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Abstract

Using discrete molecular dynamics simulations we study the relation between the thermodynamic

and diffusive behaviors of a primitive model of aqueous solutions of hydrophobic solutes consisting

of hard spheres in the Jagla particles solvent, close to the liquid-liquid critical point of the solvent.

We find that the fragile-to-strong dynamic transition in the diffusive behavior is always coupled

to the low-density/high-density liquid transition. Above the liquid-liquid critical pressure, the

diffusivity crossover occurs at the Widom line, the line along which the thermodynamic response

functions show maxima. Below the liquid-liquid critical pressure, the diffusivity crossover occurs

when the limit of mechanical stability lines are crossed, as indicated by the hysteresis observed when

going from high to low temperature and vice versa. These findings show that the strong connection

between dynamics and thermodynamics found in bulk water persists in hydrophobic solutions for

concentrations from low to moderate, indicating that experiments measuring the relaxation time in

aqueous solutions represent a viable route for solving the open questions in the field of supercooled

water.
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I. INTRODUCTION

Over the past decade our understanding of the puzzling behavior of water in the su-

percooled region has greatly expanded [1]. At present, plausible scenarios that might fill

in the missing pieces of our comprehension have been developed through simulations and

theoretical models. In 1992, using a molecular dynamics simulation of the ST2 potential,

the existence of a liquid-liquid critical point (LLCP) in the supercooled region of water was

hypothesized [2]. Since that time the LLCP has been found in a number of other simulations

[3–5]. In this conceptual framework the presence of the LLCP explains the puzzling anoma-

lies in the behavior of water. Although the LLCP scenario remains fascinating, its existence

has not been experimentally confirmed, and alternative scenarios have been proposed [6].

Experiments are consistent with the existence of a LLCP [7, 8] but proof has been difficult

because efforts to reach the zone in the phase diagram where the LLCP would be located

are hampered by nucleation. On the low temperature side the existence of high density

amorphous (HDA) and low density amorphous (LDA) states with a first-order coexistence

line separating them has been experimentally proven [9]. If a LLCP exists, it is at the

terminating point of the extension of this line in the supercooled liquid region. [8, 10].

In 1996 a strong relationship between the dynamic and thermodynamic behaviors of

water was reported [11], indicating that the well-known singular temperature TS at which

various thermodynamic and dynamic anomalies diverge, can be identified with the crossover

temperature TC of the mode coupling theory [12]. This crossover temperature marks the

fragile-to-strong (FTS) transition that occurs in supercooled liquids approaching the glass

transition. Recent studies have completed the picture for water by connecting this FTS

transition to the crossing of the “Widom line” [4, 13, 14]. Upon approaching the LLCP,

the lines of maxima of the different response functions converge on this Widom line, which

separates water with HDL-like features at high temperatures from water with LDL-like

features at low temperatures [14, 15].

Simulations have indicated that the LLCP persists in aqueous solutions for concentrations

ranging from low to moderate both for polar and apolar solutes [5, 16–19]. This suggests

that focusing on aqueous solutions might be a possible experimental strategy in probing the

existence of a LLCP. In solutions, in fact, the nucleation barrier can be tuned and brought

below the LLCP [5, 17]. Very recently experiments on water/glycerol mixtures [20] have
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shown signs of a liquid-liquid phase transition. Nonetheless, thermodynamic measurements

are more difficult than measurements on dynamics, therefore it is timely to prove whether

the FTS crossover remains coupled to the liquid-liquid transition also in aqueous solutions,

as this can address the experimental quest on the existence of LLCP toward the study of

dynamics. We note that it is a priori not obvious that the FTS transition transfers to

aqueous solutions as it is a phenomenology present in many glass formers that do not have a

LLCP. In this paper we use a primitive model able to reproduce the phenomenology of water.

We present the results of discrete molecular dynamics (DMD) simulations on water mixed

with hard spheres (HS), in order to determine whether the connection between dynamics

and thermodynamics retains its validity in hydrophobic solutions.

The paper is structured as follows. Simulation details are reported in Sec. II. The results

are presented and discussed in Sec. III. Concluding remarks are given in Sec. IV.

II. SIMULATION DETAILS

The primitive model used for the results presented in this paper is the Jagla model

[21] [see Fig. 1(a)], an isotropic potential with two length scales, a hard-core distance a

and a soft-core distance b, plus an attractive ramp that extends to a cut-off distance c.

The parameterization we use, b/a = 1.72, c/a=3 and UR/U0 = 3.56, has been shown to

possess bulk water anomalies and a liquid-liquid transition [4, 22]. The Jagla model was

also successful in reproducing the increase of solubility upon cooling of non-polar solutes

modeled as HS [23, 24].

Physical quantities are expressed in reduced units [18]. The total number of particles

contained in the cubic simulation box is N = 1728. We performed DMD simulations on

the discretized version of the Jagla ramp potential, for the bulk and for xHS = 0.10 and

xHS = 0.15 HS(J) mixtures of HS in Jagla particles, at constant N , P and T . Pressures

and temperatures are controlled by Berendsen algorithms. The HS have diameter a and the

same mass as the Jagla particles. Solute-solute and solute-solvent interactions are purely

hard-core. The position of the LLCP of the bulk Jagla system [4, 22, 25] and of HS(J)

mixtures with mole fraction up to xHS = 0.50 has been previously determined [18] in NV T

simulations. Its position in the P−T plane shifts to higher pressures and lower temperatures

upon increasing the mole fraction of HS. In the Jagla model the slope of the liquid-liquid
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coexistence line is positive, unlike other models for water [1]. Consequently the HDL is the

more ordered phase and has an Arrhenius dynamic behavior, while the reverse is true for

other models [4, 18, 22]. Simulations with primitive models have the advantage of permitting

to explore for large systems, a wide range of pressures and temperatures, especially in the

deep supercooled region, where equilibration of long-range, orientational dependent poten-

tials becomes impossible. In particular, the ramp potential with the choice of parameters

used here is able to reproduce, mutatis mutandis, the complex thermodynamic scenario of

water commonly derived from long-range orientational dependent potentials [2, 3, 5].

III. RESULTS AND DISCUSSION

In order to verify the connection between dynamic and thermodynamic behaviors, we

consider the phase diagrams of bulk water and aqueous solutions previously determined for

the Jagla potential and we study the thermodynamic and diffusive behavior along constant

pressure paths [see Fig. 1(b)]. In particular, we consider isobaric paths near and above the

LLCP, at the LLCP, and near and below the LLCP. Paths α, β, and γ are above the critical

pressure and cross the Widom line. The path δ is at the critical pressure. Paths ǫ and ǫ′

are below the critical pressure, and cross the HDL and LDL limit of mechanical stability

(LMS) lines depending on the direction. In particular, along path ǫ the system goes from

LDL (high T ) to HDL (low T ) when crossing the LDL LMS while along path ǫ′ it goes from

HDL to LDL upon crossing the HDL LMS. Path ζ , also below the critical pressure, does

not cross the LDL LMS line and therefore the system remains in the LDL all along the

path. All paths, except path ǫ′, have been performed starting from a configuration at high

temperature and progressively equilibrating the system at lower temperatures. For path ǫ′

the starting configuration was taken at low temperature and the system was progressively

equilibrated at increasing temperatures in order to cross also the HDL LMS.

Figure 2 shows the behavior of the isobaric specific heat CP ≡ (1/N) · (∂H/∂T )P for

bulk water and for the xHS = 0.15 HS(J) solution calculated for all the paths shown in

Fig. 1(b). The results for the xHS = 0.10 HS(J) solution follow a similar trend and are

not shown. Both in bulk water and in the solutions, the points above the critical pressure

at which the specific heat displays a maximum define the Widom line emanating from

the LLCP. Consistent with the positive slope of the liquid-liquid coexistence line for the
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Jagla potential [4, 22], the specific heat maximum moves to a higher temperature as the

pressure increases. Its height decreases moving away from the LLCP. For the paths along

the critical pressure, the temperature of the maximum falls close to the one estimated in

NV T simulations [18, 22]. We note that paths ǫ and ǫ′ clearly show the hysteresis expected

for a first-order transition in a finite size system with the CP maxima occurring at different

temperatures, one corresponding to the LDL LMS for path ǫ and one corresponding to the

HDL LMS for path ǫ′. Along path ζ , which does not reach the LDL LMS, no peak is

observed.

We now show the diffusive behavior of Jagla particles in solution along the same constant

pressure paths and compare it with the bulk Jagla results. Figure 3 shows the diffusion

coefficient as a function of inverse temperature for bulk Jagla particles and xHS = 0.10 and

0.15 HS(J) solutions. For all three systems, above the LLCP the diffusion coefficient shows

a crossover as it crosses the Widom line as determined from the CP maxima. Along path

ζ , that does not cross the LDL LMS line, the temperature dependence of D is clearly non-

Arrhenius, indicating that the LDL liquid can be classified as fragile. Taking advantage of

this particular potential we could push this path to very low temperatures and thus observe

a clear fragile behavior. In Fig. 3 we also show the fit to the Vogel-Fulcher-Tamman, VFT,

function D = D0 exp[−B/(T − T0)] characterizing the fragile behavior of a glass former.

For all the paths crossing the Widom line, on the high temperature side of this line we

find a LDL-like liquid, and the diffusive behavior is that of a fragile liquid, when compared

to path ζ who is always in the LDL fragile environment. On the low temperature side of

the Widom line the diffusive behavior shows a steep straight slope typical of a strong liquid

with D following the Arrhenius law, D = D0 exp (−EA/kBT ).

Along paths δ, at the critical pressure the diffusivity jumps from high-temperature fragile

behavior to low-temperature strong behavior close to the estimated temperature of the

LLCP. An analogous jump is found when crossing the LDL LMS line along paths ǫ. We

note that the jump appears only when passing the LLCP or a LMS line. In analogy with

the hysteresis behavior observed for the isobaric specific heat (see Fig. 2), a jump is also

observed when heating up the systems along paths ǫ′, but now it occurs at a temperature

corresponding to the HDL LMS line. This indicates that the hysteresis caused by the first-

order transition observed when studying the thermodynamic behavior in a finite system

is observed for the diffusive behavior as well. This jump in the diffusion coefficient is a
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finding that can be useful for the experimental determination of the liquid-liquid coexistence.

These findings confirm the coupling between the dynamic and the thermodynamic behavior

observed in bulk water (P > Pc corresponds to P < Pc and vice versa in other models [26] for

the reversed slope of the coexistence line) and extends its validity to hydrophobic solutions.

Figure 4 shows the LLCP, HDL, and LDL LMS lines, the points at which the isobaric

specific heat CP and coefficient of thermal expansion αP maxima occur and the points at

which a crossover in the diffusive behavior is found. The coefficient of thermal expansion

αP = (1/V ) · (∂V/∂T )P has been calculated for all our systems and for all paths. It displays

a behavior qualitatively equivalent to that of the isobaric specific heat (not shown). Above

the LLCP along the Widom line CP and αP exhibit maxima, and the temperature at which

the diffusivity crossover occurs, estimated from the derivative of the logarithm of D with

respect to 1/T , coincides with CP and αP temperature maxima and thus with the Widom

line. The maxima in thermodynamic response functions and the diffusivity crossover at

the critical pressure are also found close to the LLCP temperature, estimated in NV T

simulations [18, 22]. Below the LLCP and along paths ǫ and ǫ′ the points where CP and

αP and the diffusivity crossover occur also coincide, and they correspond to the crossing

of the LDL LMS line and the HDL LMS line, respectively. This shows that the hysteresis

expected for the thermodynamic quantities calculated along paths ǫ and ǫ′ due to the first-

order coexistence line between LDL and HDL and observed only at the LMS lines due to

the metastability of the phases, is also maintained in the diffusive behavior.

IV. CONCLUSIONS

Our results suggest that the FTS dynamic transition reported for water in different

environments in the literature [4, 11–13, 15] occurs at the same time as the thermodynamic

liquid-liquid transition. They are, in other words, two sides of the same coin and, when

the isobaric paths do not cross the LMS or the Widom line, there is no crossover and the

dynamic behavior remains strong or fragile. We note that this connection between dynamic

and thermodynamic behaviors might be a general feature of network-forming liquids, e.g.,

a similar picture is found in silica [27]. Why the FTS dynamic crossover is also commonly

found in glass formers [28] when it is not associated to a liquid-liquid transition remains

an open question. Our results show that for moderately concentrated solutions the changes
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induced by the solutes are continuous and the FTS crossover remains coupled to the liquid-

liquid transition paving the way to the experimental exploration of aqueous solutions as tools

to understand the mysteries of water. In particular light scattering and neutron scattering

experiments [29] can be used to detect the liquid-liquid transition in aqueous mixtures.

Particularly important would be to see the jump in relaxation times below the LLCP as it

is directly connected to the liquid-liquid transition.
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FIG. 1. (Color online) (a) Spherically symmetric Jagla ramp potential. A snapshot of the xHS

= 0.10 system is also shown in the top right corner. (b) Schematic liquid-liquid phase diagram

for Jagla systems (bulk or solutions) with the LLCP and the limit of mechanical stability (LMS)

lines. The constant pressure paths are simulated at P = Pc + 0.020 (path α); P = Pc + 0.015 (β);

P = Pc+0.010 (γ); P = Pc (δ); P = Pc−0.010 (ǫ) starting from high temperature; P = Pc−0.010

(ǫ′) starting from low temperature; P = Pc − 0.030 (ζ).
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FIG. 2. (Color online) Isobaric specific heat CP as a function of temperature (a,b) of bulk Jagla
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