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Abstract 

We report direct measurement of surface deformation in soft solids due to their surface 

tension.  Gel replicas of PDMS masters with rippled surfaces are found to have amplitudes 

that decrease with decreasing gel modulus.  Surface undulations of a thin elastomeric film are 

attenuated when it is oxidized by brief exposure to oxygen plasma.  Surface deformation in 

both cases is modelled successfully as driven by surface tension and resisted by elasticity.  

Our results show that surface tension of soft solids drives significant deformation, and that 

the latter can be used to determine the former.  

 



                                                                               

3 
 

 

1. Introduction 

The presence of an interface between two phases results in a change in free energy 

compared to the bulk [1],[2],[3]; resulting equilibrium properties of an interface are its 

surface energy, γ, and surface tension, σ.  The surface tension is the isotropic part of the 

surface stress in the surface layer [4].  The surface energy, by contrast, is the work necessary 

to form unit area of surface by a process of division; surface energy and tension are related by 

an expression provided by Shuttleworth [5] and subsequently generalized by others [6, 7].   

Although surface tension can potentially drive significant deformation in soft solids 

like hydrogels and elastomers, little attention has been paid to investigating these phenomena 

or to the problem of measuring surface tension.  For example, a neo-natal infant’s lungs fail 

to inflate and collapse unless just the right surfactant is injected.  This respiratory distress 

syndrome (RDS) is governed by surface energy and surface tension, and mitigated by their 

modulation by surfactant adsorption [8].  The ability to create a replica of features in a stiff 

mold using a soft material is limited by shape rounding or flattening due to surface tension 

[9].   Adhesion, locomotion, and proliferation of biological cells depends on surface 

mechanical properties; cells will propagate from the softer to the stiffer portion of a substrate 

and exert surface stresses which results in surface creases [10]. Importantly, the role of 

surface tension of the deformed surface on the response of the cell has generally been 

ignored.   

For a liquid, it is well-known that surface tension is positive with a numerical value 

equal to the surface energy, so that one need not always distinguish between the two.  

However, it has long been recognized that the surface tension need not equal the surface 

energy for solids – they need not even have the same sign [5, 11].  In particular, when the two 



                                                                               

4 
 

are different, in Laplace’s equation the pressure difference across a curved interface is 

proportional to the surface tension (not the surface energy) times the surface curvature [5, 6]. 

The deformation caused by this pressure difference for most stiff solids is negligible.  

However, in highly deformable, soft solids, this need not be the case and surface tension 

could cause significant deformation.  

If a liquid contacts a soft or compliant solid, its surface tension can drive deformation; 

a characteristic length scale for it is given by the ratio, γ/E, where E is the elastic modulus [9, 

12].  While for stiff solids such as metals and ceramics, this is insignificantly small, for soft 

materials such as elastomers and gels with E in the kPa to MPa range, γ/E ranges from tens of 

nm to several microns.  Such elasto-capillarity phenomena, driven by liquid surface tension, 

have been studied in some detail as reviewed recently [12], but are distinct from phenomena 

driven by solid surface tension.  

Deformation of soft solids due to their surface tension has been much less studied.  

Mora et al. recently showed that a compliant solid cylinder experiences a Rayleigh-Plateau-

like instability in which surface tension defines the characteristic length scale [13].  Jerison et 

al.[14] showed that solid surface tension influences the elastic substrate deformation due to a 

contact line. Crosby and co-workers [15]  have studied bubble growth under pressure in 

compliant solids, where surface tension plays a significant role.  The characteristic length 

scale in the case of surface tension driven deformation is E/σ .  For example, if we attempt to 

make a sharp edge in a soft elastic solid, this length scale estimates the radius of curvature to 

which the sharp edge will relax [9].  Adhesive contact between elastic bodies can be used to 

determine solid-solid interfacial energy [16, 17], but not solid surface tension.  The 

commonly used contact angle measurement, using Young’s equation [18], determines not 

surface tension but differences in surface energy [5, 6]. 
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Gibbs noted [19] that the surface tension is quite a different quantity from surface 

energy, and the phenomena it drives are generally negligible, because “the rigidity of solids is 

in general so great, that any tendency of the surfaces of discontinuity to variation in area or 

form may be neglected in comparison with the forces which are produced in the interior of 

the solids by any sensible strains…”.  More recently, de Gennes et al. [1], in a discussion of 

techniques to measure surface energy or tension of liquids, have noted that, “As such, these 

methods cannot be readily applied to hard interfaces, whether between a solid and a vapor or 

between a solid and a liquid, because the elastic energy stored in the solid far exceeds the 

interface energy associated with any distortion.  As a result, measuring the surface tension of 

solids is generally perceived as an impossible task.” While surface stress measurement is 

difficult, techniques for crystalline materials are available [6, 20-22], although only changes 

in surface stress can be measured accurately.   

Here we show that when the material is sufficiently soft, or if a compliant structure is 

designed, the difficulty pointed out by Gibbs and de Gennes et al. is obviated.  We report on 

two experiments where surface tension drives sufficiently large deformation of a soft solid to 

make it easily measurable.  In contrast to the time-dependent shape evolution of nearly flat 

interfaces, e.g., as studied by Mullins [23], a significant part of this deformation is nearly 

instantaneous.  This deformation could be used to measure the surface tension.  

 

2. Experimental 

PDMS (poly(dimethysiloxane)) sheets with rippled surfaces of different amplitudes 

(0.5 – 5 μm) and wavelengths (22 – 32 μm) were fabricated using replica molding as 

described elsewhere in detail [24] (Figure 1a).  Gel replicas of the PDMS rippled surfaces 

were prepared by pouring on them solutions of Gelatine in water and allowing the latter to 
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cross-link overnight at a controlled temperature of 7-8 °C inside a refrigerator. In order to 

vary the elastic modulus of the gel, Gelatine solutions of different concentration were 

prepared by mixing Gelatine powder (purchased from EWALD-GELATINE GmbH) into hot 

water (60o C) at different weight ratios: 1:10 to 3:10.  After gelation, the samples were 

removed from the refrigerator and allowed to equilibrate to room temperature.   

Prior to separation of the gel from the PDMS, we would observe a clear, light-

transmitting interface suggesting intimate contact between the two.  To confirm more directly 

that the gel surface matched that of the PDMS faithfully we sectioned a rippled PDMS master 

normal to the surface and to the ripple direction.  The sectioned surface was placed in contact 

with the bottom of a petri dish after which we poured Gelatine solution, which was allowed 

to gel following the same procedure as for other samples.  The PDMS-Gel sample cross-

section was examined by dark-field optical microscopy (Figure 1b).  Such micrographs 

confirmed that the gel faithfully replicated the surface topography of the rippled PDMS. (See 

also Supplemental Information.[25]) 

Following this, the gel was gently removed from the PDMS mold.   The surface 

topography of the PDMS master and its gel replica was examined at several spots using a 

white light interferometer (WLI) (along with MetroPro 8.3.5 software, Zygo Corp. 

Middlefield, CT USA).  Images were analyzed to compute the distributions of successive 

peak-to-valley heights using code written in Matlab(R).  In addition, the dynamics of surface 

profile evolution was captured by scanning one spot over a period of time until a steady state 

was attained.  Elastic moduli of different gel samples were obtained by indentation using a 

rigid sphere.  The compressive part of the load-displacement curves was analyzed using the 

Hertz theory of elastic contact [26] to obtain the Young’s modulus.  
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In a separate set of experiements a fibrillar PDMS structure with an undulating 

terminal film (~ 6-8 μm thick) was fabricated using a process described elsewhere [27] 

(Figure 1c).  We exposed the film briefly (12-30 s) to oxygen plasma (60% O2, 100% power, 

Diener electronic GmbH+ Co. KG, Germany).  Surface undulations were measured using 

WLI before and after exposure of the surface to oxygen plasma.  

 

200 μm
    

                            (a)       (b) 

 

(c) 

Figure 1 (a) Scanning electron micrograph of a nearly flat rippled surface, (b) Dark-field 
optical micrograph: a cross-sectional view of the gel-PDMS interface shows that the gel 
replicated faithfully undulations in the PDMS surface, and (c) Scanning electron micrograph 
of a film-terminated structure, both fabricated using an elastomer, PDMS. 
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3. Flattening of a Gel-Replica by Surface Tension 

Figure 2a shows plots of the surface undulations of a PDMS sample (higher 

amplitude) and its gel replica (smaller amplitude, Young’s modulus, E = 18 kPa).  Figure 2b 

shows line scans of the surface profile along paths marked by the lines in Figure 2a.  It is 

evident from these figures that peak-to-valley heights for the gel replica (~0.4 µm) are 

significantly smaller than those of the PDMS surface against which it was cast (~1.0 µm).  

Moreover, it appears that sharper features, or higher Fourier modes, are flattened out 

preferentially in the replica.  Figure 2 (c) shows the cumulative distribution of peak-to-valley 

heights in a different gel sample, again with E = 18 kPa.  The mode of the peak-to-valley 

height distribution of the PDMS master, ~2.7 μm, reduces to ~1.5 μm in the gel replica.  The 

ripple amplitude of the gel replica, following an instantaneous reduction upon separation 

from its PDMS master, continued to evolve over tens of minutes (Figure 2(d)).  Through 

separate experiments, we confirmed that the fractional volume change due to drying prior to 

separation of the gel and PDMS is much smaller than the observed fractional change of the 

surface undulation amplitude (see Supplementary Information for more detail).  Therefore, 

we have focused on the short-time, nearly instantaneous, flattening of the gel surface upon 

separation from the PDMS master, which is unaffected by gel drying.   
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(c)     (d) 

Figure 2  (Color online) (a) Surface plot of ripples on PDMS (higher amplitude) and its gel 
replica (E = 18 kPa ).  The in-plane distance is in microns; the average peak-to-peak 
separation is 31 μm. (b) Line scans of the surface profile for the master PDMS and its gel 
replica.  (The datum is arbitrary.) (c) Cumulative distribution of peak-to-valley heights for a 
PDMS master and its gel replica (Young’s modulus, E = 18 KPa). (d) Evolution of amplitude 
as a function of time for gels of different moduli. 

 

Figure 3 (a) shows how the short-time mode of the peak-to-valley height distribution 

of the gel replica decreases systematically with decreasing gel modulus for two different 

PDMS masters (circles & triangles).  The solid lines represent the mean peak-to-valley 

heights for the PDMS masters. 
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(a)      (b) 

Figure 3 (Color online) (a) Mode of short-time peak-to-valley height distribution as a 
function of gel modulus for two different rippled PDMS masters (points).  Solid lines 
represent the PDMS masters; dashed lines are theoretical predictions. (b) Normalized short-
time mode of peak-to-valley height distribution as a function of gel modulus.  The dashed 
lines are theoretical predictions using different values of surface tension. 

 

Figures 2 and 3 show that, upon separation from the master PDMS surface, 

undulations on the gel surface relax significantly.  To see whether this shape change can be 

explained reasonably by surface deformation driven by surface tension, consider the 

following simple model.  Let the surface ripples on the PDMS master be represented by a 

single sinusoidal function 

 ⎟
⎠
⎞

⎜
⎝
⎛=

λ
πxay o

2cos       (1) 

where oa  is the amplitude and λ  is the wavelength. Let a be the amplitude of the gel 

immediately after it is separated from the master.  Because 1/ <<λa , the surface curvature of 

the gel can be estimated accurately by ''y , the second derivative.  Laplace’s equation for 

pressure difference across a curved surface, p, gives 
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Assuming a constant surface tension, the resulting displacement of the surface due to this 

pressure is given by [26] 
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where *E  is the plane strain modulus.  Thus, the rippled gel surface has a reduced amplitude 

of 

;
*
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*
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where the approximate version in eq. (4) holds if the change in amplitude is small compared 

to the amplitude itself.  For such small changes in amplitude, by superposition, we can 

consider more general surfaces.  Specifically, if o
ia  is the coefficient of the ‘ith’ Fourier 

mode on the master, it is reduced in the replica to  

 ;
*

41 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

λ
σπ

E
iaa o

ii       (5) 

That is, higher modes are proportionately attenuated to a greater extent by surface tension, as 

is evident qualitatively in Figure 2b. 

A hydrogel surface essentially comprises mostly water, bound to the cross-linked 

protein network.  Accordingly, we expect the surface tension, σ , to be on the order of the 

surface energy of water, and somewhat smaller in magnitude.  The dashed lines in Figure 3(a) 

show the predicted peak-to-valley height (twice the amplitude) given by eq. (4) using a value 
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of 60 mN/m for surface tension.  Figure 3(b) shows data from a few different samples and 

plots a/ao as a function of Young’s modulus.  The solid lines are calculated using eq. (4), for 

surface tension values ranging from 30-70 mN/m. We may expect that as modulus reduces 

and the fraction of water in the hydrogel increases, the surface tension would increase and 

approach the value of pure water.  Therefore, potentially, the procedure followed above could 

be run in reverse, and measured deformation be used to estimate an (unknown), composition-

dependent, surface tension.   

4. Surface Undulations of a Thin PDMS Plate 

The interplay between surface tension and elasticity is further examined in a different 

experiment in which we compare surface undulations of a film-terminated fibrillar PDMS 

sample before and after exposure to oxygen plasma, Figures 4 (a) and (b).  Taking peaks as 

the datum, Figure 4(c) plots final peak-to-valley heights for a number of points in a sample 

with fibril separation of 110 μm.  The surface has well-defined periodic undulations that are 

evidently reduced systematically following exposure to the oxygen plasma.  
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(c) 

Figure 4 (Color online) (a) Surface plot of height undulations in the PDMS film before 
(higher amplitudes) and after (lower amplitudes) exposure to oxygen plasma, (b) Line scan 
across the surface shows that exposure to oxygen plasma flattens the surface, (c) Final peak-
to-valley heights are systematically lower than their initial values. 

 

As fabricated, the terminal film (Figure 1c) lies on a silicon wafer and has a flat surface; 

this is its stress-free configuration.  However, the inner surface of the terminal film is not flat; 

let this shape be ( )yxwo . .  When the sample is separated from the flat silicon wafer on which 

it is fabricated, the film is released from its constraint, and the action of surface tension on the 

interior surface causes the film to deform to a shape given by ( )yxw f .  (Figures 1(c), 4(b)).  
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Curvature of the upper and lower surfaces multiplied by surface tension is the Laplace 

pressure which drives deformation.  The following equation governs deformation of a plate 

subjected to surface tension ([28], see also Supplemental Information) 

( )of wwD 24 ∇=∇ σ ;       (6) 

where D=E*t3/12 is the flexural rigidity, and t is the film thickness.  The non-uniformity of 

the plate thickness, and the fact that the plate is constrained by posts, make an exact analysis 

cumbersome.  We opt instead for an approximate model that provides a scaling result by 

choosing to represent shape and deformation as:  
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⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

b
y

b
xcw

b
y

b
xcw

ff

oo

ππ

ππ

2cos2cos2

2cos2cos2
;     (7) 

(See Figure S3 in Supplemental Information.) Substituting (7) into (6) provides the result 

32

2

2

2 3
*4 t

bc
ED

bcc o
of π

σ
π

σ −=−=      (8) 

Note that the characteristic length scale σ/E* is amplified by a geometric factor, 

3cob3/πt3>>1.  Based on measured values of cf  (Figure 4b), PDMS modulus (4 MPa [29]), 

and thickness (~7 μm), this equation is consistent with known surface energy of PDMS (22 

mN/m [30]) for co ~ 6-7 μm, a reasonable value (Figure 1c).  It is known that plasma 

treatment creates a thin silicaceous surface film [31].  For the short exposures such as used in 

this work, it is expected to be ~ 6 nm in thickness with a Young’s modulus of 1.5 GPa 

modulus [29].  The bending rigidity of the PDMS film changes from 12/* 3tED =  

approximately to 4/12/* 2*3
ss ttEtED += , where ts, Es*, are the thickness and Young’s 

modulus of the silica film.  Then, according to equation (8), the amplitude of undulations 
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should reduce by the ratio of bending rigidity.  Using the same parameters as cited above, we 

calculate this reduction to be a factor of 0.56, consistent with measurements (Figure 4c).   

5. Concluding Remarks 

In summary, we have shown that soft elastic solids have a surface tension that can 

drive significant deformation.  For a rippled surface, the amplitude change of the replica is 

governed by the characteristic length scale, E/σ , attenuated by the ripple geometrical factor, 

1/ <λoa .  For the thin-plate geometry, the characteristic length scale, amplified by the plate 

geometrical factor, 1/ 32 >>tbco , approximates the observed changes in surface undulations. 

With an appropriate choice of geometry, deformation can thus be used to measure the surface 

tension of soft solids over a range of elastic moduli.    
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