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We consider a variant of the Kuramoto model of coupled oscillators in which both attractive
and repulsive pairwise interactions are allowed. The sign of the coupling is assumed to be a char-
acteristic of a given oscillator. Specifically, some oscillators repel all the others, thus favoring an
antiphase relationship with them. Other oscillators attract all the others, thus favoring an in-phase
relationship. The Ott-Antonsen ansatz is used to derive the exact low-dimensional dynamics gov-
erning the system’s long-term macroscopic behavior. The resulting analytical predictions agree with
simulations of the full system. We explore the effects of changing various parameters, such as the
width of the distribution of natural frequencies and the relative strengths and proportions of the
positive and negative interactions. For the particular model studied here, we find, unexpectedly,
that the mixed interactions produce no new effects. The system exhibits conventional mean-field
behavior, and displays a second-order phase transition like that found in the original Kuramoto
model. In contrast to our recent study of a different model with mixed interactions [H. Hong and
S. H. Strogatz, Phys. Rev. Lett. 106, 054102 (2011)],the π-state and traveling wave state do not
appear for the coupling type considered here.

PACS numbers: 05.45.Xt, 89.75.-k

I. INTRODUCTION

The Kuramoto model [1] has been used to shed light
on the dynamics of a wide range of physical, chemical
and biological systems, such as Josephson junction ar-
rays [2], charge-density waves [3], laser arrays [4], collec-
tive atomic recoil lasers [5], bubbly fluids [6], neutrino
flavor oscillations [7], electrochemical oscillators [8], and
human crowd behavior [9].

One of the key assumptions in the Kuramoto model is
that the mutual coupling between any two oscillators is
positive. Positive coupling tends to pull the phases of the
oscillators together, thus favoring synchrony. Negative
coupling, on the other hand, pushes the phases apart and
thus favors a phase difference of π. When both types of
coupling are present, the system can become frustrated.
In this case not much is known about what sorts of dy-
namics and equilibrium states might arise.

Even the mean-field version of such systems remains
mysterious. Twenty years ago, Daido found evidence
that Kuramoto models with mixed positive and nega-
tive coupling could undergo a glass transition [10], but
the existence and properties of such an “oscillator glass”
remain unclear [11]. Other models with mixed attrac-
tive/repulsive interactions have since been explored by
several authors, who were also motivated by analogies to
spin glasses, as well as to neural networks with mixed
excitatory and inhibitory connections [12]. In each in-
stance it has been difficult to understand the behavior
of these models because of their inherent nonlinearity,
quenched random interactions, and large numbers of de-
grees of freedom.

We wondered whether Daido’s oscillator glass transi-
tion might be illuminated by studying much simpler mod-
els with mixed coupling. In this paper we analyze the

behavior of one such model and find, unfortunately, that
this particular simplification does not exhibit an oscilla-
tor glass. In fact, it doesn’t do anything that hasn’t al-
ready been seen in the traditional Kuramoto model where
all the couplings are positive.

The model we examine is a set of N coupled oscillators:

dφi
dt

= ωi +
1

N

N∑
j=1

Kj sin(φj − φi), i = 1, · · · , N, (1)

where φi is the phase of the ith oscillator, and ωi is
its intrinsic frequency, chosen at random from a pre-
scribed probability density g(ω). We restrict attention
from now on to the case of a Lorentzian distribution,
g(ω) = 1

π
γ

ω2+γ2 , with width γ and zero mean (〈ω〉 = 0),

for convenience.
The parameter Kj , which can be either positive or neg-

ative, encodes the strength and sign of the influence of
oscillator j on all the other oscillators, including oscil-
lator i. Note that this coupling parameter is oscillator-
dependent, and in general would vary from one oscillator
to another: Ki 6= Kj . Hence the pairwise interaction
between two oscillators is typically non-symmetric. For
the sake of analytical tractability, we consider the sim-
plest non-trivial distribution of the interaction strength:
Γ(K) = (1− p)δ(K −K1) + pδ(K −K2), where K1 < 0
and K2 > 0 represent the intensity of the repulsive and
attractive interactions, respectively, and p denotes the
proportion of the oscillator population whose coupling
strength is positive.

In a previous study [13], we considered a related but
qualitatively different model with mixed interactions.
The crucial difference was that in the earlier model, the
oscillator-dependent coupling parameter was Ki, appear-
ing outside the sum in the governing equation. Here it
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is Kj , appearing inside the sum. This makes a world of
difference, as we will see. In particular, the states we
called the “π-state” and the “traveling wave state” [13]
no longer appear.

To gain some intuition about the difference between
the model considered in ref. [13] and the model consid-
ered in this paper, it helps to think of the oscillators and
their interactions in human terms. Imagine that the os-
cillators “speak” and “listen” to one another when they
interact. Then, in this metaphor, the oscillators of the
previous model can be characterized by their listening
styles. A “conformist” oscillator listens to the other os-
cillators and tries to align its phase to each of theirs,
whereas a “contrarian” oscillator prefers a phase differ-
ence of π with everyone else.

In the present model, by contrast, the oscillators are
characterized by their speaking styles. Attractive oscilla-
tors send signals that draw other oscillators toward them,
thus favoring zero phase difference. Repulsive oscilla-
tors drive others as far away from themselves as possible
(namely, toward a phase difference of π).

We are mainly interested in exploring such systems of
oscillators for theoretical reasons, as mentioned above,
but there are some real-world examples of physical, bio-
logical, and chemical systems where similar phenomena
arise. For example, many neurons obey Dale’s principle,
which states that a neuron “speaks” in the same way
at all of its synaptic connections to other cells, in the
sense that it releases the same set of neurotransmitters
at all of its synapses [14]. Our model Eq. (1) embodies an
idealized version of this assumption by postulating that
each oscillator j influences all the others with the same
coupling strength and sign, as quantified by the param-
eter Kj . Likewise, our previous model has been shown
by Montbrio and Pazó [15] to be relevant to arrays of
nanomechanical oscillators [16] and ion chains interact-
ing via Coulomb forces [17].

In what follows we will be particularly interested in
how varying p, the proportion of the system consist-
ing of attractive oscillators, affects the synchronization
behavior of Eq. (1). We analyze the system using the
Ott-Antonsen ansatz [18] as well as the traditional self-
consistency equation for the order parameter [1].

II. DIMENSIONAL REDUCTION BY
OTT-ANTONSEN THEORY

Collective synchronization has been conveniently de-
scribed by the complex order parameter defined by [1]:

Z(t) ≡ Reiθ =
1

N

N∑
j=1

eiφj , (2)

where the magnitude R measures the phase coherence,
and θ the average phase. Another order parameter we

consider here is given by

W (t) ≡ SeiΦ =
1

N

N∑
j=1

Kje
iφj , (3)

which is a sort of “weighted” mean field. We investigate
the synchronization behavior as the ratio of the attractive
and repulsive interaction strength Q ≡ −K1/K2 > 0 is
varied. For convenience, we set K2 = 1 (which can be
achieved without loss of generality by rescaling time),
and vary the value of K1. Three different regimes of Q
are considered: Q < 1, Q = 1, and Q > 1.

We begin with our analytical results. In the continuum
limit N →∞, Eq. (1) gives rise to a continuity equation
for the probability density function f(φ,K, ω, t):

∂f

∂t
+

∂

∂φ
(fv) = 0, (4)

where v = v(φ, ω, t) is the velocity function given by

v = ω+

∫ ∫ ∫
K sin(φ′−φ)f(φ′,K, ω, t)dφ′Γ(K)dKdω.

(5)
Following the approach introduced by Ott and Anton-
sen [18], we consider the family of special density func-
tions f given by Poisson kernels:

f(φ,K, ω, t) =
g(ω)

2π

{
1 +

[ ∞∑
n=1

[a(K,ω, t)]neinφ + c.c.

]}
,

(6)
where c.c. denotes the complex conjugate. In the con-
tinuum limit, the order parameter W (t) is given by

W (t) =

∫ ∫ ∫
Keiφ

′
f(φ′,K, ω, t)dφ′Γ(K)dKdω. (7)

Using Eq. (7), the velocity function v simplifies to

v = ω +
1

2i
(We−iφ −Weiφ), (8)

where the overbar indicates complex conjugation. Sub-
stituting Eq. (8) and (6) into Eq. (4), we find a satisfies
the equation

ȧ = −iωa+
1

2
(W −Wa2), (9)

where W becomes

W (t) =

∫ ∫
Kā(K,ω, t)g(ω)dωΓ(K)dK (10)

since only n = 1 in the c.c. term of f in Eq. (6) con-
tributes to the φ-integral. We do the contour integral
with respect to ω, and close the contour in the lower half
plane in ω-space. Equation (10) is then given by

W (t) =

∫
Kā(K,−iγ, t)Γ(K)dK. (11)
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If we let z(K, t) ≡ a(K,−iγ, t), z(K, t) is satisfied with

ż = −γz +
1

2
(W −Wz2) (12)

according to Eq. (9). Using the distribution Γ(K) =
(1−p)δ(K−K1)+pδ(K−K2), we find W (t) is rewritten
as

W (t) = (1− p)K1z̄1 + pK2z̄2, (13)

where z1 = z(K1, t) and z2 = z(K2, t), respectively. We
then find the dynamics of z1 and z2 is given by

ż1 = −γz1 + 1
2 [qK1z1 + pK2z2 − (qK1z̄1 + pK2z̄2)z2

1 ],

ż2 = −γz2 + 1
2 [qK1z1 + pK2z2 − (qK1z̄1 + pK2z̄2)z2

2 ]

(14)

according to Eq. (12), where q = 1− p. Introducing Q ≡
−K1/K2, rescaling the time by K2t/2, and redefining
γ/K2 by γ in the rescaled time, Eq. (14) becomes

ż1 = −2γz1 − [(qQz1 − pz2)− (qQz̄1 − pz̄2)z2
1 ],

ż2 = −2γz2 − [(qQz1 − pz2)− (qQz̄1 − pz̄2)z2
2 ]. (15)

With the expression z1 = r1e
−iθ1 and z2 = r2e

−iθ2 ,
Eq. (15) is given by

ṙ1 = −2γr1 − (1− r2
1)(qQr1 − pr2 cos δ),

ṙ2 = −2γr2 − (1− r2
2)(qQr1 cos δ − pr2), (16)

δ̇ = sin δ

[
qQ r1

r2
(1 + r2

2)− p r2r1 (1 + r2
1)

]
,

where r1,2 6= 0 and δ ≡ θ1−θ2. The upshot is that, when
restricted to the family of Poisson kernel densities, the
dynamics of the original high-dimensional system gov-
erned by Eq. (1) reduces exactly to the three-dimensional
dynamical system for (r1, r2, δ) given by Eq. (16).

The order parameter Z(t) also simplifies:

Z =

∫ ∫ ∫
eiφf(φ,K, ω, t)dφΓ(K)dKdω

=

∫ ∫
ā(K,ω, t)g(ω)dωΓ(K)dK

=

∫
ā(K,−iγ, t)Γ(K)dK

=

∫
z̄(K, t)Γ(K)dK, (17)

which finally yields

Z(t) = (1− p)z̄1 + pz̄2. (18)

With the dynamics of z1 and z2 in Eq. (15), we can
find the dynamics of the order parameters W (t) and Z(t)
shown in Eq. (13) and (18).

III. FIXED POINT ANALYSIS

We next examine the fixed point solution with ż1 = 0
and ż2 = 0. From Eq. (12) we find

ż1 = −γz1 + 1
2 (W −Wz2

1),

ż2 = −γz2 + 1
2 (W −Wz2

2). (19)

For ż1 = 0 and ż2 = 0, Eq. (19) is given by

z1 =
1

2γ
(W −Wz2

1),

z2 =
1

2γ
(W −Wz2

2). (20)

Using W = −qQz̄1 + pz̄2, we find

p =
W +Qz̄1

Qz̄1 + z̄2
. (21)

Assuming W is real and positive (which entails no loss of
generality, since we can rotate coordinates), and noting
that W (t) is constant, by the fixed point assumption, we
then find

p = p̄ =
W +Qz1

Qz1 + z2
. (22)

Then, W = S and we have

z1 = 1
2γ (S − Sz2

1),

z2 = 1
2γ (S − Sz2

2), (23)

p = S+Qz1
Qz1+z2

.

Solving for z1 and z2, we find

z1 = z2 =
−γ +

√
γ2 + S2

S
, (24)

and substituting Eq. (24) into Eq. (23), we find that p is
given by

p =
1

1 +Q

[
S2

−γ +
√
γ2 + S2

+Q

]
. (25)

Note that Eq. (24) corresponds to the δ = 0 state.
We now analyze the linear stability of the incoherent

state Z = W = 0. Since |z1| � 1 and |z2| � 1 in the
incoherent state, the linearized system is given by

ż1 = −2γz1 + (−qQz1 + pz2) (26)

ż2 = −2γz2 + (−qQz1 + pz2) (27)

from Eq. (15), ignoring the higher order terms. Multi-
plying Eq. (26) by −qQ and Eq. (27) by p, and adding
the two equations, we obtain

Ẇ = −2γW + (p− qQ)W,

= (−2γ + 〈K〉)W, (28)
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where we used 〈K〉 = p−qQ, recalling W = −qQz̄1 +pz̄2

from Eq. (13) with Q = −K1/K2 and K2 = 1. We then
find that W goes to zero exponentially fast if 〈K〉 < 2γ,
but it does not if 〈K〉 > 2γ. Therefore, from this we
conclude that the incoherent state (Z = W = 0) is stable
for p < p?, where

p? =
2γ +Q

1 +Q
. (29)

This critical value p? can also be obtained from Eq. (25)
by looking at the limit as S goes to zero. Curiously, the
same value for p? arose in our previous study [13] where
the coupling strength Ki was outside the summation.

IV. SELF-CONSISTENCY EQUATION FOR
THE ORDER PARAMETER

Alternatively, we can deduce p? by the usual self-
consistency argument. Substituting the order parame-
ter W into Eq. (1), we find that the governing equation
becomes

φ̇i = ωi − S sin(φi − Φ). (30)

When the effective coupling S is large enough to over-
come the diversity of the natural frequencies (i.e., when
S > |ωi|), Eq. (30) exhibits a phase-locked solution with

φ̇i = 0:

φi = Φ + sin−1(ωi/S). (31)

On the other hand, when the natural frequency is too
highly detuned relative to S, i.e., for |ωi| > S, Eq. (30)
shows a drifting solution with φi(t) ' φi(0) + ωit. The
self-consistency equation for S is then given by

SeiΦ =

∫ π

−π

∫ S

−S
Kei[Φ+sin−1( ω

S )]Γ(K)dKg(ω)dω

= eiΦ〈K〉
∫ S

−S

√
1− (ω/S)2g(ω)dω, (32)

where the contribution from the drifting solution is can-
celed out due to the symmetry of g(ω). With the Taylor
expansion of g(ω), we find that Eq. (32) is given by

S =
π

2
g(0)〈K〉S +

π

16
g
′′
(0)〈K〉S3 +O(S5), (33)

which yields

S ∼ (p− pc)1/2 (34)

with

pc =
2γ +Q

1 +Q
. (35)

This pc is obtained from the condition

π

2
g(0)〈K〉 = 1. (36)

Note that this pc is consistent with the value p? in
Eq. (29). This implies that the incoherent state is stable
for p < pc, and the synchronization transition from the
incoherent state to the coherent one occurs at pc. The
order parameter R is linearly proportional to S for small
values of S, so R is also characterized by

R ∼ (p− pc)1/2 (37)

with the same pc as Eq. (35). This mean-field behavior
was predicted previously by Paissan and Zanette [19].

V. NUMERICAL RESULTS

We now numerically examine the predicted steady-
state values of z1 and z2 according to Eq. (15). Using
those z1 and z2, we obtain W and Z given by Eq. (13)
and (18). The values of W and Z obtained in this way
are shown as the red solid line and the blue dashed line
in Fig. 1.

For comparison, we can also numerically integrate the
full system governed by Eq. (1), and measure W (t) and
Z(t) according to Eq. (2) and (3). Integrations of Eq. (1)
were performed using Heun’s method [20] with a discrete
time step δt = 0.01. For the total Nt = 5 × 104 time
steps, the equation of motion was integrated. The initial
3× 103 steps were discarded as a transient.

For the sake of illustration, let us fix the width of the
frequency distribution at γ = 0.05. The open pink and
filled sky blue boxes in Fig. 1 show the simulation results
obtained for the full system. The analytical predictions
based on the reduced system are in good agreement with
the simulations. In particular, the synchronization tran-
sition from R = 0 to R 6= 0 is found to occur at p ' 0.4,
as predicted theoretically.

Figure 2 shows R and S as a function of p for various
values of Q and γ. We find that the critical value pc is
increased when either the width γ or the interaction ratio
Q are increased. These trends make sense; increasing
the width of g(ω) or increasing the strength of repulsive
interactions both make the system harder to synchronize.

Incidentally, the behavior of S shown in the right pan-
els of Fig. 1 looks like a linear dependence on p. But it is
not. Closer examination, both numerically and analyt-
ically, reveals the standard mean-field behavior with an
order parameter exponent β = 1/2.

We were surprised to find that different values of Q did
not yield qualitatively different behavior, unlike what we
found in our previous study [13]. In particular, the mean
phase velocity in the present model always equals the
mean of the oscillators’ intrinsic frequencies. Thus the
traveling wave state found in Ref. [13] does not appear
in the present system.

Nor did we see any evidence of the δ = π state found in
our previous study [13]. To look for it, we examined two
different subpopulations in the phase distribution func-
tion: one is the subpopulation of oscillators with attrac-
tive interactions (K2 > 0) and the other is the subpopu-
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FIG. 1: (Color online) Behavior of the order parameters R
and S vs. p, the fraction of the system with positive cou-
pling, for γ = 0.05 and Q = 0.5. The red solid line and the
green dashed line represent the theoretical predictions of R
and S, respectively. The red circles and the blue boxes de-
note simulation results for R and S, respectively, obtained by
integrating the full system Eq. (1). System size: N = 12800
oscillators. The data shown were obtained by averaging over
10 samples.
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FIG. 2: (Color online) Behavior of the order parameters R
(left panels) and S (right panels) as a function of p, varying
the values of Q and γ. Symbols: red plus-signs for γ = 0.05;
green diagonal crosses for γ = 0.1 ; blue asterisks for γ =
0.2. System size: N = 12800. Numerical data obtained by
averaging over 10 samples.
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FIG. 3: (Color online) The phase φi of the ith oscillator is
plotted as a function of the oscillator index i for various values
of p. Top left panel, p = 0.2(< pc); top right panel, p =
0.3(< pc); bottom left panel, p = 0.4(= pc); bottom right
panel, p = 0.5(> pc). The system size is N = 12800, and
γ = 0.05 and Q = 0.5. The red plus-signs represent the
phases of the oscillators with attractive interaction, K2 > 0.
Blue diagonal crosses denote the phases of the oscillators with
repulsive interactions, K1 < 0.

lation of oscillators with repulsive interactions (K1 < 0).
Figure 3 displays the phases of the oscillators in each sub-
population. We find that the phases of the oscillators in
each subpopulation show a fully random distribution for
p < pc, but they show the same value for p > pc, imply-
ing a δ = 0 state instead of a δ = π state, thus yielding
another difference from our previous study [13].

To explain intuitively why the previous and current
models behave so differently, recall that the dynamics of
the model in [13] were governed by φ̇i = ωi−KiR sin(φi−
Θ). Therefore two kinds of phase-locked state are possi-
ble, depending on the sign of Ki. The oscillators with at-
tractive coupling K2 > 0 obey φ̇i = ωi−K2R sin(φi−Θ)
whereas those with repulsive coupling K1 < 0 obey
φ̇i = ωi + |K1|R sin(φi −Θ). The two stable fixed points
of these equations together form the π-state, in which
two groups of oscillators are aligned in antiphase: δ = π.
Furthermore, they may induce a mismatch between the
mean phase velocities of the two groups, which yields the
traveling wave state.

On the other hand, the present system shows only one
phase-locked state given by Eq. (30), so the traveling
wave state as well as the π-state does not exist.
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