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Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-
Gaussian structure of their displacement probability distribution. We propose a statistical analysis
technique for learning the characteristics of the nonlinear potential from the time dependence of
the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on
the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane
in a cage-type potential. Results of numerical simulations are supported by analytical predictions.
We show that the approach allows robust identification of some characteristics the potential for
the much lower temporal resolution compared with the mean square displacement analysis and we
demonstrate robustness to experimental errors in determining the particle positions.
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Rapid progress in video-capturing, sub-diffractive mi-
croscopes and fluorescence technologies has transformed
a single particle tracking (SPT) technology in a power-
ful tool for studying the properties of biological environ-
ments and complex fluids [1]. In a typical experiment
some specific type of biomolecule, i.e. protein or lipid, is
labeled by a fluorophore or a nanoparticle, and its mo-
tion is tracked with a camera in subdiffractive resolution
[2]. The abundance of data available from the SPT ex-
periments has risen demand in data analysis techniques
that would help scientists to characterize the interaction
of particle with the environment based on the statisti-
cal properties of particle trajectories. Many of the cur-
rently used approaches rely on the analysis of second or-
der moments, like the mean square displacement (MSD)
[1]. The main objective of this Letter is to demonstrate
the potential of other statistical properties that go be-
yond Gaussian approximation and second-order correla-
tions. In a practically interesting example of a protein
moving on the membrane we show that many character-
istics of the particle-membrane interactions that cannot
be recovered from the analysis of MSD reveal themselves
as distinct statistical signatures in the time dependence
of the kurtosis of the particle displacement distribution.
These signatures are supported by analytical predictions.
The non-Gaussianity of jumps observed during anoma-
lous diffusion has been recognized for many years (see e.g.
the review [3]), however, to our knowledge the problem of
connecting the non-Gaussianity with the structural prop-
erties of the environment is still open. In addition, the
analysis of the kurtosis of the particle displacements ig-
noring the time-dependence gives quite limited informa-
tion [4] contrary to our approach which relies of distinct
properties of time dependence.

The motion of proteins and lipids within biological
membranes plays important role in many biological pro-
cesses. Previous assumption that biological membrane
can be considered as two-dimensional fluid with freely
diffusing lipids and proteins [5, 6] are now significantly al-

tered by the experimental observations that membranes
are highly heterogeneous [7, 8]. Models of lipid rafts,
pickets and fences, protein-protein complexes and protein
islands were suggested [9–12]. According to these models
the motion of the location and diffusion of membrane pro-
teins are significantly influenced by the domains of differ-
ent lipid or protein compositions (lipid rafts, protein is-
lands) as well as by the interaction with the cytoskeleton
and anchored transmembrane proteins (form fences and
pickets, respectively). E.g., the compartmentalization of
the plasma membrane is perhaps the best explained by
the fences and pickets [10]. Inside each compartment
proteins (lipids) experience fast diffusion (at time scales
. 0.01s [10]) which agrees well with the diffusion in the
artificial membranes (which do not have cytoskeleton).
A hopping between different compartments (jump over
fences) occurs at larger time scale τh ∼ 0.01s. (see e.g.
Table 2 in Ref. [10] for the specific values of τh for several
types of cells).

Most SPT studies have been relying on the standard
video rate (∼ 30 frames/sec) [1] which does not allow a
detailed resolution of the fast diffusion inside compart-
ments because the inter-compartment hoping rate 1/τh
exceeds the video rate. The exceptions are Kusumi [10]
and Ritchie [13] groups which use 25µs and 1ms temporal
resolutions, respectively. The analysis of SPT trajecto-
ries in the significant majority of previous work has been
based on the analysis of MSD [1]. It was demonstrated
that SPT with the standard video rate is not sufficient to
recover any details about fast diffusion inside compart-
ments as well as any information about compartments
[10]. MSD uses only a small part of information about
properties of particle trajectories. The only exception
when MSD is optimal corresponds to the pure random
walk of the particle when probability distribution of par-
ticle displacement is Gaussian. However, any inhomo-
geneity on plasma membrane (represented e.g. by the
inhomogeneous potential) results in the non-Gaussianity
of that probability distribution which makes MSD non-
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optimal to recover the properties of the system from the
SPT trajectories.

In parallel to biology SPT based approaches were de-
veloped in microfluidics under the name of microrheol-
ogy [14]. Tracking of the Brownian motion of individual
particles immersed in viscoelastic fluid allows reconstruc-
tion of viscoelastic modulus from the Laplace transform
of particle MSD. To our knowledge, all common varia-
tions of microrheology (including two-particle and active
microrheology) are based on the analysis of second-order
correlation functions, and assume linear response of the
viscoelastic fluid. Although microrheological settings are
not described in this Letter, the methods discussed below
can be naturally applied there.

A number of other techniques have been proposed for
identification of the potentials on biological membranes
based on the analysis of individual trajectories. Most
comprehensive approach is to solve the inverse problem
of reconstruction of U(r), r = (x, y) from the trajectories.
However, such problem is generally ill-posed [15] and
needs very large statistics of trajectories. E.g., Ref.[16]
suggested to infer forces acting on the biomolecule [17]
requiring the multiple particle visits of each spatial loca-
tion which is difficult to achieve experimentally. In addi-
tion, the potential U in living cells can slowly change with
time. This fact may limit the application of inverse prob-
lem approaches, that attempt to reconstruct the specific
potential. Another approach [10, 18] focuses on identifi-
cation of the potential barriers from MSD-based analysis.
That approach is successful but requires very high tempo-
ral resolution of trajectories. Ref. [4] used the kurtosis to
analyze the displacements relative to the center of gravity
of the particle trajectory. Such definition of the kurtosis
looks only into the spatial distribution of visited points,
thus completely ignoring the time-dependence which is in
sharp contrast with the approach that we will use. Refs.
[19–21] used fourth order moment to infer the properties
of anomalous diffusion. One more method is based on
the measurement of autocorrelation of SPT trajectories
and recovering of the probability distribution of parti-
cle jumps [22] which indirectly displays the information
about the inhomogeneity of the plasma membrane. In
contrary, the technique analyzed in this Letter has more
modest goals of learning the characteristic scales associ-
ated with the potential. It does not rely on long observa-
tions of individual particles, and can be based on aggre-
gation of time-series from an ensemble of measurements
of different particles in the same class of membranes.

In this Letter we propose to recover major features
of the potential from SPT trajectories using the time-
dependence of the kurtosis as the measure of non-
Gaussianity. We demonstrate by the combination of
numerical and analytical methods that the rate ∼ 100
frames/sec might be sufficient for that purpose far supe-
rior to the performance of MSD-based methods.

The starting point of our work is the following obser-
vation. Whenever a particle experiences nonlinear inter-
actions, for example with the cytoskeleton, the proba-
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FIG. 1: (Color online) Simulation of the trajectory of a diffus-
ing protein in triangular compartments of size 600 nm during
10 seconds shown with a time resolution 10 ms. The dashed
lines indicate the borders between compartments.

bility distribution of the particle displacement becomes
non-Gaussian. Therefore, analysis of the deviations from
Gaussian distribution can reveal new information about
the nonlinear interactions. There is a infinite num-
ber of characteristics that measure the degree of non-
Gaussianity, because the nonlinear interaction can take
infinite number of forms. In this Letter we consider only
one of the characteristics, that can be accurately esti-
mated with limited amount of time-series data. Kurtosis
of the particle displacement distribution, defined as

Kα(t) =

〈
[∆rα(t)− 〈∆rα(t)〉]4

〉
3 〈[∆rα(t)− 〈∆rα(t)〉]2〉2

− 1. (1)

Here ∆rα(t) = rα(t) − rα(0) is the α component of the
particle displacement, and 〈. . .〉 denotes the time average
along the particle trajectory as well as it might mean ad-
ditional ensemble average over several simulations (when
we mention that explicitly below). If the probability dis-
tribution of particle displacement is Gaussian, the kurto-
sis will be equal to zero for any time interval t. Kurtosis
of the displacement distribution originates from the non-
linear interactions of the particle with the environment,
and as shown below, incorporates a lot of information
about the structure of these interactions.

We model the motion of the particle using the Monte
Carlo algorithm (see e.g. [17]) as a two-dimensional (2D)
random walk on an elementary triangular lattice com-
posed of equilateral triangles with side length a = 1 nm
(or a = 0.25 nm in the case of the inset in Figure 2). The
membrane compartments are typically modeled as equi-
lateral triangles filling entire 2D plane with sides of length
L = 300 nm, 150 nm and 600 nm. In separate simulations
we also considered random distortions of these triangles
as well as rectangles filling 2D plane. The potential en-
ergy on the elementary lattice site i is labeled as Ui. Fig-
ure 1 shows the typical simulation of total time 10 s. In
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FIG. 2: (Color online) The kurtosis of the displacements along
x for 3 different compartment sizes calculated with the reso-
lution 0.1ms. The inset shows the kurtosis scaled as 1/L for

the resolution 1µs and a function f(t) ≈ t1/2 (thin black line)

which shows that the kurtosis scales as t1/2 for small t

each simulation step, a random closest neighbor j of site i
that is occupied by the random walker (diffusing protein)
is chosen. The move to site j from i is accepted with
probability p = min(1, exp [(Ui − Uj)/T ]). We set the
temperature T = 1. The potential of barriers between
compartments is defined as Ui(l) = H exp (−d2i,l/σ2),

where Ui(l) is the the contribution to the total poten-
tial Ui at site i from lth barrier and di,l is the distance
from site i to lth barrier. Ui is given by the sum of con-
tributions from all barriers: Ui =

∑
l Ui(l). Also H is the

height of the barrier and the width of the barrier is 2σ.
By default the barrier parameter σ is set to 5 nm and
H = 7. But for the inset of Figure 2, we model a higher
barrier with σ = 8 nm and H = 10.

We set the diffusion coefficient to D = 2.5µm2s−1 on
the lattice, which means that one iteration step of the
MC simulation corresponds to a time period τ = 0.1µs
for lattice size a = 1nm and τ = 0.00625µs for a =
0.25nm according to the relation D = a2/(4τ). Effect of
the discretization is negligible at time scales � τ which
motivates our choice of the numerical values of a.

For Ui ≡ 0 the particle experiences a Brownian motion
with 〈∆x2 + ∆y2〉 = 4Dt and K(t) = 0. However, if U
is nonzero, the kurtosis of the particle motion acquires
a non-trivial shape as shown in Figure 2 for three differ-
ent compartment sizes. The typical length of simulation
was 109 steps with every 103-th step recorded, thus cor-
responding to an experiment of total length 100s with
a time resolution (i.e. inverse frame rate) 0.1 ms. Note
that we always use the elementary time step τ to gener-
ate particle trajectories. Experimental observations have
much lower temporal resolution than τ and to imitate
such resolution we use only a small fraction of simulation
points to calculate the kurtosis for each chosen resolu-
tion. Figure 2 shows that the kurtosis is characterized
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FIG. 3: (Color online) The kurtosis for three different com-
partment sizes L as a function of rescaled time t/L2 showing
L2 scaling of the position of the minima. The time resolution
of each simulation was 0.1ms and total length was 104s.

by two peaks separated by a local minima. The inset of
Figure 2 shows a simulation with lattice size a = 0.25nm,
the duration 10s and the resolution 1µs, which we used
to test the analytical predictions for kurtosis behavior for
low times as discussed below. The kurtosis in that inset
is divided by L. The kurtosis scales as 1/L for low times t
and grows as t1/2, as expected from our analysis. Figure
3 shows that the position of the minima scales as L2 as
also expected from our analysis below.

The kurtosis of simulations with three different tem-
poral resolutions 0.1ms, 1ms and 10ms for the compart-
ment size L = 300 nm are shown in Figure 4. Already
for the resolution ' 10ms it is possible to see the charac-
teristic features of the kurtosis inferring compartments’
structure by comparing with the pure diffusion case. The
kurtosis curves are averaged over 5 different simulation
runs, each of duration 100s for the resolution 0.1ms and
500s for the resolutions 1ms and 5ms. We also show
the kurtosis for pure diffusion simulations, which should
be equal to 0 for the infinite trajectory. The error bars
show standard deviation for the five simulations with the
resolution 0.1ms. The inset compares MSD of pure diffu-
sion with no barriers and two different simulations with
the resolutions 0.1ms and 10ms for L = 300nm. While
the MSD plot with the resolution 0.1ms shows transi-
tion from the fast diffusion regime inside the compart-
ment with D = 2.5µm2s−1 to the slow hopping diffusion
regime with D = 0.1µm2s−1, the MSD plot of 10ms res-
olution is able to capture only the slow diffusion.

Figure 5 shows that the kurtosis is quite robust to the
defects of the triangular compartment lattice which we
demonstrated by randomly removing different percent-
age of barriers. We also found similar robustness when
we randomly distorted equilateral triangular lattice by
10% in angles compare with π/3 angles as well as when
we used rectangular lattice instead of triangular one. An-
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FIG. 4: (Color online) The kurtosis along x for 3 different
resolutions with L = 300 nm. The kurtosis for pure diffusion
(no barriers) is also shown with the resolution 0.1ms. Error
bars correspond to 0.1ms resolution. The inset shows MSD
for diffusion with no compartments (short dashed line) and
for simulations with the resolutions 0.1ms (long dashed line)
and 10ms (solid line).
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FIG. 5: (Color online) The kurtosis along x for different frac-
tions of randomly removed barriers for simulation of 100s du-
ration for triangular compartments with L = 300 nm and
0.1ms resolution.

other important measure is the sensitivity to the experi-
mental noise in the position of particles. We checked that
the kurtosis is quite robust for the noise up to ' 30nm
in the position of particles as shown in Figure 6.

Observed structure of the kurtosis time dependence
K(t) can be explained theoretically in a limiting case
when the characteristic time τd ∼ L2/D associated with
the diffusion inside the compartment is much smaller
than the hopping time τh between consecutive hopping
over the barrier. To estimate τh we solve the Smolu-
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FIG. 6: (Color online) The kurtosis along x for different levels
of the simulated experimental noise (simulated as the error in
the measurement of particle position) in position of particles
for simulation of 100s duration and the same parameters as
in Figure 5. The simulated noise is taken to be Gaussian with
the variance γ2.

chowski equation

∂tp = D∇ · [p∇U +∇p] (2)

for the time-dependent probability density function
(PDF) p(r, t) of the particle position r. Constant-flux
solution of (2) in the adiabatic approximation ∂tp ' 0
(valid because τh � τd) gives the relation between the
flux of the probability through the barrier ∝ −Dp′(0)
and the jump p(0+) − p(0−) of PDF between compart-
ments:

p(0+)− p(0−) = p′(0)P−1, (3)

where the barrier is assumed to be infinitely thin (i.e.
σ/L� 1), p(0+) and p(0−) are values of p from different
sides of the barrier, p′(0) ≡ n·∇p is the normal derivative
of p at the barrier and n is the normal unit vector to the
barrier. For the Gaussian form of the barrier the perme-
ability P is given by P = H1/2π−1/2σ−1e−H resulting in
τh ∼ P−1LD−1 ∼ τd(σ/L)H−1/2eH .

The initial rise of the kurtosis function K(t) in the
region t � τd is related to short trajectories that expe-
rienced some nonlinear interaction. As the only source
of nonlinearity in this model is the interaction with the
barrier, they correspond to reflections from the bar-
rier. The short length of the trajectories in this re-
gion of t allows one to explain this behavior via anal-
ysis of a simplified problem of one-dimensional diffu-
sion in the neighborhood of reflecting wall. Assum-
ing that the random walk takes place in the x direc-
tion, the Green function which is defined as a proba-
bility density of the final position x = X(t) assuming
that the particle was at position x0 at t = 0 is given
by 2G(x;x0, t) = G0(x − x0; t) + G(x + x0; t), where
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G0(x; t) = (2πDt)−1/2 exp
[
−x2/2Dt

]
. In the above we

assumed that the reflecting boundary is located at x = 0.
The kurtosis can be found by calculating the expres-
sions for moments Cn =

∫∞
0
dx(x − x0)nG(x;x0, t) with

n = 2, 4. The moments have to be then averaged over the
value of x0, that we assume to be uniformly distributed
in the region 0 < x < L with L �

√
Dt being a char-

acteristic compartment size. Straightforward integration
yields the following expressions for the moments in the
leading order over

√
Dt/L: C2 = Dt/2− (Dt)3/2/3

√
πL

and C4 = 3(Dt)2/4 − 4(Dt)5/2/5
√
πL2. Note that the

correction to C4 is smaller in comparison to the correc-
tion to C2

2 which explains the initial rise of the kurtosis
K = 4(Dt)1/2/15

√
πL. The numerical factors in this

expression are not universal and may depend on the ac-
tual form of the compartment. However, the scaling laws
K ∝ t1/2 and K ∝ L−1 are universal, they are seen
in the inset of Figure 2 and can be checked experimen-
tally. Qualitatively the positive value of the kurtosis at
small times t � τd can be explained as follows: ran-
domly choosing the initial position of the particle inside
the compartment we will observe at short times the Gaus-
sian fluctuations of the displacement for the initial posi-
tions away from barriers and super-Gaussian fluctuations
for the initial positions near barriers (motion downhill in
the potential is super-Gaussian).

For intermediate timescales τd � t � τh the parti-
cle has enough time to diffuse around its compartment,
however the events of passing through the barrier are
still rare. In this regime one can calculate the value
of the kurtosis by assuming that the Green function
G(r; r0, t) = P∞(r), where P∞(r) is the uniform dis-
tribution with support inside the compartment. This
assumption implies that the particle had enough time
to explore the whole compartment, and moreover, that
the width of the barriers is negligible in comparison
to the compartment size. If the later approximation
is not justified, the Green function has to be replaced
by equilibrium Boltzmann-type distribution G(r; r0, t) =
exp[−U(r)/T ]/Z. As long as the initial particle position
is also uniformly distributed over the compartment we
obtain the following expressions for the moments of par-
ticle jumps: Cn =

∫
C
dr
∫
C
dr0(r − r0)nP∞(r)P∞(r0)

that yields K(t) = −1/10 for triangular compartments
with very thin barriers. Figure 3 shows that the position
of the kurtosis minima indeed scales as L2, i.e. as the
diffusion scale. Note that we observed from simulations
that the value of the kurtosis on these timescales is sen-
sitive to the actual shape of compartments and to the
width of the barrier potentials. It suggests that the kur-
tosis might be used for getting experimental insight on
these membrane properties. The change of kurtosis sign
shows that the first peak is observed at the time-scales
comparable to τd which suggests a way of inferring the
size of the compartment from the position of first peak
(assuming that the diffusion coefficient is known from the
MSD analysis). Qualitatively the decrease of the kurto-
sis for t ∼ τd can be explained as follows: t in that case

is large enough for the particle from any initial position
inside compartment to hit the barrier. However, the time
t ∼ τd is not sufficient to expect jumps over barrier so
that the fluctuations of the particle displacement are sub-
Gaussian.

The late time asymptote t ∼ τh, that is responsible
for the second peak of the observed kurtosis, is deter-
mined by trajectories that have a finite number of hops
between the compartments. The non-Gaussianity of the
jump distance distribution is related to the discrete na-
ture of barrier hopping events. When the typical number
of hopping events is small, say 1− 2, the fluctuations of
the total distance traveled by a particle are stronger than
Gaussian (because after each jump over the barrier the
particle typically moves away from the barrier), and that
explains the rise of the kurtosis at t ∼ τh. As the number
of hops becomes very large for t � τh, the distribution
becomes Gaussian again, due to central limit theorem.
The kurtosis decays back to zero as τh/t. For the an-
alytical estimate of the position of the second peak we
look at square compartments of size L and assume that
at t � τd the density inside the initial compartment is
almost constant. We then assume that the perturbations
above that constant have a form of the quadratic polyno-
mial in x and y with the same approximation for the four
neighboring compartments (i.e. we neglect the probabil-
ity of secondary jumps into more distant compartments).
Using the boundary condition (3) between compartments
(integrated along each boundary) we obtain the time de-
pendence of p in every compartment. Calculating the
kurtosis (1) from that solution we obtain the position of
the second kurtosis peak τpeak,2 as follows

τpeak,2 =
P−1L

5D
ln

6

5
+O

(
L2

D

)
, (4)

there O
(
L2

D

)
term could be roughly estimated as the ini-

tial equilibration time of the particle in the compartment
L2/D. Figure 7 compares the dependence of the position
of the second kurtosis peak for the square compartments
of size L obtained numerically with the fit to the expres-
sion (4) assuming O(L2/D) = αL2/D and the fitting
parameter value α = 1.216. Note the applicability of the

analytical expression (4) requires that P
−1L
5D � L2/D

which is not well satisfied for the parameters σ = 5nm
and H = 7 and typical values of L in Figure (4) (applica-
bility is better for smaller values of L). These numerical
values were chosen to approach the typical conditions for
the proteins (lipids) motion in compartments [10].

To conclude, we have proposed and analyzed a novel
particle-tracking approach for the identification of non-
linear interactions. Unlike common MSD techniques, our
approach is based on the analysis of the time depen-
dence of the non-Gaussian characteristics of the particle
dynamics, specifically the kurtosis of the displacement
probability distribution. The functional dependence of
the kurtosis on the measurement time carries a lot of
information about the nonlinear interactions that con-
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FIG. 7: (Color online) Dependence of the position of the sec-
ond kurtosis peak for the square compartments of size L from
simulations (crosses connected by dashed lines line) vs. the
dependence (4) with O(L2/D) = 1.216 L2/D (solid line). The
default parameter values σ = 5nm and H = 7 are used.

tribute to the particle motion. E.g., if a particle is placed
in a cage-type potential induced by cytoskeleton or trans-
membrane proteins, the resulting kurtosis of the displace-
ment is a non-monotonous function with three distinct
regions characterized by the change of the sign of the
kurtosis slope. Specific structure of the kurtosis function
depends on the characteristics of the potential: shape
and size of the individual cells, heights and widths of the
barriers but the change of sign feature is quite robust
to the specifics of the potential. Also we would like to
stress that the measurement of time-independent kurtosis
as was made e.g. in Ref. [19] would not give any essential
information about compartments because it would mean
the averaging of the kurtosis over the horizontal axis in
Figures 2 and 4 which would completely erase the change
of the sign of the kurtosis slope feature which is a core
idea of this Letter.
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