-
ics, we now propose a strategy to anticipate and control col-
lective dynamics of complex oscillator networks. The base
of control is prediction of future behavior by decoding the
available time series at the present. If the natural dynamics
in the future are undesirable, one can implement certain con-
trol scheme to drive the system to avoid the undesirable state
before it occurs. This, however, requires relatively complete
knowledge about the networked dynamical system which, as
we have demonstrated in Sec. III, can be achieved by exploit-
ing the compressive-sensing paradigm.

To be concrete, we discuss the case where synchronization
is a desirable state of operation for the system, assuming that
the system is not synchronized at the present. The first step
is to determine, from currently available time series, whether
synchronization is intrinsically likely to emerge. An answer



10

0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

R
m

A
M

 

 

MSF

FIG. 10: (Color online.) Measure of agreement of synchronization
predictionAM as a function ofRm for the MSF shown in Fig. 9(b),
where the coupling scheme isy → x.
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FIG. 11: (Color online.) (a,b) Time series ofy component for 10
of theN = 30 nodes in two random networks of global coupling
strengthξ = 1 andξ = 1.6, respectively. The network is not syn-
chronized in (a) but there is synchronization in (b). Other parameters
are the same for both bases: connection probabilityp = 0.2 and the
weight distribution interval is[0.9, 1.0]. (c,d) Rescaled eigenvalues
Ki(= ξµi) (denoted by open circles) of the network coupling ma-
trices with respect to the MSF (denoted by solid lines) inferred from
the same nodal dynamics and coupling scheme from the time series
in (a,b), respectively.

can be obtained by using the reconstructed network struc-
ture and dynamics to estimate the network eigenvalue spec-
trum and MSF. The answer can be affirmative, for example,
if the MSF is predicted to be negative in an open generalized
coupling-parameter interval. That the system is not currently
synchronized indicates that the normalized eigenvalue spec-
trum does not fall into the interval and, hence, suitable control
can be applied to rescale and shift the eigenvalue spectrum

into the negative MSF interval. To illustrate this method, we
use the network system of coupled chaotic Lorenz oscillators
in Sec. III. Figure 11(a) shows some representative time se-
ries in a case where the network is not synchronized, and the
corresponding MSF and eigenvalue spectrum calculated from
the reconstructed network structure and dynamics are shown
in Figure. 11(c). We see that some values ofK [data points
in Figure. 11(c)], the product between the coupling strength
ξ and eigenvaluesµ, are not located in the synchronizable re-
gion as indicated by the MSF [curve in Figure. 11(c)]. Thus,
at the current parameter setting, synchronization cannot be re-
alized in the system. In order for synchronization to emerge,
allK values must fall into a region where the MSF is negative.
A simple and practical way to manipulateK is to adjust the
coupling strength but to keep the nodal dynamics and network
structure unchanged. When the coupling strengthξ is modi-
fied, the network system can indeed achieve synchronization,
as shown by the synchronous time times in Figure. 11(b). Ex-
amination of the MSF and eigenvalue spectrum indicates that,
indeed, in this case allK values fall into the negative MSF
interval. We stress that a prerequisite to this simple control
scheme is full knowledge of the network structure and dy-
namics which, as we have demonstrated, can be faithfully re-
constructed based solely on small amount of data.

V. CONCLUSION AND DISCUSSION

Reconstructing dynamical systems based on time series is
a problem of significant interest with broad applications in
many areas of science and engineering. However, this prob-
lem has been outstanding in nonlinear dynamics because, de-
spite previous efforts [34] in phase-space reconstructionusing
the standard delay-coordinate embedding method [35] to de-
code the topological properties of the underlying system, how
to accurately infer the underlyingnonlinear system equations
remains largely an unsolved problem. In principle, a nonlin-
ear system can be approximated by a large collection of linear
equations in different regions of the phase space, which can
indeed be achieved by reconstructing the Jacobian matrices
on a proper grid that covers the phase-space region of interest
[36, 37]. However, the accuracy and robustness of the proce-
dure are challenging issues, which include the difficulty asso-
ciated with the required computations. The recently emerged
paradigm of compressive sensing [11–15] provides a possible
approach to addressing the dynamical-system reconstruction
problem [19, 20]. In particular, to be able to fully reconstruct
dynamical systems using only time series data is based on the
fact that the dynamics of natural and man-made systems are
determined by smooth enough functions that can be approxi-
mated by finite expansions. The major task then becomes esti-
mating the coefficients in the series representation of the vec-
tor field governing the system dynamics, for example, from
a power-series expansion. In general, the power series can
contain high-order terms, and the total number of coefficients
to be estimated can therefore be quite large. This is a very
difficult problem to solve, since large amounts of data would
be needed, making the computations extremely demanding.
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However, most of these coefficients are either zero (or negligi-
ble), rendering sparse the vector of coefficients and applicable
of the compressive-sensing paradigm.

The main achievement of this paper is to extend our re-
cently developed method of reconstructing dynamical systems
[19, 20] to complexweighted oscillator networks and then
to address the problem of forecasting collective dynamics.
In general, to predict the emergence of collective dynamics
is an extremely difficult problem, and it is necessary to fo-
cus on a relatively well understood type of collective dynam-
ics. We choose synchronization. We have detailed the ba-
sic principle of time-series based prediction of synchroniza-
tion in complex oscillator networks. We have also demon-
strated, using a prototype of oscillator networks with non-
uniform coupling strengths (so that the network is weighted),
that our compressive-sensing approach can indeed fully re-
construct the network structure and dynamics, based on which
the emergence of synchronous dynamics can be anticipated.
We have also articulated and demonstrated a method, based
on full reconstruction of complex networked dynamical sys-
tem that is not yet synchronized, to make it synchronizable by
parameter adjustment.

One issue is the continuity of the available data. We wish to
point out that compressive sensing in general does not depend
strictly on this property of the observed time series. When
constructing the linear equations, we need to approximate the
derivatives of dynamical variables for all oscillators. Because
of this, insofar as a small slice window of the time series (ei-
ther continuous or discrete) is available so that the derivatives
can be calculated, compressive sensing can be carried out to
recover the network structures and nodal dynamics. In fact,
slices of time series can be collected at different times to fa-
cilitate collection of measurements.

Another issue is the hidden dimensions, which presents a
serious obstacle to network and dynamical-system reconstruc-
tion. This is similar to the case to search for power-expansion
basis. If the expansion basis is not complete to cover all

factors with significant magnitude, the error caused will be
distributed onto the rest of the coefficients, leading to incor-
rect reconstruction. While this remains to be an outstanding
problem in the reverse engineering of complex dynamical sys-
tems, we speculate that traditional nonlinear time-seriesanal-
ysis methods such as phase-space reconstruction may be used
to determine the intrinsic dimension of the system prior to ap-
plying compressive sensing, which is an issue worth of further
investigation.

We emphasize that a full reconstruction of a complex os-
cillator networked system from time series is possible only
when the system is not in synchronization, and the informa-
tion can then be used to forecast or anticipate synchronization
in the future. If the system is already synchronized, time se-
ries from different nodes are practically identical so thatit is
not possible to reconstruct the network structure. However,
there may exist a solution to this problem. In particular, given
a network system that is already synchronized, we hypoth-
esize using small, random, and rare perturbations to disturb
the system so that it desynchronizes temporally. Since the
synchronization state is stable, the system will settle back to
being synchronous quickly. However, the window of tem-
poral desynchronization provides us with an opportunity to
probe the system structure. While the transient desynchro-
nization phase may be short, our compressive-sensing method
can be particularly suitable because of the extremely low data
requirement.
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