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In this paper, we analyze stochastic synchronization of coupled chaotic maps over blinking net-
works composed of a pristine static network and stochastic on-off couplings between any pair of
nodes. We focus on mean square stability of the synchronized state by analyzing the time evolution
of the second moment of the variation transverse to the synchronization manifold. By projecting the
variational equations on the eigenvectors of a higher order state matrix describing this variational
dynamics, we establish a necessary and sufficient condition for stochastic synchronization based on
the largest Lyapunov exponent of the map and the spectral radius of such matrix. This condition
is further simplified by computing closed-form results for the spectral properties of the moments of
the graph Laplacian associated to the intermittent coupling and using classical eigenvalue bounds.
We illustrate the main results through simulations on synchronization of chaotic Henon maps.
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I. INTRODUCTION

Synchronization is an ubiquitous phenomenon in both
natural and technological settings that has been the sub-
ject of significant research efforts in a variety of disci-
plines. Synchronization has been observed in a large
range of phenomena spanning from biological systems,
that include animal grouping [1], fireflies’ blinking [2], an-
imal gaits [3], heart stimulation [4], epidemiology [5], and
neural activity [6], to secure communications [7], chem-
istry [8], meteorology [9], and optoelectronics [10].
Notwithstanding the vast technical literature on syn-

chronization, the great majority of research efforts has
been focused on dynamical systems that are coupled via
static networks whose topology and coupling strengths
do not vary in time, see for example the excellent reviews
[11–15].
Here, we consider the synchronization of N maps

whose individual dynamics is governed by x(k + 1) =
F(x(k)) where x ∈ R

m is the oscillator state, F :
R

m → R
m is a nonlinear function describing the sys-

tem dynamics, and k ∈ N is the time variable. The
oscillators are coupled through a stochastically switch-
ing network described at time k by the graph Laplacian
L(k) = [Lij(k)] ∈ R

N×N with i, j = 1, . . . , N . The equa-
tions of motion read

xi(k + 1) = F(xi(k))− ε
N∑

j=1

Lij(k)F(xj(k)) (1)

where i = 1, . . . , N and ε ∈ R
+ is the coupling strength.

Here, we focus on chaos synchronization, yet, the pro-
posed methodology is directly applicable to synchroniza-
tion of nonlinear systems about fixed points or periodic
orbits as well as to the analysis of coupled time-invariant
linear systems, including classical consensus problems.
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For example, the simplest instance of this model is the
case m = 1 and F equal the identity; in this case, the
problem reduces to a classical consensus problem [16–18].

Synchronization of chaotic oscillators over time-
varying networks finds relevant applications in model-
ing complex systems and engineering adaptive networks
[19]; yet, only recently considerable research efforts have
been devoted to this emerging field. Specifically, chaos
synchronization over time-varying deterministic network
topologies is considered in [20–27], while stochastic net-
works are examined in [28–34]. These efforts have greatly
contributed to improving our understanding of chaos syn-
chronization over time-varying networks by establishing
a set of conditions for synchronization based on the node
and the network dynamics.

In [35], a necessary and sufficient condition for the lin-
ear stability of the synchronized state of stochastically
coupled chaotic maps is established. Such condition is
based on an extension of the Master Stability Function,
originally proposed in [36] for static networks, to stochas-
tically switching weighted directed networks describing
so-called conspecific agents [37]. In this network model,
the cardinality of an agent’s neighbor set and the weights
assigned to its neighbors are given by two jointly dis-
tributed random variables and the neighbors of an agent
are selected with equal probability. The fact that each
oscillator is virtually not able to distinguish among oth-
ers is the reason for the name “conspecific agents”. While
being restricted to a specific class of network models, the
analysis allows to establish strong algebraic conditions
similar to necessary and sufficient conditions available in
the literature on consensus over stochastically switching
networks, see for example in [38–42].

In this paper, we seek to extend the methodological
approach proposed in [35] to blinking networks consist-
ing of an undirected and unweighted pristine static net-
work whose graph Laplacian is termed L0 and stochastic
on-off couplings between any pair of nodes. Such inter-
mittent couplings have probability p to be switched on
at any instant in time and they are independent of each
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other. Therefore, the matrices L(k)’s are independent
and identically distributed matrices with common ran-
dom variable L = L0 + L, where the random matrix L,
defining the intermittent coupling, can be regarded as the
graph Laplacian of an Erdős-Rényi [43] network. We as-
sume that switching takes place at every instant in time
differently than [32], where synchronization of a lattice
of logistic maps whose couplings are rewired at varying
frequencies is studied.

The blinking model was originally introduced in [28]
for a pristine network consisting of a regular lattice of
cells with constant 2K-nearest neighbor couplings. As
discussed in [28], this model is representative of an am-
ple class of networked natural and technological systems,
including neuronal networks, packet switched networks,
and pulse modulated power converters, whose sporadic
interactions among the nodes regulate the overall dynam-
ics. Therein, sufficient conditions for global chaos syn-
chronization in a continuous-time setting are proposed
based on Lyapunov stability theory. Here, we take a dif-
ferent approach as we focus on linear stability of the syn-
chronization manifold and we seek to establish tractable
necessary and sufficient conditions in a discrete-time set-
ting. Notably, a similar network model is used in [40]
to study stochastic link failure in consensus problems by
considering a uniform intermittent coupling that is effec-
tive only on links of the pristine network. We find that
our approach provides tractable sharp estimates of the
convergence rate beyond the approach based on pertur-
bation analysis proposed in [40] that is valid for p very
small.

The paper is organized as follows. In Section II, we es-
tablish decoupled variational equations for the stochastic
stability of the synchronization manifold. In Section III,
we compute the moments of the graph Laplacian de-
scribing the blinking network. Therein, we also estab-
lish closed form results for the spectral properties of the
moments of the graph Laplacian of the intermittent cou-
pling. In Section IV, we present the main findings of
this work, that is, a toolbox of mathematically tractable
necessary and sufficient conditions for stochastic synchro-
nization. In Section V, we present numerical results on
synchronization of chaotic Henon maps to validate the
proposed conditions and ascertain the effect of the inter-
mittent coupling on synchronization. In Section VI, we
report conclusions of this study.

II. STOCHASTIC LINEAR STABILITY OF THE

SYNCHRONIZATION MANIFOLD

A. Variational equations

We say that the system of oscillators is synchronized if
the state vectors for all oscillators are identical. Specif-
ically, the oscillators are synchronized if x1(k) = . . . =
xN (k) = s(k) for all k ∈ N and some s that is a solution

of the individual oscillator dynamics, that is,

s(k + 1) = F(s(k)) (2)

The synchronization of (1) can be studied by linearizing
the equations of motion in the neighborhood of the com-
mon trajectory s(k) to obtain the following variational
equation

ξi(k + 1) = DF(s(k))ξi(k)− ε
N∑

j=1

Lij(k)DF(s(k))ξj(k)

(3)
where i = 1, . . . , N , ξi = xi− s is the variation of the ith
oscillator, and DF is the Jacobian of the function F. By
construction, the graph Laplacian is symmetric, zero-row
sum, and positive semidefinite [44].
We decompose the variation of the ith oscillator into

a component along the synchronization manifold and a
component transverse to the synchronization manifold,
that is, we write

ξi = ξ̃i +
1

N

N∑

j=1

ξj (4)

Note that, by definition, this implies
∑N

j=1 ξ̃j = 0. By

replacing equation (4) into (3) and introducing ξ̃(k) =[
ξ̃1(k)

T, . . . , ξ̃N (k)T
]T

∈ R
mN where superscript T

means transposition, we find the following equation for
the transverse dynamics

ξ̃(k+1) = (R⊗DF(s(k))− εL(k)⊗DF(s(k)))ξ̃(k) (5)

Here, ⊗ is the Kronecker product and R = IN− 1
N
1N1T

N ,

where IN is the identity matrix in R
N×N and 1N ∈ R

N

is the vector of all ones. By construction, the matrix
R is an orthogonal projection onto (Span(1N ))⊥ as it
is symmetric, idempotent, and Ker(R) = Span(1N ), see
for example [45]. Also, note that RL = L since L is
symmetric and zero row-sum. Equation (5) represents
a discrete-time jump linear system whose state matrix
depends on time, through s(k), and the underlying finite-
state independent identically distributed random process
defining the switching network [46–49]
Replacing equation (4) into (3) also yields the varia-

tional dynamics along the synchronization manifold

1

N

N∑

j=1

ξj(k + 1) = DF(s(k))
1

N

N∑

j=1

ξj(k) (6)

Equation (6) implies that growth and decay of pertur-
bations on the synchronization manifold are not affected
by the coupling among the maps and are measured by
the Lyapunov exponents of the uncoupled chaotic maps.
This is due to the fact that the graph Laplacian is sym-
metric; such full decoupling between the variational dy-
namics along the synchronization manifold and the trans-
verse dynamics is lost for directed networks [33]. In the
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following, we label the Lyapunov exponents of the uncou-
pled chaotic maps as h1, . . . , hm and we use the notation
hmax to identify the largest Lyapunov exponent.

B. Mean square stability

To study the stochastic linear stability of the synchro-
nization manifold, we introduce the second moment ma-

trix Ξ̃ : N → R
mN×mN defined by Ξ̃(k) = E

[
ξ̃(k)ξ̃(k)T

]
,

where E[·] means expectation and initial conditions for
the transverse dynamics are considered as parameters.

By definition, Ξ̃(k) is symmetric and positive semidefi-
nite and its trace quantifies the lack of synchronization,

that is, the expected value of ‖ ξ̃(k) ‖2, where ‖ · ‖ is the
Euclidean norm.
Since the matrices L(k)’s in (5) are independent ran-

dom variables, the time evolution of Ξ̃ is given by the
following recursion, see also [48],

vec(Ξ̃(k + 1)) = (R ⊗DF⊗R⊗DF

− εR⊗DF⊗E[L]⊗DF− εE[L]⊗DF⊗R⊗DF

+ ε2E[L⊗DF⊗ L⊗DF])vec(Ξ̃(k)) (7)

where vec(·) denotes vectorization and we have omitted
the dependence of the Jacobian on time. Here, we have
used the well-known property of the Kronecker product
(A⊗B)vec(C) = vec

(
BCAT

)
with A, B, and C properly

sized matrices [50]. Note that (7) is a linear time-varying
system since DF in general depends on k through s(k)
in (2) that defines the synchronous state.

Definition 1. We say that the coupled chaotic maps in
(1) stochastically synchronize if (7) is stable and we say
that they do not stochastically synchronize otherwise.

Practically, the linear stability of the synchronization
manifold should only be taken as a necessary condition
for synchronization of a network of coupled dynamical
systems. Indeed, imposing that the synchronized state
is stable with respect to local perturbations of the maps’
state does not necessarily imply that the maps approach a
synchronized state for arbitrary initial conditions, see for
example [51]. We further remark that this notion of syn-
chronization is based on the concept of mean square sta-
bility of stochastic systems [46–48]. Equivalencies among
different types of stability for linear systems can be found
for example in [47]. Finally, we comment that if the ma-
trices L(k)’s were not independent and rather controlled
by an underlying Markov chain, as for networks of mo-
bile oscillators considered in [30, 34, 52], the analysis of
more complex recursions than (7) would be mandated
following the line of argument in [46, 47].
The linear system (7) can be written in a more man-

ageable form by expressing the matrix Ξ̃ as

Ξ̃(k) =

N2∑

j=1

(
vec−1 (vj)

)
⊗Θj(k) (8)

where v1, . . . ,vN2 are linearly independent vectors in

R
N2

and Θj : N → R
m×m identifies the components

of Ξ̃ along vj for j = 1, . . . , N2. By substituting this
decomposition in (7), we find the following recursion

N2∑

j=1

(
vec−1 (vj)

)
⊗Θj(k + 1) =

N2∑

j=1

(
vec−1 (Hvj)

)
⊗
(
vec−1 (DF⊗DFvec (Θj(k)))

)

(9)

where the matrix H ∈ R
N2

×N2

is defined by

H = R⊗R− εE[L]⊗R− εR⊗E[L] + ε2E[L⊗L] (10)

We note that if switching at an arbitrary frequency is
considered following [32], the matrix H in (10) should be
modified to include higher order statistics of the Lapla-
cian matrix L. Indeed, if the same coupling is used for r
consecutive time steps, the variational dynamics can be

cast in the form of (9) by computing ξ̃(k + r) from ξ̃(k)

in (5) and sampling Ξ̃ at the switching events.

C. Master equation

The matrix H in (10) is symmetric; thus, it is di-
agonalizable and its eigenvectors can be taken to form
an orthogonal set, see for example [50]. By selecting
v1, . . . ,vN2 in (9) to be such eigenvectors, we find

vec(Θj(k + 1)) = λj(DF⊗DF)vec(Θj(k)) (11)

where j = 1, . . . , N2 and λ1, . . . , λN2 are the correspond-
ing eigenvalues of H in nondecreasing order, that is,
λ1 ≤ λ2 . . . ≤ λN2 .
Therefore, according to Definition 1, the oscillators

stochastically synchronize if and only if the linear time-
varying system in (11) is stable for j = 1, . . . , N2. Equa-
tion (11) can be referred to as a master equation similar
to those used to study synchronization of coupled maps
over static networks [53–56]. For the initial orientation
of the transverse error u0 = vec(Θj(0))/ ‖ vec(Θj(0)) ‖
and j = 1, . . . , N2 and λ1, . . . , λN2 , equation (11) yields

lim
k→∞

1

k
ln

(‖ vec(Θj(k)) ‖
‖ vec(Θj(0)) ‖

)
=

ln |λj |+ lim
k→∞

1

k
ln ‖(DFk(s(0))⊗DFk(s(0)))u0‖ (12)

where we have defined

DFk(s(0)) = DF(s(k − 1))DF(s(k − 2)) · · ·DF(s(0))
(13)

By invoking the ergodicity of the chaotic dynamics and
recalling that u0 is arbitrary, see for example [15], the
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right hand side of (12) takes values in {ln |λj | + hs +
ht, s, t = 1, . . . ,m}. Therefore, equation (11) is stable for
j = 1, . . . , N2 if and only if ln ρ(H) + 2hmax is negative
where ρ(·) indicates the spectral radius. Thus, we estab-
lish the following result which is applicable in general to
stochastically coupled chaotic maps whose dynamics is
described by (1) with L(k)’s independent and identically
distributed random variables.

Proposition 1. The coupled chaotic maps in (1)
stochastically synchronize according to Definition 1 if and

only if

ρ(H) < κ (14)

where κ = exp(−2hmax) and hmax is the largest Lyapunov
exponent for the individual map.

In the simpler cases of synchronization about fixed
points or periodic orbits, Proposition 1 is still applica-
ble and the largest Lyapunov exponent is equivalently
computed from the spectral radius of the constant Jaco-
bian DF, that is, κ = 1/ρ(DF)2, or from Floquet expo-
nents, see for example [57], respectively. For consensus
problems, ρ(DF) = 1 and the oscillators stochastically
synchronize if and only if ρ(H) < 1 consistently with
[38]. We also comment that Proposition 1 can be eas-
ily extended to directed networks following the line of
arguments in [58, 59].
For a static network, that is, p = 0, ρ(H) = ρ(R −

εL0)
2 = max{(1− εη2)

2, (1− εηN)2} where η1, . . . ηN are
the eigenvalues of L0 ordered in nondecreasing order with
η1 = 0 corresponding to the eigenvector 1N , see also [56].
Therefore, (14) reduces to the classical stability result for
static networks of coupled maps [53–56], that is,

1−√
κ

η2
< ε <

1 +
√
κ

ηN
(15)

Since the so-called algebraic connectivity η2 is different
than zero if and only if the pristine network is connected
[44], condition (15) implies that connectivity is necessary
for synchronization. Such requirement is removed when
blinking is taken into consideration as explained in what
follows. We further remark that the spectral radius of
R − εL0 can be attained in correspondence to either η2
or ηN depending on the value of epsilon. Notably, in
consensus problems, ε is typically assumed to be smaller
than 1/∆, where ∆ is the largest graph degree, to enforce
that the matrix I − εL0 is nonnegative. In this case,
ρ(R − εL0) = (1 − εη2) ≤ 1. This can be easily shown
through Gerschgorin’s circles which impose that ηN ≤
2∆, that is, 1/ε ≥ ηN/2, see for example [17].

III. ANALYSIS OF THE BLINKING

TOPOLOGY

Equation (14) demonstrates that stochastic synchro-
nization of (1) is controlled by the spectral properties

of the matrix H which are, in turn, determined by the
expected graph Laplacian E[L] and its autocorrelation
E[L⊗L] as well as the control parameter ε. In this Sec-
tion, we establish closed-form expressions for E[L] and
E[L⊗ L] by following a classical counting argument and
we further analyze their spectral properties. We com-
ment that weighting the links of the blinking networks
differently than those of the pristine network does not
modify the present analysis, yet it would require consid-
ering a secondary control parameter that would make the
analysis more elaborate. For example, negative weights
can be considered to model link failure.

The expected graph Laplacian is readily computed by
noticing that E[L] = L0 + E[L], that E[Lij ] = −p for
i, j = 1, . . . , N and i 6= j, and that each instance of the
switching network is zero-row sum. Therefore, we have

E[L] = L0 + pNR (16)

Here, NR is the graph Laplacian of a complete graph and
therefore the expected network is the superposition of the
pristine network and a complete graph weighted by the
probability p. We further comment that the eigenvalues
of E[L] in (Span(1N ))⊥ are η2 + pN, . . . , ηN + pN .

The computation of the matrix E[L ⊗ L] is more in-
volved as it requires exploring correlation between link
pairs. By using L = L0 + L and E[L] = pNR, we find

E[L⊗L] = L0⊗L0+pN(L0⊗R+R⊗L0)+E[L⊗L] (17)

We remark that E[L⊗L] 6= E[L]⊗E[L]; specifically, from
(16) and (17), we have

E[L⊗ L]−E[L]⊗E[L] = E[L ⊗L]− p2N2R⊗R (18)

Below, we compute E[L ⊗ L] and analyze its spectral
properties.

A. Computation of E[L ⊗ L]

The elements of E[L⊗L] have the form E[LijLst] with
i, j, s, t = 1, . . . , N , as per the definition of the Kronecker
product which imposes a block structure in E[L ⊗ L].
These elements can be partitioned into six distinct cases
for index values: 1) i = j = s = t; 2) i = j = s 6= t,
i = s = t 6= j, i = j = t 6= s, or j = s = t 6= i; 3)
i = s 6= j and j = t or i = t 6= j and j = s; 4) i 6= j and
t 6= s along with any of the following i = s and j 6= t, or
i = t and j 6= s, or j = s and i 6= t, or j = t and i 6= s, ,
or i 6= s and i 6= t and j 6= s and j 6= t ; 5) i = j 6= s = t;
and 6) i = j, s 6= t, s 6= i, t 6= i or s = t, i 6= j, i 6= s, and
i 6= t. As an illustration of the block structure of these
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assembled terms, E[L ⊗ L] with N = 3 is




α1 α2 α2 α2 α3 α4 α2 α4 α3

α2 α5 α6 α3 α2 α4 α4 α6 α4

α2 α6 α5 α4 α4 α6 α3 α4 α2

α2 α3 α4 α5 α2 α6 α6 α4 α4

α3 α2 α4 α2 α1 α2 α4 α2 α3

α4 α4 α6 α6 α2 α5 α4 α3 α2

α2 α4 α3 α6 α4 α4 α5 α6 α2

α4 α6 α4 α4 α2 α3 α6 α5 α2

α3 α4 α2 α4 α3 α2 α2 α2 α1




(19)

Case 1) describes the second moment of the degree;
Case 2) represents the joint first order moment of the
node degree and the its coupling with neighbors; Case
3) is the second moment of the coupling; Case 4) is the
joint moment of two distinct couplings; Case 5) refers to
the joint moment of degrees of two distinct nodes; and
Case 6) pertains to the joint moment of the node degree
and coupling of not-neighboring nodes. We denote the
values taken by elements of E[L ⊗ L] for these six cases
as α1, . . . , α6. By direct computation, we find α1 = (N−
1)(p+p2(N −2)), α2 = −p−p2(N −2), α3 = p, α4 = p2,
α5 = (N − 2)2p2+2p2(N − 2)+p, and α6 = −(N − 1)p2.
In general, the N ×N diagonal blocks E[L⊗ L]ii and

offdiagonal blocks E[L⊗ L]ij with i 6= j are written as

E[L ⊗ L]ii = p(1 + (N2 −N − 1)p)R+

N(1− p)p(Rei)(Rei)
T (20a)

E[L ⊗ L]ij = −Np2R+

(1− p)p
(
eie

T
j + eje

T
i − eie

T
i − eje

T
j

)
(20b)

where ei ∈ R
N has all zeros except of a one at the ith

entry and i, j = 1, . . . , N .

B. Spectral properties of E[L ⊗ L]

The spectrum of the matrix E[L⊗L] can be computed
by using the ansatz presented in [38] to study numerosity-
constrained networks. Specifically, by using a notation
consistent with [38], it can be verified that

λ̂(1) = 0 (21a)

λ̂(2) = pN(pN − p+ 1) (21b)

λ̂(3)
sym = 2p− 2p2 + p2N2 (21c)

λ̂
(3)
skew = p2N2 (21d)

λ̂(4) = pN(pN − 2p+ 2) (21e)

are eigenvalues of E[L ⊗ L]. These eigenvalues corre-
spond respectively to eigenvectors w = [wT

1 . . .wT
N ]T in

the eigenspaces

Γ(1) = Ker (R⊗R) (22a)

Γ(2) =



w ∈ R

N2

: wi = γiRei −
1

N

N∑

j=1

γjRej , with

γ1, . . . , γN ∈ R such that

N∑

j=1

γj = 0 for i = 1, . . . , N




(22b)

Γ(3)
sym =

{
w ∈ R

N2

: wi =

N∑

k=1

µikek for i = 1, . . . , N,

with µ ∈ R
N×N such that µ = µT,

wT
i 1N = 0, eTi wi = 0, for i = 1, . . . , N

}
(22c)

Γ
(3)
skew =

{
w ∈ R

N2

: wi =

N∑

k=1

µikek for i = 1, . . . , N,

with µ ∈ R
N×N such that µ = −µT,

wT
i 1N = 0, eTi wi = 0, for i = 1, . . . , N

}
(22d)

Γ(4) =
{
w ∈ R

N2

: w = γvec(R) with γ ∈ R

}
(22e)

It can be verified that all these eigenspaces are or-
thogonal and that their dimensions are 2N − 1, N − 1,
N(N+1)/2−2N , N(N−1)/2−N+1, and 1 respectively.
These dimensions sum to equal N2 and, therefore, the di-
mension of each eigenspace is equal to the multiplicity of
its corresponding eigenvalue.
In addition, since N > 1, all the eigenvalues of E[L⊗L]

in (21) are nonnegative. Moreover, they can be ordered
as

λ̂(1) ≤ λ̂
(3)
skew ≤ λ̂(3)

sym ≤ λ̂(2) ≤ λ̂(4) (23)

We comment that in this blinking network model, the
matrix E[L⊗L] can take as many as five distinct eigen-
values in contrast with numerosity-constrained network
models where at most four distinct eigenvalues are pos-

sible. In that case, Γ(1), Γ(2), Γ
(3)
sym, Γ

(3)
skew, Γ

(4) are still

eigenspaces, yet Γ
(3)
sym and Γ

(3)
skew have the same eigen-

value.

IV. MAIN RESULT

Using (18), the matrix H in (10) can be conveniently
decomposed in

H = H̃ + ε2(E[L ⊗ L]− p2N2R⊗R) (24)
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where E[L ⊗ L] is defined in (20) and

H̃ = (R− εE[L])⊗ (R − εE[L]) (25)

with E[L] given by (16).
The stochastic synchronization of (1) can be studied by

computing the spectral radius of H and using condition
(14). Nevertheless, this approach requires the computa-
tion of the spectral radius of a nonsparse large matrix,
whose dimension is N2×N2. Such analysis is even more
costly in parametric studies where we may seek to inves-
tigate the effect of varying the coupling strength ε and
the probability of connection p on the synchronizabil-
ity of a prescribed pristine network. Here, we establish
tractable conditions for synchronization that only require
the knowledge of η2 and ηN , as in the classical master sta-
bility function, to compute of upper and lower bounds for
ρ(H) in terms of simple functions of p and ε.

A. Spectral analysis of H

We indicate the spectrum of the matrix H̃ as
λ̃1, . . . , λ̃N2 and we take such eigenvalues to be orga-
nized in nondecreasing order. By using standard prop-
erties of the Kronecker product, we have that λ̃1 =
λ̃2 = . . . = λ̃2N−1 = 0, corresponding to eigenvectors
in Γ(1), and the remaining eigenvalues are in the set S =
{(1− ε(ηi+ pN))(1− ε(ηj + pN)), with i, j = 2, . . . , N},
see for example [50].
The sign of these eigenvalues varies with ε and pN .

Specifically, it is easy to show that the minimum and
maximum eigenvalues in S are

minS =





(1 − ε(η2 + pN))2, for 1
ε
− pN ≤ η2

(1 − ε(η2 + pN))(1 − ε(ηN + pN)),

for η2 ≤ 1
ε
− pN ≤ ηN

(1 − ε(ηN + pN))2, for 1
ε
− pN ≥ ηN

(26a)

maxS =
{
(1− ε(ηN + pN))2, for 1

ε
− pN ≤ (η2+ηN )

2

(1− ε(η2 + pN))2, for 1
ε
− pN ≥ (η2+ηN )

2

(26b)

By comparison, it can be verified that the magnitude
of the minimum eigenvalue of H̃ is always less than or
equal to the magnitude of the maximum eigenvalue, that
is,

ρ(H̃) = maxS (27)

The matrix H has Γ(1) as an eigenspace with the null
eigenvalue, since it is in the null spaces of both H̃ and
E[L ⊗ L]. Computing the remaining eigenvalues is gen-

erally difficult since H̃ and E[L ⊗ L] do not commute,
that is, the eigenspaces of E[L ⊗ L] in (22) are not all
eigenspaces of H . Exceptions to this general case are the

complete graph and the null graph for which the H and
E[L⊗ L] have the same eigenspaces and the eigenvalues

of H are obtained from (21) by multiplying λ̂(2), λ̂
(3)
sym,

λ̂
(3)
skw, and λ̂(4) by ε2 and then shifting them by either

(1 − 2εpN − 2εN + 2ε2pN2 + ε2N2) or (1 − 2εpN) de-
pending on whether the pristine network is a complete or
null graph, respectively. We note that such closed form
results for Erdős-Rényi networks extend the results of
[37, 41] to undirected networks.
In the general case of an arbitrary pristine network,

such closed form results may be difficult to obtain. Nev-

ertheless, the eigenvalues of the matrix H in
(
Γ(1)

)⊥
can

be bounded by using Weyl’s inequality in (24), see for

example [50]. Specifically, by projecting H on
(
Γ(1)

)⊥
and using (23), we find

0 ≤ λj − λ̃j ≤ 2ε2Np(1− p) (28)

for j = 2N, . . . , N2. Here, we have used (21) to compute
the smallest and largest eigenvalue of E[L⊗L]−p2N2R⊗
R in

(
Γ(1)

)⊥
.

The bounds in (28) imply that each eigenvalue of H

pertaining to
(
Γ(1)

)⊥
is larger than or equal to the cor-

responding eigenvalue of H̃ and bounded away from it
by at most 2ε2pN(1− p). By recalling that the smallest

eigenvalue of H̃ is in magnitude less than or equal to the
maximum eigenvalue, see (27), we have that (28) implies
the following bound for ρ(H)

ρ(H̃) ≤ ρ(H) ≤ ρ(H̃) + 2ε2pN(1− p) (29)

where ρ(H̃) is given by (26b).
If p = 0, the network is static and both the upper and

lower bounds in (28) coincide, the spectral properties of
H are equivalent to those of the static problem. If p 6= 0,
the blinking phenomenon modifies the spectral properties
ofH with respect to the eigenvalues of the static problem.
Notably, for p sufficiently small, the second summand in
the upper bound goes to 2ε2pN . Similar analysis holds
if the expected degree of the Erdős-Rényi graph is held
constant, that is, p(N − 1), as N grows. In this case,
the second summand in the upper bound still goes to
2ε2pN ; thus, it stays well defined and the bounding is
tighter as pN decreases, which, in turn, corresponds to
the expected degree in the intermittent coupling.

B. Conditions for stochastic synchronization

With reference to Proposition 1 and using the bounds
in (29), we establish the following manageable conditions
for synchronization.

Proposition 2. A necessary condition for stochastic

synchronization of the blinking network of coupled maps
described by (1) is

ρ(H̃) < κ (30)



7

where κ = exp(−2hmax) and hmax is the largest Lyapunov
exponent for the individual map. In addition, a sufficient

condition for stochastic synchronization is

ρ(H̃) + 2ε2pN(1− p) < κ (31)

Here, ρ(H̃) is given by (27).

We remark that (30) and (31) are applicable for every
selection of ε and p beyond the limit cases of sporadic link
failures considered in [40] or fast switching arguments for
continuous systems developed in [28]. The implementa-
tion of these conditions requires only the knowledge of
the second smallest and the largest eigenvalues, η2 and
ηN , of the graph Laplacian of the pristine network and
the parameter κ similarly to the classical master stabil-
ity function. In this case, both p and ε play the role
of control parameters that can be tuned to enforce syn-
chronization. The former parameter measures the effect
of small-world coupling due to the blinking phenomenon
and the second accounts quantifies the strength of each
coupling in the network.
Condition (30) is equivalent to synchronization over a

static network whose graph Laplacian is E[L] in (16). In
other words, stochastic synchronization of coupled maps
over blinking networks requires that the maps synchro-
nize over the expected network topology. Notably, fol-
lowing the argument for p = 0 leading to (15), this is
possible if and only if

1−√
κ

η2 + pN
< ε <

1 +
√
κ

ηN + pN
(32)

If such condition is satisfied, (31) can be used to deter-
mine the range of ε and p for stochastic synchroniza-
tion in terms of κ, η2, ηN , and N . Condition (32) also
shows that the presence of intermittent coupling allows
for smaller coupling strengths to possibly synchronize the
oscillators as first established in [28]. On the other hand,
synchronization is lost for smaller values of the coupling
strengths in the presence of intermittent coupling. We
remark that synchronization may be possible even for
disconnected networks due to the blinking phenomenon,
see (32) with η2 = 0.
We comment that this very same condition can also be

obtained by using the fact that mean square stability im-
plies stability in the mean [60]. In other words, requiring

that Ξ̃(k) in (7) exponentially decays to zero for any ini-

tial condition implies that E[ξ̃(k)] also approaches zero
for any initial condition. Upon taking the expectation
of (5), this forces the linear stability of the synchronized
state for maps that are coupled by the expected network.
For ε ≪ 1, both the left hand sides of (30) and

(31) in Proposition 2 approach 1 − 2ε(η2 + pN), that
is, ρ(H) ≃ 1 − 2ε(η2 + pN). This shows that synchro-
nization over the expected network becomes a necessary
and sufficient condition for stochastic synchronization in
the limit of ε ≪ 1. In other words, for ε sufficiently
small, the switching network is virtually equivalent to

the expected network. This scenario is thus similar to
fast switching networks in [28, 33], where the oscillator
dynamics is continuous in time while the network blinks
intermittently.
As ε increases, the upper and lower bounds in (29)

start differing and the sufficient condition (31) may be
used to estimate the critical value of ε beyond which the
switching network does not inherit the synchronizability
of its time-average counterpart. Unfortunately, an ele-
gant counterpart of condition (32) for finding values of p
and ε that satisfy (31) cannot be found due to the pres-
ence of 2ε2pN(1−p), yet checking the sufficient condition
(31) is trivial.
For ε ≫ 1, condition (32) shows that synchronization

is eventually lost. In addition, the two bounds in (29)
diverge and their relative difference, defined as the dif-
ference between the upper and lower bounds divided by
the upper bound, that is, 2ε2pN(1−p)/ρ(H̃), approaches
2Np(1− p)/(ηN + pN)2.

V. SIMULATIONS

We consider a pristine network consisting of a lattice of
N = 25 nodes, for which L0 is a circulant matrix whose
first row has all zeros except the first entry, which is equal
to 2, and the second and last, that equal −1. For this
pristine network, we have η2 = 0.0628 and ηN = 3.98.

A. Spectral properties

We test the sharpness of the bounds in (29) by consid-
ering p = 0.2. This relatively large value of p, above the
percolation threshold of 1/N [61], is selected to maximize
the contrast between the bounds and best illustrate their
behavior. We explore different values of the control pa-
rameters ε to explore a broad set of parameter variations.
Figure 1 displays the behavior of the bounds in the

range of ε from 0 to 0.5. As expected, the bounds are
initially coincident for ε = 0 and they start separating
as ε increases until the spectral radius of H is approxi-
mately minimized. In correspondence of such minimum,
the slope of both bounds suddenly changes sign. This
change is located when 1/ε− pN is at (η2 + ηN )/2, that
is, at ε = 0.142. As ε is increased beyond the range dis-
played in Figure 1, the relative distance of the bounds
from the spectral radius of H is preserved. For example,
for ε = 2, ρ(H) = 294, the lower bound is 288 and the
upper bound is 320, and for ε = 25, ρ(H) = 50900, the
lower bound is 50000 and the upper bound is 55000. This
demonstrates that the bounds are tight in a broad range
of variation of ρ(H) across five orders of magnitude. As
ε is further increased, their relative difference approaches
the limit value of 0.0992 confirming that the sharpness
of the bound is preserved.
For the representative case ε = 0.13, Figure 2 reports

the eigenvalues of H along with the bounds established
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FIG. 1. (Color online) Illustration of (29) for p = 0.2. The red
solid curve identifies ρ(H) and dashed black lines the proposed
sharp bounds.
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FIG. 2. (Color online) Illustration of the bounds in (28) for
p = 0.2 and ε = 0.13 with eigenvalues of H in red and bounds
as black dots (upper and lower data sets). Note the fact
that eigenvalues can be negative and the large spectral gap
between the spectral radius and the second largest eigenvalue.

in (28), demonstrating the sharpness of the proposed
bounds for the whole spectrum of H .

B. Illustration of the method

We illustrate the implementation of the proposed con-
ditions for stochastic synchronization through the analy-
sis of canonical Henon maps coupled through the pristine
network defined above. The chaotic dynamics of each in-
dividual map is governed by [35, 56]

x1(k + 1) = 1− 1.4x2
1(k) + x2(k) (33)

x2(k + 1) = 0.3x1(k) (34)

and its Lyapunov exponent is hmax = 0.419 [56] so that
κ = exp(−2hmax) = 0.433.

The stochastic synchronization of this system as a
function of the probability of connection p and the cou-
pling strength ε is ascertained by computing the bounds
ρ(H̃) = max{(1− ε(η2 + pN))2, (1− ε(ηN + pN))2} and

ρ(H̃)+2ε2pN(1−p) from Proposition 2. Once again, we
comment that such computation requires only the knowl-
edge of the second smallest and the largest eigenvalues of
L0. Alternatively, computing the eigenvalues of H as a
function of p and ε would entail computing the spectral
radius of a nonsparse matrix with dimension 625 × 625
for each parameter selection.

Figure 3 displays the bounds ρ(H̃) and ρ(H̃) +
2ε2pN(1 − p) as a function of p and ε. The region out-
side the yellow contour in Figure 3(a) identifies parame-
ters’ values for which synchronization is not possible ac-
cording to the necessary condition in Proposition 2. On
the contrary, the region within the yellow contour line
in Figure 3(b) defines values of p and ε for which syn-
chronization is possible according to the sufficient con-
dition in Proposition 2. For p = 0, Figure 3(a) demon-
strates that the pristine network does not support syn-
chronization for any selection of the coupling strength.
As p increases, synchronization is still not feasible for
any selection of ε until p reaches approximately 0.04 as
illustrated in Figure 3(a). For values of p between 0.04
and 0.09, synchronization may occur, yet the sufficient
condition illustrated through Figure 3(b) does not allow
to draw any conclusion. As p reaches 0.09, Figure 3(b)
indicates that synchronization is possible for values of ε
that are proximal to 0.2. As p further increases, Fig-
ure 3(b) shows that there is always a range of values of ε
in the interval (0, 0.2) for which synchronization occurs
while Figure 3(a) demonstrates that synchronization is
not possible as ε departs from this region by a relatively
small amount of the order of 0.01.

For example, the cross-section at p = 0.2 can be an-
alyzed by referring to Figure 1. Therein, by computing
the intersections of each of the three curves with the hor-
izontal line κ, we can directly extract the ranges of ε for
which the maps stochastically synchronize or do not as
predicted by the bounds ρ(H̃) and ρ(H̃) + 2ε2pN(1− p)
along with the exact range of synchronization dictated by
ρ(H). Specifically, we find that ρ(H) < κ in (0.069, 0.17),

ρ(H̃) < κ in (0.068, 0.18), and ρ(H̃) + 2ε2pN(1− p) < κ
in (0.074, 0.16).

As a further illustration of the proposed approach
in assessing stochastic synchronization, in Figure 4,
we report the evolution of the so-called error norm
defined as δ(k) = ‖(R ⊗ Im)x(k)‖, where x(k) =[
x1(k)

T, . . . ,xN (k)T
]T ∈ R

mN , for ε = 0.13; with ref-
erence to the linear stability of the synchronization man-

ifold presented above, this quantity equals ‖ ξ̃(k) ‖. For

this selection, ρ(H̃) + 2ε2pN(1 − p) = 0.188 < κ, im-
plying stochastic synchronization according to Proposi-
tion 2. We compute 40 different realizations of the blink-
ing network and maintain the same initial conditions in
the basin of attraction of the map with the two states of
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FIG. 3. (Color online) Contour plots of log ρ(H̃) (a) and

log(ρ(H̃) + 2ε2pN(1 − p)) (b) for ε ∈ (0, 0.5) and p ∈ (0, 1);
logarithms are base ten. The yellow solid contour identifies
log κ = −0.364 and the red dashed line demarcates the null
contour line (as made clear by the zero label superimposed).
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FIG. 4. (Color online) 40 time evolutions (color markers)
and mean value (dashed line) of the synchronization error for
p = 0.2 and ε = 0.13.

each oscillator randomly selected between 0 and 0.001.
The dashed line shows the average of the numerical sim-
ulations and color markers indicate different realizations.
By taking a linear regression of the average error in the
logarithmic plot, we find (2 ln δ(k)) ∼ −0.81k. This is
in good agreement with the largest Lyapunov exponent
of the error dynamics ln ρ(H) + 2hmax = −0.83, that is
computed from Figure 1 where ρ(H) = 0.88.

Similarly, Figure 5 displays the evolution of the error
norm for ε = 0.06 for which ρ(H̃) = 0.485 > κ, indicating
that synchronization is not possible. In agreement with
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FIG. 5. (Color online) 40 time evolutions (color markers)
and mean value (dashed line) of the synchronization error for
p = 0.2 and ε = 0.06.

the theoretical findings, the network does not synchronize
in this case; yet, the oscillators do not leave the basin of
attraction and the error stays bounded.

VI. CONCLUSIONS

In this paper, we have analyzed stochastic synchroniza-
tion of a network of N identical chaotic maps that are
coupled by a blinking network comprised of an arbitrary
static pristine graph and intermittent on-off coupling be-
tween any pair of nodes. For this network model, we
have established necessary and sufficient conditions for
stochastic linear stability of the synchronization mani-
fold based on the spectral radius of a matrix of dimen-
sion N2 ×N2 and properties of an individual oscillator.
Such matrix is controlled by the coupling strength ε, the
probability of connection p, and the graph Laplacian of
the pristine network L0.

To cope with the computational cost associated with
handling this large matrix, we have presented a toolbox
of mathematically tractable necessary and sufficient con-
ditions for synchronization based on closed-form results
on the spectral properties of the intermittent coupling
and classical eigenvalue bounds. These simple algebraic
conditions involve only the use the second smallest and
the largest eigenvalue of the graph Laplacian of the pris-
tine network, the coupling strength, and the probability
of connection. Through analytical insights and numerical
simulations on Henon maps, we have demonstrated the
sharpness of the proposed conditions for synchronization.
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