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Two analytically tractable systems, Brownian particles in (i) moving harmonic oscillator or (ii)
with a time-dependent natural frequency, obey a force fluctuation theorem similar to that proposed
by Ponmurugan and Vemparala. Many of their results can be explained by using the former case
as a model.

Based on force distributions observed in biomolecular
simulations of two systems, Ponmurugan and Vemparala
proposed [1], without derivation, an intriguing relation
in the form of a fluctuation theorem,

Pv(+f)

Pv(−f)
= eγ(T,v)f , (1)

where Pv(±f) is the velocity-dependent probability of
observing a positive or negative force f acting upon a
system by a harmonic spring moving at a constant ve-
locity v and γ(T, v) is a proportionality constant with a
power-law dependence on the temperature T and v.
In this comment, I point out that by using his-

tograms that combine data from different time points,
Ponmurugan and Vemparala implicitly assumed time-
independence of the force distribution. This may be a
reasonable approximation in some cases, but it cannot
be rigorously true that the force distribution at t = 0,
where the system is in equilibrium, is equivalent to the
distribution at an arbitrary later time of an nonequilib-
rium driven process.
As counterexamples, I present two analytically

tractable models for which a similar relation holds. The
force fluctuation theorem has the form,

Pv(+f, t)

Pv(−f, t)
= eγ(λ)f , (2)

in which γ(λ) is a function of a vector of parameters λ
that describe the state of the system (including t). The
model systems are a Brownian particle in a harmonic
oscillator (i) moving at a constant velocity or (ii) with
a time-dependent natural frequency. In both cases, the
potential energy has the form U(x, t) = k(t)(x−x̄(t))2/2.
The systems are prepared in their respective equilibrium
distributions and are driven out of equilibrium either by
changing x̄(t) or k(t). In case (i), x̄ = vt and k(t) = k
is a constant. In case (ii), x̄ = 0 is a constant and k(t)
varies with time.
As previously derived [2, 3], the nonequilibrium proba-

bility pneq(x, t) of observing position x at time t is Gaus-
sian with a time-dependent mean xT (t) and variance
σ2
x(t). (Note that xT (t) is not, in general, the equilib-

rium position of the oscillator x̄(t).) Since the force ap-
plied by the harmonic oscillator is −k(t)(x − x̄(t)), the

distribution of force is also Gaussian, with mean f̄(t) =
−k(t)(xT (t) − x̄(t)) and variance σ2

f (t) = k(t)2σ2
x(t).

Thus, the ratio of positive and negative force probabili-
ties is,

P (+f, t)

P (−f, t)
= exp

[

−
(f − f̄(t))2

2σ2
f (t)

+
(f + f̄(t))2

2σ2
f (t)

]

= exp

[

2f̄(t)

σ2
f (t)

f

]

. (3)

Using the analytical xT (t) and σ2
x(t) [3], the mean and

variance of the force in case (i) is,

f̄(t) =
v

βD

(

1− e−βDkt
)

(4)

σ2
f (t) =

k

β
, (5)

where β = (kBT )
−1 is the inverse of Boltzmann’s con-

stant times the Kelvin temperature andD is the diffusion
coefficient. In case (ii), f̄(t) = 0 and σ2

f (t) may be ob-
tained from Eq. (6) in Minh [3], leading to a complex ex-
pression that shall be omitted here. Notably, both cases
have time-dependent force distributions and fit into the
form of Eq. (2).
Although it is a simple model, case (i) is surprisingly

relevant to biomolecular single-molecule pulling experi-
ments. With a sufficiently stiff spring constant, the dy-
namics of a complex system subject to a moving har-
monic oscillator potential are well-described by those of
the harmonic oscillator [4]; this is the stiff spring approx-

imation.
For lower pulling rates, Ponmurugan and Vemparala’s

results appear to fall under the aegis of the stiff spring
approximation. At a pulling rate of 10 Å/ns, a spring
constant as low as 250 pN/Å was found to be suffi-
ciently stiff to accurately recapitulate free energies with
the stiff spring approximation [5]. Ponmurugan and Vem-
parala’s slowest pulling rates were comparable, at 2.5
and 25 Å/ns, and they used a stiffer spring constant of

10 kcal/mol/Å
2
= 695 pN/Å. Indeed, Fig. 2, panels

(c) and (d) appear to be roughly Gaussian distributions
with variance close to σ2

f = k/β = (695 pN/Å)(0.138 pN

Å/K)(300 K) = 2.87 × 104 pN2 or standard deviation
σf = 170 pN. Furthermore, the fact that the fast pulling



2

rate leads to an increased mean force is consistent with
Eq. 4. The stiff spring approximation, however, fails to
predict the powers of the phenomenological power laws.
Because of the one-to-one mapping between position

and force, Hummer and Szabo’s relation [6] between the
work-weighted nonequilibrium position on the pulling co-
ordinate and the equilibrium probability of the same po-
sition is relevant to force distributions. Nonetheless, in
spite of results presented here, I am skeptical that a more
general force fluctuation relation in the form of Eq. 2 will
be derived. I hope to be pleasantly surprised.
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